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Outlines 

• Image Quality
•Gray value transforms
•Histogram processing
•Filters in image space 
• Filters in Fourier space
•Filters in Time-frequency space
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5.1. The Fourier transforms

5. Filters in Fourier space
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• In 1807, his introductory 
manuscript “Theory of the 
propagation of heat in solid 
bodies”

• In 1822, published "Theacuteorie
analytique de la chaleur" 

• Established the mathematical 
theory of heat diffusion 

• Introduced the representation of a 
function as a series of sines and 
cosines known as Fourier series

t xxu ku=

Elena Prestini: evolution of applied harmonic analysis (2004) 
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The Fourier Transform (1807)
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The Fourier Transform

Joseph Fourier

The 1D Fourier Transform (FT):

A Fourier Pair:

f x( ) Fourier transform⎯ → ⎯ ⎯ ⎯ ⎯ F u( ) = f x( )
−∞

+∞

∫ exp − j 2π ux( )dx

f x( )= F u( )
−∞

+∞

∫ exp j2π ux( )du
Inverser Fourier Transform

← ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ F u( )
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The Fourier Transform

The FT of a function f(t) is in general complex: 

Fourier spectrum:

Power spectrum (or spectral density): 

Phase angle:

( ) ( ) ( )F u Re u j Im u= +

( ) ( ) ( )2 2F u Re u Im u= +

    
φ u( )= tan−1

Im u( )
Re u( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

( ) 2
F u

Time (s)Time (s)

Frequency (Hz)Frequency (Hz)

Low frequencies

Time (s) Frequency (Hz)
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High frequencies

Time (s) Frequency (Hz)

Rectangular function and Sinc

Π x( )     sin c πu( )

Gaussian and Gaussian  

Time Frequency

In
te

ns
ity

( )0,1N

1

0

In
te

ns
ity

exp −π x 2( ) exp −π u2( )

exp −2π 2u2( )
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Time Frequency
1

∆x
comb

x

∆x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

0

comb
u

∆u

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

0

∆x 1/∆x

Comb and Comb  

Sampling
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Some Fourier Properties 

h ax( )
  

1

a
H u

a
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Scaling:

h x − x0( )   H u( )e− j 2π ux0Shifting:

h x( )e j2π u0 x
  H u − u0( )

Convolution: h1 x( )⊗h2 x( )   H 1 u( )H 2 u( )

h1 x( )h2 x( )
  H1 u( )⊗ H2 u( )
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Convolution Theorem 

Definition - Convolution:

h1 x( )⊗h2 x( )≡ h1 τ( )h2 x−τ( )dτ
−∞

+∞

∫

h1 ⊗h2 =h2 ⊗h1

Property: 
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Convolution with impluse function

Convolution= Blurring
Convolving a signal with a smooth weighting function can be 
used to smooth a signal
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What happens in 2D?

The 2D Fourier Transform
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The 2D Fourier Transform

F kx,ky( )= f x,y( )e− j2π kxx

−∞

+∞

∫ dx⋅ e− j 2π kyy dy
−∞

+∞

∫

f x,y( )= F kx,ky( )e j2π kxx

−∞

+∞

∫ dkx e j2π kyydky
−∞

+∞

∫
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Review of Fourier Theory
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What are Spatial Frequencies? 

FT

Image

Fourier Spectrum
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What’s wrong?

FT

What happened
to the image?

Incorrect 
Fourier spectra
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Low Spatial Frequencies

Basic structure 
of an Image

Low frequencies

FT
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High Spatial Frequencies

Edges of 
an image High frequencies

FT

26
Fields, 08, HmZhu

Amplitude
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Amplitude
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Phase 

Amplitude and Phase 

Amplitude and phase are 
both important !
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Basic properties still hold
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Basic properties still hold

Fourier
(k-)Space

MR Image Reconstruction

Object
Space

Image
Space
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The 1D Discrete FT

Object space and Fourier space is kind of 
“inverse” relationship
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The 2D Discrete FT

∆x
∆y

1/∆y

1/
∆x

Y

X

∆u=
1

X
∆ν=

1

Y

u

v

Field of View (FOV)

K extend

aliasing

Sampling
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Example: Spatial Aliasing

MRI
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Nyquist Sampling Criterion

To avoid aliasing, 

w: Nyquist frequency 2w: Nyquist rate

That is, the sampling rate needs to be at least twice  the max 
frequency of the function:

1

2∆x
≥ w i.e, ∆x ≤

1

2w

1

∆x
≥ 2w
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Infinite Sampling
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Shannon Sampling Theorem

If h(t) is a band-limited continuous function,
i.e. there is a finite positive w, such that  

H(u) = 0 for |u| > w 
then h(t) can completely recover from
samples whose spacing satisfies Nyquist
criterion

How much data is needed ?
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Warning: Using DFT allows us to perform convolution, but the discrete 
functions are treated as periodic, with a periodic equal to the length of the 
functions. Wrap-around error could happen.

Solution: Assume that f and h consist of A and B  points, 
respectively. We append zeros to both so that they have the 
identical periods P >= A+B - 1. 

Solution: We zero-extends f(x, y) and h(x, y) so that  both have size 
of P x Q where P  >= A+C - 1 and Q >= B+D-1.

⊗

⊗
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5.2. Filters in Fourier space

5. Filters in Fourier space

H(u, v) is called filter or filter transfer function, which 
suppresses certain frequencies while leaving the others 
unchanged.  

( ) ( ) ( ) ( )f x,y h x,y F u,v H u,v⊗ ⇔

45
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Example
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Low pass filters: 
attenuates high freq. while passing low freq (smoothing, blurring)

High pass filters: 
attenuates low freq while passing high freq (sharpening)

47
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Low pass filters
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Low pass filters
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Ideal Low Pass Filter
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Ideal low pass filter

Butterworth low pass filters
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Ideal Butterworth
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Gaussian low pass filters

Ideal Butterworth Gaussian



19

55
Fields, 08, HmZhu

High pass filters

( ) ( )1HP LPH u,v H u,v= −

0

1
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High pass filters
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Spatial representations of the high pass filters
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An example of high pass filter
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Unshark masking and 
High-frequency emphasis filter

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

1

1 1

The mask in the unsharp masking can be defined as 

where 

Then the final filtered image can be expressed as

             

mask LP

LP LP

mask

HP

g x, y f x, y f x, y

f x, y H u,v F u,v .

g x, y f x, y k g x, y

k H u,v

−

−

= −

⎡ ⎤= ⎣ ⎦

= + ∗

⎡ ⎤= + ∗⎣

F

F ( ){ }

( ) ( ) ( ){ }1
1 2

1 2 0

More general formulation of the high-frequency emphasis filtering

where , 
HP

F u,v

g x, y k k H u,v F u,v

k k .

−

⎦

⎡ ⎤= + ∗⎣ ⎦
≥

F
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High-frequency emphasis filter
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Bandreject filters
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An Example of Bandreject Filter
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5.3. Deconvolution

5. Filters in Fourier space
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Image restoration and reconstruction

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

The measured image can be considered as  
g x, y h x, y f x, y n x, y

G u,v H u,v F u,v N u,v

= ⊗ +

= +
FT
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Degraded images
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Inverse filter

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( )

( )

The measured image can be considered as  

Given the Fourier response of the degradating function
, the true image can be estimated by

g x, y h x, y f x, y n x, y

G u,v H u,v F u,v N u,v

H u,v

G u,v N u,v
F u,v F u,v

H u,v H u,v

= ⊗ +

= +

= = +

FT
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Inverse filter
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Wiener filter (1942)

( ) ( )

( ) ( )
( )

2
2

2

The Wiener filter aims to find an estimate to the 
true image by minimizing their mean square error. 
In the Fourier domain, the spectrum of the estimated image is

H u,v
F u,v

N u,v
H u,v

F u,v

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢

+⎢
⎢⎣ ⎦

( )

( )
( )

( )
( )

2

2
1             

G u,v

H u,v
G u,v

H u,v H u,v K

⎥
⎥
⎥
⎥

⎡ ⎤
⎢ ⎥≈
⎢ ⎥+⎣ ⎦
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Wiener filter
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Wiener filter

Fields, 08, HmZhu

5.4. Applications

5. Filters in Fourier space
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CT Image Reconstruction

Back Projection

ln
I0

It

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = µt = ∆t µ1 + µ2 + ... + µn( )

CT Image Reconstruction

Back Projection

Filtered Back Projection

Intensity non-uniformity 

• Intensity non-uniformity, “bias” field, shading 
artifacts, RF inhomogeneity…

• Spatial variation of the image signal unrelated to 
anatomic information
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Causes and effect 

Major factors: 
– Non-uniform reception sensitivity 

(multiplicative field, slow varying)
– Inhomogeneity of  RF excitation

(non-multiplicative field; acquisition)
– RF penetration and standing wave effects

(image acquisition) 

Minor factors: 
– eddy currents driven by the switching of field gradients 
– Mis-tuning of the RF coil
– Bandwidth filtering of the data
– Geometric distortion (negligible, 1%)

Automatically done 
by scanners

Small; The effect increases with the rapid image acquisition
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Effects 

• Cause 10% - 30% variation of intensity. 
• Reduce accuracy of tissue segmentation, brain-

surface extraction 
• The higher the field strength, the prominent the 

intensity non-uniformity

78
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Non-uniformity correction Methods
(N3 Method)
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Assumptions and Tasks 

Assumption
• Bias field varies smoothly across images
• Model of intensity non-uniformity as a multiplicative 

field corrupting the measured intensities

Tasks
• To estimate the bias field and true tissue intensity 

distribution 
• To remove the bias field 
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Overview of Methods  

Analytic modeling (too simple, impractical)
Adjust acquisition protocols
Data-driven post-processing: 

use filter to estimate a multiplicative non-
uniformity field & divide it from the image

eliminate the low frequency components 
of anatomy when estimating non- uniformity 
(tissue intensity, spatial homogeneity, field 
based models)
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v x( )= u x( )f x( )

Overview of the N3 method 

Nonuniformity Model

Smooth multiplicative field

measured true?
bias field?

v x( )= u x( )f x( )+ n x( )

white noise?
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Noise issue 

v x( )= u x( )f x( )+ n x( )

Filtering

Correction

v x( )= u x( )f x( )
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ˆ v x( )= ˆ u x( )+ ˆ f x( )

Overview of the N3 method

Non-uniformity distribution F blurs the histogram of the 
data U 

The task is to restore U by sharpening V

ˆ u x( )= log u x( )( )

( ) ( ) ( )

Let U, V, and F be the probability densities of u, v, 

and f  respectively.

ˆ ˆ
ˆ

ˆ ˆ ˆV v F v U v= ∗

Estimating F 
V ˆ v ( )= F ˆ v ( )∗U ˆ v ( )

f
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Estimating F 

V ˆ v ( )= F ˆ v ( )∗U ˆ v ( )

• Assume that the distribution of F is Gaussian 
• Searching an optimal U by finding a Gaussian 

distributed F having zero mean and given variance
• In other word, the space of all distributions U is 

collapsed down to a single dimension, the width of 
the F distribution
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Estimating F 

V ˆ v ( )= F ˆ v ( )∗U ˆ v ( )

• The Gaussian distributed F can be estimated 
incrementally by convolving narrow Gaussians

• Thus, U can be searched iteratively by deconvolving
narrow Gaussians   
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Estimating U 

( ) ( ) ( )ˆ ˆ ˆV v F v U v= ⊗

Constant term to avoid zero division

˜ V k( )= ˜ F k( )• ˜ U k( )
FT

˜ U =
˜ F *

˜ F 
2

+ Z 2
˜ V 

D
e-

co
nv

ol
ut

io
n
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Estimating the log field 

• Given the distributions F and U, estimate the 
corresponding field          at a given single 

measurement 

ˆ f e

ˆ f e
ˆ v 

• We assume that the field is smooth. Therefore, we smooth
it to obtain an estimated field based on all of the  
measurements in a neighborhood location x

• Correct the original image ˆ v new x( )= ˆ v old x( )− ˆ f s ˆ v x( )( )

N3 Algorithm
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3D volume example 1  
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3D volume example 2  


