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Outlines 

• Image Quality
•Gray value transforms
•Histogram processing
•Transforms in image space
•Transforms in Fourier space 
• Transforms in Time-frequency space
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4.1. Mechanics of spatial filters

4. Transform in image space
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The mechanics of spatial filters 

A spatial filter consists of 
1. A neighborhood (typically a small rectangle or 

square)
2. A predefined operation that is performed on the 

image pixels encompassed by the neighborhood

If the operation is linear, then it is called linear
spatial filter; otherwise, it is nonlinear. 
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The mechanics of spatial filters 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1 1 1 1 10 1

0 0 11 1 1

Let   be an original image. At any point  in the 

image, the filtered image  of a linear spatial filter of 
size 3 3 is

f x,y x,y

g x,y

g x,y w , f x ,y w , f x ,y ...

w , f x,y ... w , f x ,y .

×

= − − − − + − − +

+ + + + +

(p146)
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The mechanics of spatial filters 

( )

( ) ( ) ( )

( )

2 1 2 1For a mask of an odd size  where  and 
In general, the linear spatial filtering of an image  with the
filter of size  is 

for every pixel  in .

a b

s a t b

m n, m a n b .
f x,y

m n

g x,y w s,t f x s,y t

x,y f
=− =−

× = + = +

×

= + +∑∑
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The mechanics of spatial filters 

( )

( ) ( ) ( )

( )

2 1 2 1For a mask of an odd size  where  and 
In general, the linear spatial filtering of an image  with the
filter of size  is 

for every pixel  in .

a b

s a t b

m n, m a n b .
f x,y

m n

g x,y w s,t f x s,y t

x,y f
=− =−

× = + = +

×

= + +∑∑
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Correlation and Convolution 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

The filtered image can be expressed as the correlation
of  and 

Note that the convolution of  and is defined as

a b

s a t b

a b

s a t b

w x,y f x,y

g x,y w s,t f x s,y t w x,y f x,y .

w x,y f x,y

w s,t f x s,y t w x,y f x,y .

=− =−

=− =−

= + + = ∗

− − = ⊗

∑∑

∑∑
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4. Transform in image space

4.2 Blurring
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Image Blurring

www.sprawls.org
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Image Blurring

www.sprawls.org
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Image Blurring

www.sprawls.org
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But, sometimes one prefers to have blurred 
images…
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4. Transform in image space

4.3 Blurring filters
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Averaging (or box) filter

( )

( )

9

1

3 3

1
9

For a mask of size   the value of the filtered image  
at the pixel  is

kx,y
k

, g
x,y

g f .
=

×

= ∑
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Weighted Averaging filter

( )

( ) ( )1 2 3 4 5 6 7 8 9

3 3

1 2 2 4 2 2
16

For a mask of size   the value of the filtered image  
at the pixel  is

x,y

, g
x,y

g f f f f f f f f f .

×

= + + + + + + + +
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Effect of average filtering

21
Fields, 08, HmZhu

Get a gross representation of objects of interest
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Gaussian filter

( )
2 2

22
2

1
2

Gaussian filter is a sample of the Gaussian function 
which has the basic form:

For example, 
  0.0113   0.0838 0.0113

0.0838 0.6193 0.0838
0.0113 0.0838 0.0113

x y

w x, y e .

W

σ

πσ

+
−

=

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠
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Gaussian filter
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4. Transform in image space

4.4 Sharpening
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Sharpening an image

Sharpening: the principal objective of sharpening 
is to highlight transitions in intensity

While smoothing is accomplished in the spatial 
domain by pixel averaging in a neighborhood (or 
spatial integration), sharpening can be done by 
spatial differentiation
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Derivatives and Differences

The derivatives of a digital image are usually defined 
in terms of differences. 

( ) ( )

( ) ( ) ( )
2

2

1

1 2 1

We approximate the 1st order derivatives by 

       

and the 2nd order derivatives by 

       

f f x f x
x

f f x f x f x
x

∂
= + −

∂

∂
= + − + −

∂

27
Fields, 08, HmZhu

Illustration of derivatives in a 1-D 
digital function
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Properties of derivatives

The 1st derivatives are 
a) zero in areas of constant
b) nonzero at the onset of an intensity step or ramp
c) nonzero along ramps 

• The 2nd derivatives are

a) zero in areas of constant
b) nonzero at the onset of an intensity step or ramp
c) zero along ramps if constant slopes
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Outline

•Laplacian filter
•Unsharp masking, highboost filtering 
•Gradient filter
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Laplacian filters

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2

2

2

2

2 2

2 2

1 1 2

1 1 2

1 1 1

The Laplacian for a function  is defined as

            

where 

   

   

The discrete Laplacian is 

f x, y

f f
x y

f f x , y f x , y f x, y
x
f f x, y f x, y f x, y .

y

f f f x , y f x , y f x, y f x
x y

∂ ∂
+

∂ ∂

∂
= + + − −

∂
∂

= + + − −
∂

∂ ∂
+ = + + − + + +

∂ ∂
( ) ( )1 4, y f x, y− −
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Laplacian filters
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Laplacian filters
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Laplacian filters

Because the Laplacian is a derivative operator, it highlights 
the intensity discontinuous in an image and de-emphasizes the
regions with slowing varying intensity levels. It produces grayish 
edge lines

( ) ( ) ( ) ( )2 2

2 2

 and discontinuities, superimposed on a dark, featureless
background. Thus, we can get a better sharpened image by

                 

where c = -1 if the center value i

f x, y f x, y
g x, y f x, y c

x y
⎛ ⎞∂ ∂

= + +⎜ ⎟
∂ ∂⎝ ⎠

n the filter is negative; otherwise, c = 1; 
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Unsharpen Masking (k=1) and
Highboost Filtering (k>1)

A process is often used for the printing and publishing 
industry to sharpen images, involving subtracting an 
unsharp (smoothed) version of an image from its 
original:
• Blur the original image 

• Subtract the blurred image from the original (unsharp
mask)

• Add the mask to the original

( )f x, y

( ) ( ) ( )maskg x, y f x, y f x, y= −

( ) ( ) ( ) maskg x, y f x, y k g x, y= +
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Mechanics of Unsharpen Masking
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Example
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Gradient

( ) x

y

( x, y )
f ( x, y )

f
f xf grad f

ff
y

f x

∂⎡ ⎤
⎢ ⎥⎡ ⎤ ∂⎢ ⎥∇ = ≡ =⎢ ⎥ ∂⎢ ⎥⎣ ⎦
⎢ ⎥∂⎣ ⎦

Another tool to finding edges at a location   of an 
image  is the gradient

    

which points in the direction of the greatest rate of 
change of  at (

( ) 2 2
x y

, y

f f ,

i.e.,

= +

).
The magnitude of the vector grad(f) can be defined as 

     M x, y

 the value of the rate of change in the direction of the gradient.
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Gradient

( ) 2 2
x yf f ,

i.e.,

= +

The magnitude of the vector grad(f) can be defined as 

     M x, y

 the value of the rate of change in the direction of the gradient.
The magnitude of the gradient is not a linear operator, 

( ) x yf f≈ +

but it is rotational
invariant (i.e, isotropic). 
In some implementation, it is easier to approximate the 
square root operations by absolution values

     M x, y

which preserves the relative change in intensity, but the isotropic property 
is lost in general. 
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Gradient
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Laplacian and Gradient

• The Laplacian, being a 2nd order derivative 
operator, is superior in enhancing fine details. 

• The gradient operator, being the 1st order 
derivative, has stronger average response for 
significant intensity transitions than does the 
Laplacian

Gradient Operators
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Roberts cross-gradient operators

( )

9 5 8 6

9 5 8 6

Roberts (1965) developed the cross differences
       and       
The magnitude of the gradient is approximated by
     M x, y
which can be implemented using two linear filter ma

x yf z z f z z

z z z z

= − = −

≈ − + −

sks 
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Prewitt Operators (1970)

( ) ( )

( ) ( )

5

7 8 9 1 2 3

3 6 9 1 4 7

x

y

z
f z z z z z z

f z z z z z z

= + + − + +

= + + − + +

Approximation to the gradient in a 3 by 3 neighborhood
centered at  are as follows:
       
and      
      
The magnitude of the gradient is approximated by Prewi

( ) ( ) ( )
( ) ( )
7 8 9 1 2 3

3 6 9 1 4 72 2

z z z z z z

z z z z z z

≈ + + − + +

+ + + − + +

tt operator
     M x, y

                   

Note that the weight value 2 in the center coefficient is to achieve
some smoothing by giving some importance to the center point.
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Sobel Operators

( ) ( )

( ) ( )

5

7 8 9 1 2 3

3 6 9 1 4 7

2 2

2 2

x

y

z
f z z z z z z

f z z z z z z

= + + − + +

= + + − + +

Approximation to the gradient in a 3 by 3 neighborhood
centered at  are as follows:
       
and      
      
The magnitude of the gradient is approximated by S

( ) ( ) ( )
( ) ( )
7 8 9 1 2 3

3 6 9 1 4 7

2 2

2 2

z z z z z z

z z z z z z

≈ + + − + +

+ + + − + +

obel operator
     M x, y

                   

Note that the weight value 2 in the center coefficient is to achieve
some smoothing by giving some importance to the center point.
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Gradient often used for inspection
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4.5 Combining spatial enhancement 
methods

4. Transform in image space
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Combining different filters

(a) Quite often one requires applications of several 
filtering techniques in order to achieve an 
acceptable result. 
(b) We illustrate that via a nuclear whole body scan 
which is noisy and low-contrast. Our objectives is to 
sharpen it and to bring out more skeletal details.  
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4.6 Anisotropic Diffusion Filter

4. Transform in image space
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Assumption and Goals

Goals
Efficiently remove noise in homogeneous regions
Preserve object boundaries, discontinuities, and detailed 

structures

Assumption
An image is a piecewise constant function that has 
been corrupted by zero-mean Gaussian noise with 
small variance 
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Overview

• To perform edge preserving smoothing iteratively
• To preverse edges   
• First introduced by Perona & Malik (1990)
• Later used to enhance medical images
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Isotropic diffusion

It x,y,t( )=∇⋅ c∇I x,y,t( )( )=c Ixx +Iyy( )

diffusion coefficient

• Blurring the original image by a Gaussian
• The Gaussian blurring is spatial invariant, i.e., it 

doesn’t respect the natural boundaries of 
objects 

time or iteration
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Anisotropic diffusion

It x,y,t( )=∇⋅ c x,y,t( )∇I x,y,t( )( )
diffusion (edge-stopping) function

• To encourage smoothing within a region while inhibiting 
smoothing cross regions (or piecewise  smoothing) 

• Function c depends on edge information
• c(x,y,t) can be defined as monotonically decreasing 

function of the image grad magnitude: 

iteration

flow function Φ

c x,y,t( )= g ∇I x,y,t( )( )

Diffusion function c(x,y)

c1 =exp −
∇I

2

K2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

c2 =
1

1+
∇I

K

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1+α , α > 0

∇I ≈K
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Diffusion constant K

• Max flow occurs when 
• To reduce noise in an image, choose K corresponding 

to the grad magnitude produced by noise
• To enhance edges, choose K slightly < the grad 

magnitude of the edges
• Since most medical images contain a significant 

amount of low-contrast edges, we choose K based on 
noise estimate
– Canny (1986) proposed to estimate K by the 90% value 

of integral of histogram of abs(grad)
– Fix windowing technique: The window with min SD of all 

the regions can be used to estimate noise. 1.5 * SD < K < 
2.0 * SD

∇I ≈K
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Experiments: 1D (remove noise) 

Experiments: 3D (track brain edges) 

b. K=64 c. K=128

100 iterations


