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Categories

Definition: A category C is the data of a set Ob(C) of objects of
C, and for any X ,Y ∈ Ob(C) a set of morphisms HomC(X ,Y ),
with a composition ◦ which is associative and satisfying
f ◦ id = f and id ◦ g = g.

Examples of categories

1 Set: the objects are sets and morphisms are maps
between sets.

2 Mod(k) (k a field): the objects are k -vector spaces and
morphisms are linear maps.

3 Op(X ) (X a topological space): the objects are the open
subsets of X and the morphisms are the inclusions.
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Functors

Definition: Given two categories C, C′, a functor F : C → C′ is
the data of a morphism

Fo : Ob(C)→ Ob(C′)

and for each X ,Y ∈ Ob(C), a morphism

Fm : HomC(X ,Y )→ HomC′(FoX ,FoY )

commuting with the composition law.
Definition: Two categories are equivalent if there is a functor F
such that Fo is a bijection between the isomorphism classes of
objects and Fm is a bijection between the set of morphisms.
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What is a sheaf?

Let X be a topological space and let k be a field.

Definition: A sheaf of k -vector spaces is the data of:

Open sets of X → Mod(k)

U 7→ Γ(U; F ) (= F (U))

(V ⊂ U) 7→
(
F (U)→ F (V )

)
(restriction)

s 7→ s|V

Satisfying the following gluing conditions. Let U be open and let
{Uj}j∈J be a covering of U. We have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )
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What is a sheaf?

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

It means that
if s ∈ Γ(U; F ) and s|Uj = 0 for each j then s = 0

if sj ∈ Γ(Uj ; F ) such that sj = sk on Uj ∩ Uk then they glue
to s ∈ Γ(U; F ) (i.e. s|Uj = sj )
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Examples

Let us consider

RX : Open sets of X → Mod(R)

U 7→ Γ(U; RX ) = {constant functions on U}

(V ⊂ U) 7→
(
RX (U)→ RX (V )

)
(restriction)

s 7→ s|V

⇒ The correspondence
U 7→ Γ(U; RX ) = {constant functions on X} does not define a
sheaf on X . We have to consider locally constant functions.
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If s is zero on a covering of U then s = 0.
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Examples

Let us consider

CX : Open sets of X → Mod(R)

U 7→ {continuous real valued functions on U}

⇒ The correspondence
U 7→ Γ(U; CX ) = {continuous real valued functions on U}
defines a sheaf on X
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Examples

Let us consider

CX : Open sets of X → Mod(R)

U 7→ {continuous real valued functions on U}

If s is a continuous function and s is zero on a covering of
U then s = 0.
If {si} are continuous functions on a covering {Ui} of U,
such that si = sj on Ui ∩ Uj , then there exists s continuous
on U with s = si on each Ui .

⇒ The correspondence
U 7→ Γ(U; CX ) = {continuous real valued functions on U}
defines a sheaf on X
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Examples

Let us consider

Cb
X : Open sets of X → Mod(R)

U 7→ {continuous bounded functions on U}

⇒ The correspondence U 7→ Γ(U; Cb
X ) =

{continuous bounded real valued functions on U} does not
define a sheaf on X .
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Examples

Let us consider

Cb
X : Open sets of X → Mod(R)

U 7→ {continuous bounded functions on U}

For example, let X = R, Un = (−n,n), n ∈ N, and
sn : Un → R, x 7→ x2. Then sn is bounded on Un for each
n ∈ N, but x 7→ x2 is not bounded on R.

⇒ The correspondence U 7→ Γ(U; Cb
X ) =

{continuous bounded real valued functions on U} does not
define a sheaf on X .
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More Examples

Sheaves: holomorphic functions, C∞ functions , distributions.

Not sheaves: L2 functions, tempered distributions. In fact they
do not satisfy gluing conditions.

If we consider “less open subsets” and “less coverings” they
may become sheaves. We need the notion of site.
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Fibers

Let F ∈ Mod(kX ) we define the fiber of F at x as

Fx = lim−→
U3x

F (U) ∈ Mod(k)

It means that the elements of Fx are equivalence classes, i.e.
f ∈ Fx is represented by f ∈ F (U) where U is a neighborhood
of x .
Moreover, given U1,U2 3 x and fi ∈ Ui , we have f1 ≡ f2 in Fx if
f1 = f2 on a neighborhood of x W ⊂ U1 ∩ U2.
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Fibers

Two sheaves F ,G are isomorphic if

Fx ' Gx

for any x ∈ X . More generally a sequence of sheaves

0→ F ′ → F → F ′′ → 0

is exact if the sequence

0→ F ′x → Fx → F ′′x → 0

is exact in Mod(kX ).
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Topological sites

The definition of sheaf depends only on
open subsets
coverings

One can generalize this notion by choosing a subfamily of open
subsets T of X and for each U a subfamily Cov(U) of coverings
if U satisfying suitable hypothesis (defining a site XT ).

Then F : T → Mod(k) is a sheaf on XT if for each U ∈ T and
each {Uj}j∈J ∈ Cov(U) we have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )
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Example

For example, let us consider the site XT where
T =open subsets of X
Cov(U)={finite coverings of U}

and consider the correspondence U 7→ Γ(U; Cb
X ) (continuous

bounded functions). ⇒ The correspondence U 7→ Γ(U; Cb
X )

defines a sheaf on XT .
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Example

For example, let us consider the site XT where
T =open subsets of X
Cov(U)={finite coverings of U}

and consider the correspondence U 7→ Γ(U; Cb
X ) (continuous

bounded functions).
If {si} are bounded on a finite covering {Ui} of U, such
that si = sj on Ui ∩ Uj , then there exists s bounded on U
with s = si on each Ui .

⇒ The correspondence U 7→ Γ(U; Cb
X ) defines a sheaf on XT .

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Example

For example, let us consider the site XT where
T =open subsets of X
Cov(U)={finite coverings of U}

and consider the correspondence U 7→ Γ(U; Cb
X ) (continuous

bounded functions). ⇒ The correspondence U 7→ Γ(U; Cb
X )

defines a sheaf on XT .

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

The general case

Let X be a topological space and consider a family of open
subsets T satisfying:

(i) U,V ∈ T ⇔ U ∩ V ,U ∪ V ∈ T ,
(ii) U \ V has finite numbers of connected components ∀U,V ∈ T ,
(iii) T is a basis for the topology of X .

Definition: The site XT is defined by:
open subsets: elements of T
Cov(U) (coverings of U ∈ Op(XT )): finite coverings of U
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Examples

1 T ={open semialgebraic subsets of Rn}

2 T ={open relatively compact subanalytic subsets of a real
analytic manifold}, the subanalytic site Xsa.

3 T ={open definable subsets of Nn}, given an O-minimal
structure (N, <, . . .), the site DTOP.

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Examples

1 T ={open semialgebraic subsets of Rn}
2 T ={open relatively compact subanalytic subsets of a real

analytic manifold}, the subanalytic site Xsa.

3 T ={open definable subsets of Nn}, given an O-minimal
structure (N, <, . . .), the site DTOP.

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Examples

1 T ={open semialgebraic subsets of Rn}
2 T ={open relatively compact subanalytic subsets of a real

analytic manifold}, the subanalytic site Xsa.
3 T ={open definable subsets of Nn}, given an O-minimal

structure (N, <, . . .), the site DTOP.

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Construction of sheaves on XT

Let F be a presheaf on XT . Assume that

F (∅) = 0

∀U,V ∈ T the sequence

0→ F (U ∪ V )→ F (U)⊕ F (V )→ F (U ∩ V )

is exact.

Then F is a sheaf on XT .
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Subanalytic sheaves

From now on we will consider the subanalytic site Xsa.
open subsets: relatively compact subanalytic open subsets

Cov(U) (coverings of U ∈ Op(Xsa)): finite coverings of U
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Why subanalytic sheaves?

Let us consider as an example the presheaf

U 7→ Dbt
X (U)

of tempered distribution over a real analytic manifold X . This is
not a sheaf with the usual topology.

For example, if X = R, we can find tempered distributions sn on
{1

n < x < 1}, n ∈ N which do not glue to a tempered distribution
s on {0 < x < 1}.
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Why subanalytic sheaves?

Anyway for U,V open subanalytic relatively compact subsets of
X we have the exact sequence

0→ Dbt
X (U ∪ V )→ Dbt

X (U)⊕Dbt
X (V )→ Dbt

X (U ∩ V )

This implies that U 7→ Dbt
X (U) is a sheaf on the subanalytic

site Xsa.
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S. ŁOJASIEWICZ Sur le problème de la division, Studia Mathematica 8 pp. 87-136 (1959).
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Tempered holomorphic functions

Let X be a complex manifold and let U ⊂ X be a relatively
compact subanalytic open subset, f holomorphic on U is
tempered if ∃M,C > 0 such that

∣∣f (z)
∣∣ ≤ C

dist(z, ∂U)M .
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Fibers

In the case of subanalytic sheaves we do not have the notion of
fibers in the usual sense, i.e. if we consider

Fx = lim−→
U3x

F (U)

i.e. there are F 6' G even if Fx ' Gx ∀x ∈ X .

Example: Let X = R and consider the sheaves CR and Cb
R.

Then CR,x ' Cb
R,x ∀x ∈ R. Indeed, any continuous function f in

(x − ε, x + ε), ε > 0 is bounded in (x − ε/2, x + ε/2).
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Fibers

Hence if we consider only the fibers associated to the points of
x we loose informations about F ∈ Mod(kXsa).

We need to consider more points.
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Spectral topology

Let us consider a countable locally finite covering {Un}n∈N of X ,
with Un ' Rn relatively compact and subanalytic.

In Un consider the ultrafilters of globally subanalytic subsets
(i.e. subanalytic in X ).
A neighborhood of an ultrafilter α is a globally subanalitic open
subset U contained in α.
We call X̃ the associated topological space. In X̃ any covering
of a relatively compact subanalytic open subset has a finite
subcover.
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Example

For example, the points of R̃ are the following. Let x ∈ R
1 {S subanalytic, S ⊇ x} (the point x)
2 {S subanalytic, S ⊇ (x , x + ε), ε > 0} (the point x+)
3 {S subanalytic, S ⊇ (x − ε, x), ε > 0} (the point x−)

Thanks to these new points we can distinguish CR from Cb
R on

R̃. For example let f = x−1. Then f /∈ Cb
R(0, ε) ∀ε > 0. Hence

f /∈ Cb
R,0+ , but f ∈ CR,0+ , this implies Cb

R,0+ 6' CR,0+ .
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Topological and subanalytic sheaves

Theorem:
Let X be a real analytic manifold. The categories Mod(kXsa) and
Mod(kX̃ ) are equivalent.

Hence, if we want to work on fibers on Xsa, we have to consider
the topological space X̃ .
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Operations

Theorem:
Let f : X → Y be a morphism of real analytic manifolds. The six
Grothendieck operations Hom, ⊗, f∗, f−1, f!!, f ! are well defined
for subanalytic sheaves.

L. PRELLI Sheaves on subanalytic sites, Rendiconti del Seminario Matematico dell’Università di Padova Vol. 120

(2008).
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The ring of differential operators

Let X be a complex analytic manifold. We denote by DX the
sheaf of rings of differential operators. Locally, a section of
Γ(U;DX ) may be written as P =

∑
|α|≤m aα(z)∂αz with aα(z)

holomorphic on U.
We denote by Mod(DX ) the sheaf of DX -modules.
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Complex of solutions

The sheaf OX of holomorphic functions has a structure of
DX -module.

Definition: If U is open, F a DX -module, P a differential
operator, SolF (P) on U is the complex

Γ(U;F)
P→ Γ(U;F)

H0(U;SolF (P)) = {s ∈ Γ(U;F), Ps = 0} = ker P
H1(U;SolF (P)) = Γ(U;F)/PΓ(U;F) = cokerP

Definition: P1 and P2 are equivalent if for any F ker P1 ' ker P2
and cokerP1 ' cokerP2 (i.e. SolF (P1) and SolF (P2) are
quasi-isomorphic).
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Example

Let α ∈ C, and consider the operators

Pα = z∂Z − α Pα+1 = z∂z − α− 1.

If α 6= −1, one can verify that we have morphisms

SolF (Pα)
z·
�
∂z
α+1

SolF (Pα+1)

the above morphisms induce an isomorphism between the
homogeneous solutions ker Pα and ker Pα+1.
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Example

Let f ∈ OX (U).

The equation z∂zu = f has holomorphic solutions if and only if
f (0) = 0.

The equation ∂zu = f has always solutions.
So, even if the kernels of

OX (U)
z∂z→ OX (U)

OX (U)
∂z→ OX (U)

are isomorphic, the cokernels are not.

Then z∂Z and ∂Z are not equivalent.
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Example

Let us consider the operators z(z∂z + 1) and z2∂z + 1.

They
have z−1 and exp(z−1) as homogeneous solutions. IfM
denotes the sheaf of meromorphic functions and U 63 0, then

H0(U,SolM(z(z∂Z + 1))) ' C · z−1

H0(U,SolM(z2∂Z + 1)) ' 0 because exp(z−1) /∈M(U).

Hence z(z∂z + 1) and z2∂z + 1 are not equivalent (even if the
holomorphic solutions are).
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Equivalence for regular operators

Definition: P =
∑

α≤n aα(z)∂α, aα(0) 6= 0, is regular at 0 if for
each j ≤ n, n − ord0(an) ≥ j − ord0(aj).

Theorem: Let P and Q be regular at 0. The following are
equivalent.

1 P e Q are equivalent.
2 The kernels and cokernels of

OX
P→ OX OX

Q→ OX

are isomorphic (i.e. SolOX (P) is quasi-isomorphic to SolOX (Q)).
In particular the holomorphic solutions are sufficient to
establish if two regular equations are equivalent.
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Subanalytic sheaves and solutions

The sheaf Ot
X of tempered holomorphic functions has a

structure of ρ!DX -module. (Γ(U; ρ!DX ) are differential operators∑
|α|≤m aα∂αz with aα holomorphic in U)
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Example

Let us consider the operators z2∂z + 1 and z3∂z + 2. Their
solutions are respectively exp(z−1) and exp(z−2).

Theorem (G. Morando): There exists an open subanalytic U
such that exp(z−1) ∈ Ot

X (U) and exp(z−2) /∈ Ot
X (U).

In particular for such U we have

H0(U;SolOt
X

(z2∂z + 1)) ' C · exp(z−1)

H0(U;SolOt
X

(z3∂z + 2)) ' 0.

Hence thanks to tempered holomorphic solutions we can
distinguish irregular differential operators which cannot be
distinguished with holomorphic solutions.
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Toronto, 6 may 2009

Luca Prelli Sheaves on subanalytic sites andD-modules


	Contents
	Sheaves
	Sheaves on subanalytic sites
	D-modules
	

