Medical Image Processing Using Transforms Hongmei Zhu, Ph.D Department of Mathematics & Statistics York University hmzhu@yorku.ca

Fields, 08, HmZhu

UNIVERSITE

Elena Prestini: evolution of applied harmonic analysis (2004)

Convolution Theorem
Definition - Convolution:

$$h_1(x) \otimes h_2(x) \equiv \int_{-\infty}^{+\infty} h_1(\tau) h_2(x-\tau) d\tau$$

Property:
 $h_1 \otimes h_2 = h_2 \otimes h_1$

Fields, 08, HmZhu

Basic properties still hold		
Name	DFT Pairs	TABLE 4.3
1) Symmetry properties	See Table 4.1	Summary of DFT pairs. The closed- form expressions
2) Linearity	$af_1(x, y) + bf_2(x, y) \Leftrightarrow aF_1(u, v) + bF_2(u, v)$	in 12 and 13 are valid only for
 Translation (general) 	$f(x, y)e^{j2\pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u - u_0, v - v_0)$ $f(x - x_0, y - y_0) \Leftrightarrow F(u, v)e^{-j2\pi(ux_0/M+vy_0N)}$	continuous variables. They can be used with
 Translation to center of the frequency rectangle, (M/2, N/2) 	$ \begin{split} &f(x,y)(-1)^{x\cdot y} \Leftrightarrow F(u-M/2,v-N/2) \\ &f(x-M/2,y-N/2) \Leftrightarrow F(u,v)(-1)^{\mu + v} \end{split}$	by sampling the closed-form, continuous expressions.
5) Rotation	$ \begin{aligned} f(r, \theta + \theta_0) &\Leftrightarrow F(\omega, \varphi + \theta_0) \\ x &= r \cos \theta y = r \sin \theta u = \omega \cos \varphi v = \omega \sin \varphi \end{aligned} $	
6) Convolution theorem [†]	$\begin{split} &f(x,y)\bigstar h(x,y) \Leftrightarrow F(u,v)H(u,v) \\ &f(x,y)h(x,y) \Leftrightarrow F(u,v)\bigstar H(u,v) \end{split}$	
	(Continu	ed)

Basic properties still hold				
	Name	DFT Pairs		
	7) Correlation $f(x, y) \Rightarrow h(x, y) \Rightarrow$ theorem [†] $f'(x, y)h(x, y) \Rightarrow$	$\Rightarrow F'(u, v) H(u, v)$ $F(u, v) \Rightarrow H(u, v)$		
	8) Discrete unit $\delta(x, y) \Leftrightarrow 1$ impulse			
	9) Rectangle $rect[a, b] \Leftrightarrow ab \frac{\sin ab}{ab}$	$\frac{i(\pi ua)}{\pi ua} \frac{\sin(\pi vb)}{(\pi vb)} e^{-j\pi(ua+ub)}$		
	10) Sinc $sin(2\pi u_0 x + 2\pi v_0$	y) en		
	$j\frac{1}{2}[\delta(u + Mu_0,$	$v + Nv_0 - \delta(u - Mu_0, v - Nv_0)$		
	11) Cosine $\cos(2\pi w_0 x + 2\pi v_0)$	y) eo		
	$\frac{1}{2} \left[\delta(u + Mu_0, v) \right]$	$(v + Nv_0) + \delta(u - Mu_0, v - Nv_0)$		
	The following Fourier transform pairs are denoted as before by t and z for spatial va variables. These results can be used for DF	derivable only for continuous variables, riables and by μ and ν for frequency T work by sampling the continuous forms.		
	12) Differentiation $\left(\frac{\partial}{\partial t}\right)^{m}\left(\frac{\partial}{\partial z}\right)^{n}f(t, z)$ (The expressions on the right around the right $\frac{\partial^{m}f(t, z)}{\partial t^{m}} \iff (j2\pi\mu$ assume that $f(\pm\infty, \pm\infty) = 0$.)	$\phi \mapsto (f^2 \pi \mu)^{\mathfrak{m}} (f^2 \pi \nu)^{\mathfrak{q}} F(\mu, \nu)$ $\mu^{\mathfrak{m}} F(\mu, \nu): \frac{\vartheta^{\mathfrak{q}} f(t, 2)}{\delta \xi^{\mathfrak{q}}} \Leftrightarrow (f^2 \pi \nu)^{\mathfrak{q}} F(\mu, \nu)$		
	13) Gaussian $A2\pi\sigma^2 e^{-2\sigma^2\sigma^2/^2+2^2}$	es $Ae^{-(\rho^2+r^2)/2\rho^2}$ (A is a constant)	31	
Fields, 08, HmZhu	[†] Assumes that the functions have been extended by ciative, commutative, and distributive.	zero padding. Convolution and correlation are asso-		

lde	eal	Butter	worth
••• a	ł.,	a	-8
a	a	a	a
a	a	a	a
 b is a FORMELAND (a) Original image. (5):(1) B frequencies set at radii values 10, 20, 00, privar removed by these filture was 10, 0.05 	leads of Decing using LDPs with cond- trill and drift, as shown in Fig. 4.6(b); The 4.1, 7.2, and 0.0% of the total, respectively	a h c d a	ondra of Elboring using BLPFs of order 2 Fig. 441. Compare with Fig. 442.

lde	eal	Butter	worth	Gau	ssian
a a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.	ų.,	a	-8	a	-8
a	a	a	a	a	a
a	a	a	a	a	a
Big Strong Charles (1) Strong Charles of Strong Charles (1) Strong					

	ligh pase	s filters		
$H_{HP}(u,v) = 1 - H_{LP}(u,v)$ ABLE 4.5				
TABLE 4.5 Highpass filters. I	D ₀ is the cutoff frequer	ncy and n is the order of the Butterwo	rth filter.	
TABLE 4.5 Highpass filters. <i>L</i> Ide	D ₀ is the cutoff frequer	ncy and <i>n</i> is the order of the Butterwo Butterworth	rth filter. Gaussian	
Image: Table 4.5 Highpass filters. I Ide $H(u, v) = \begin{cases} 0 \\ 1 \end{cases}$	$D_0 \text{ is the cutoff frequer}$ at if $D(u, v) \le D_0$ if $D(u, v) > D_0$	bey and <i>n</i> is the order of the Butterworth $H(u, v) = \frac{1}{1 + [D_0/D(u, v)]^{2n}}$	with filter. Gaussian $H(u, v) = 1 - e^{-D^2(u,v)/2D_0^2}$	

in the Figure 4.54 Results of highpass fill	tering the image in Fig. 4.41(a) using	an BHPF with D ₀ = 30, 60, and 160.
a b c FIGURE 4.55 Results of highpass filt	ering the image in Fig. 4.41(a) using	a BHPF of order 2 with $D_0 = 30, 60$,
with an IHPF.	es in Fig. 4.41(6). These results are	much smoother than those obtained
	····	· · · • • • • • • • • • • • • • • • • •
් කි 🔤		
· · · · · · · · · · · · · · · · · · ·		6 8 8 8 8 a .
a b c FIGURE 4.56 Results of highpass fill corresponding to the circles in Fig.	tering the image in Fig. 4.41(a) using 1.41(b). Compare with Firs. 4.54 and	g a GHPF with $D_0 = 30, 60, \text{ and } 160, 4.55.$

VORK
Inverse filter
The measured image can be considered as

$$g(x, y) = h(x, y) \otimes f(x, y) + n(x, y)$$

 \downarrow FT
 $G(u, v) = H(u, v)F(u, v) + N(u, v)$
Given the Fourier response of the degradating function
 $H(u, v)$, the true image can be estimated by

$$\tilde{F}(u,v) = \frac{G(u,v)}{H(u,v)} = F(u,v) + \frac{N(u,v)}{H(u,v)}$$

Fields, 08, HmZhu

Assumptions and Tasks

Assumption

- · Bias field varies smoothly across images
- Model of intensity non-uniformity as a multiplicative field corrupting the measured intensities

Tasks

- To estimate the bias field and true tissue intensity distribution
- · To remove the bias field

Fields, 08, HmZhu

