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Outline

• Image Quality
•Gray value transforms
•Histogram processing
•Filters in image space 
•Filters in Fourier space 
•Filters in Time-frequency space

Fields, 08, Zhu

5.1. Time-Frequency analysis

5. Filters in time-frequency space
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The Fourier Transform (1807)
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The Fourier Transform (FT)
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The Fourier Transform (FT)



3

7

Most signals are non-stationary

Finite duration

Time/Spatial varying

How can we characterize a signal simultaneously in 
time and frequency? 

---- the aim of time-frequency analysis

Corrupted by noise
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Atomic decomposition 
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Linearly decompose a signal over a set of elementary 
“building blocks” which would be reasonably ‘localized” 
in both time and frequency
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The Gabor Transform (1946) 
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where, e.g.,  w can be the Gaussian function
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Also called the short-time or windowed FT
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Time-Frequency Representation 
(Gabor)

11

How accurate can the GT be ? 

Width of time window Smaller
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Heisenberg Inequality
Also called the Uncertainty Principle: 

Resolution in time and frequency cannot be 
arbitrarily small, because their product is 
bounded below: 

∆t ⋅ ∆k ≥
1

4πHere, given the window functions                            
,
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w t( ) FT← → ⎯ W k( )
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Fortunately, many signals consist of  
low frequencies of long duration and/or
high frequencies of short duration

∆t ⋅ ∆k ≥
1

4π

The next logical step is to use a windowing 
technique with variable sizes:

long time window for better ∆k at low frequencies,
short time window for better ∆t at high-

frequencies.

Next Step 

There always is a trade off between ∆t and ∆k.
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The Continuous Wavelet Transform (CWT)

The CWT decomposes a signal  into the scaled and shifted 
replica of the Mother wavelet (a waveform of effectively limited 
duration and zero mean) 

Wavelets: small waves
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The Continuous Wavelet Transform 
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where                           is the scaled and shifted replica

of the Mother wavelet,  a waveform satisfying
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Wavelets: small waves (1984)
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The Continuous Wavelet Transform
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Marr

Morlet Paul

(1-|x|s)-m-1π(-1/4)s -1/2exp(j k x /s) exp(-(x / s)2/2)

(x2-1) exp(-x2/2)
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Gabor Transform:
Time-frequency

Representation

Wavelet Transform:
Multi-scale 
Analysis

The ST is  a 
Multi-scale 

Time-frequency Analysis
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The Stockwell Transform 
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Stockwell (1996) IEEE T Signal Processing, V44
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The Stockwell Transform (ST)

The ST: 
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The ST and Morlet wavelets
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With the complex Morlet mother wavelet

the Morlet wavelet transform (MWT) is defined as

where . We can show that 

.⎞
⎜ ⎟

⎠
Du, Wong, Zhu (2006)
Gibson, Lamoureux, Margrave (2006)
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The ST and Morlet wavelets

(a) Small oscillations occur for small frequencies
(b) The absolute referenced phase information is retained in 
the ST, while the MWT gives relative referenced phase 
information. Liu, Zhu (2007)
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1807
Joseph Fourier

1822

FT
created

FT 
published

1965
Cooley, 
Tukey

FFT

1946
Dennis
Gabor

GT

1964, 
A. Calderon,

harmonic analysis

1980
Morlet

Grossman

WT

1985
Meyer

orth
WT

1909
Alfred Haar

Haar wavelets

1996 ST

1998 HHT

Many different time-frequency transforms
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Applications of Time-frequency Representations

• Analyze the raw signal in the (τ, k) domain to identify its 

local characteristics
• Remove noise from signal or separate and analyze 

specific components
• Extract Features from its time-frequency representation
• Extension to two or higher dimensions; …

Object Time-frequency 

  f t( ) ( )TF ,kτ

Correct motion artifacts in fMRI 
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Functional MRI (fMRI)
Visual Stimulation Test

Neural 
activation

MR signal 
changes

Artifact 
corrections

Tim
e

Activation Map

Statistical
analysis

Flashing Checkerboard

visual 
cortex
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fMRI Signal 

• ≤ 5% of collected MR data is related to neural activities 

triggered by fMRI experiment

• Limited data is also corrupted by noise

Problem
How can we correct unpredictable motion artifacts to improve 

the accuracy and reproducibility in fMRI analysis?  
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fMRI Visual Stimulation Experiment 
Experiment paradigm

Time

fM
R

I s
ig

na
l Expected fMRI signal of the activated pixels 

Zhu, Goodyear, et al. Med Phys 30:1134-1141(2003)
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ST Correction for Motion Artifacts
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Zhu, Goodyear, et al. Med Phys 30:1134-1141(2003)

Filtering using wavelet transforms 
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Discrete Wavelet Transforms

If the highIf the high--pass and lowpass and low--pass filters satisfy certain conditions, we pass filters satisfy certain conditions, we 
can can downsampledownsample the details by two. This is because max freq is the details by two. This is because max freq is 
halved according to halved according to Nyquist’sNyquist’s rule rule 
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DWT: Multi-level decomposition 

wavelet decomposition treewavelet decomposition tree

The DWT gives samples of the CWT

32

2D-DWT
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2D-DWT
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Thermal Noise ≈ White Noise
Gaussian prob. distribution
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Denoising

36

Wavelet-based Wiener Filter
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Wavelet-based Wiener Filter
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