Medical Image Processing Using Transforms Hongmei Zhu, Ph.D Department of Mathematics & Statistics York University hmzhu@yorku.ca

Fields, 08, HmZhu

UNIVERSITE

Dutlines
Outlines
Image Quality
Gray value transforms
Gray value transforms
Histogram processing
Transforms in image space
Transforms in Fourier space
Transforms in Time-frequency space

Fields, 08, HmZhu

The mechanics of spatial filters

A spatial filter consists of

- 1. A neighborhood (typically a small rectangle or square)
- 2. A predefined operation that is performed on the image pixels encompassed by the neighborhood

If the operation is linear, then it is called <u>linear</u> spatial filter; otherwise, it is <u>nonlinear</u>.

EVALUATE: The mechanics of spatial filters Let f(x, y) be an original image. At any point (x, y) in the image, the filtered image g(x, y) of a linear spatial filter of size 3×3 is g(x, y) = w(-1, -1)f(x-1, y-1) + w(-1, 0)f(x-1, y) + ... + w(0, 0)f(x, y) + ... + w(1, 1)f(x+1, y+1).

The mechanics of spatial filters

For a mask of an odd size $m \times n$, where m = 2a+1 and n = 2b+1. In general, the linear spatial filtering of an image f(x, y) with the filter of size $m \times n$ is

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

for every pixel (x, y) in f.

Fields, 08, HmZhu

The mechanics of spatial filters

For a mask of an odd size $m \times n$, where m = 2a+1 and n = 2b+1. In general, the linear spatial filtering of an image f(x, y) with the filter of size $m \times n$ is

$$g(x, y) = \sum_{s=-at=-b}^{a} w(s,t) f(x+s, y+t)$$
 for every pixel (x, y) in f .

Fields, 08, HmZhu

Fields, 08, HmZhu

Correlation and Convolution
The filtered image can be expressed as the correlation
of
$$w(x, y)$$
 and $f(x, y)$
 $g(x, y) = \sum_{s=-at=-b}^{a} \sum_{w(s,t)}^{b} f(x+s, y+t) = w(x, y) * f(x, y).$
Note that the convolution of $w(x, y)$ and $f(x, y)$ is defined as
 $\sum_{s=-at=-b}^{a} \sum_{w(s,t)}^{b} f(x-s, y-t) = w(x, y) \otimes f(x, y).$

But, sometimes one prefers to have blurred images...

Sharpening an image

- **Sharpening**: the principal objective of sharpening is to highlight transitions in intensity
- While smoothing is accomplished in the spatial domain by pixel averaging in a neighborhood (or spatial integration), sharpening can be done by spatial differentiation

Fields, 08, HmZhu

YORK UNIVERSITE UNIVERSITE	Lap	laci	ian	filte	rs		
	0	1	0	1	1	1	 B: C.1 Filter much word C.1 Filter much word C.1 Filter much word C.2 Filter much word in the second seco
	1	-4	1	1	-8	1	
	0	1	0	1	1	1	includes the diagonal term. (c) and (c) Two other implementa- tions of the Landician formed
	0	-1	0	-1	-1	-1	Broqueently in preaction.
	-1	4	-1	-1	8	-1	
	0	-1	0	-1	-1	-1	
Fields, 08, HmZhu							

Fields, 08, HmZhu

Fields, 08, HmZhu

Roberts cross-gradient operators

Roberts (1965) developed the cross differences $f_x = z_9 - z_5$ and $f_y = z_8 - z_6$ The magnitude of the gradient is approximated by $M(x, y) \approx |z_9 - z_5| + |z_8 - z_6|$ which can be implemented using two linear filter masks

Prewitt Operators (1970) Approximation to the gradient in a 3 by 3 neighborhood centered at z_5 are as follows: $f_x = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$ and $f_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$ The magnitude of the gradient is approximated by Prewitt operator $M(x, y) \approx |(z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)|$ $+ |(z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)|$ Note that the weight value 2 in the center coefficient is to achieve

some smoothing by giving some importance to the center point

Assumption and Goals

Assumption

An image is a piecewise constant function that has been corrupted by zero-mean Gaussian noise with small variance

Goals

Efficiently remove noise in homogeneous regions Preserve object boundaries, discontinuities, and detailed structures

Fields, 08, HmZhu

Fields, 08, HmZhu

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block>

Fields, 08, HmZh

