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Standard Borel Spaces

Definition
A standard Borel space is a Polish space X equipped with its
σ-algebra of Borel subsets.

Some Examples
R, [0,1], 2N, NN, ...
If σ is a sentence of Lω1ω, then

Mod(σ) = {M = 〈N, · · · 〉 | M � σ}

is a standard Borel space.

Theorem (Kuratowski)
There exists a unique uncountable standard Borel space up to
isomorphism.
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Borel Maps and Equivalence Relations

Definition
Let X, Y be standard Borel spaces.

Then the map ϕ : X → Y is Borel iff graph(ϕ) is a Borel subset
of X × Y.
Equivalently, ϕ : X → Y is Borel iff ϕ−1(B) is a Borel set for each
Borel set B ⊆ Y.

Definition
If X is a standard Borel space, then a Borel equivalence relation
on X is an equivalence relation E ⊆ X 2 which is a Borel subset of X 2.
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Countable Borel equivalence relations

Definition
The Borel equivalence relation E on the standard Borel space X is
said to be countable iff every E-class is countable.

Standard Example
Let G be a countable (discrete) group and let X be a standard Borel
G-space. Then the corresponding orbit equivalence relation EX

G is a
countable Borel equivalence relation.

Theorem (Feldman-Moore)
If E is a countable Borel equivalence relation on the standard Borel
space X, then there exists a countable group G and a Borel action of
G on X such that E = EX

G .
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Borel reductions

Definition
Let E, F be Borel equivalence relations on the standard Borel spaces
X, Y respectively.

E ≤B F iff there exists a Borel map f : X → Y such that

x E y ⇐⇒ f (x) F f (y).

In this case, f is called a Borel reduction from E to F.
E ∼B F iff both E ≤B F and F ≤B E.
E <B F iff both E ≤B F and E �B F.

Definition
More generally, f : X → Y is a Borel homomorphism from E to F iff

x E y =⇒ f (x) F f (y).
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Countable Borel equivalence relations

x
xE0 = hyperfinite

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Definition
The Borel equivalence relation E
is smooth iff E ≤B id2N .

Definition
E0 is the equivalence relation of
eventual equality on 2N.

Theorem (Adams-Kechris 2000)
There exist 2ℵ0 many countable
Borel equivalence relations up to
Borel bireducibility.
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Countable Borel equivalence relations

x
xE0 = hyperfinite

id2N = smooth

E∞ = universalx

Uncountably
many

relations

Definition
A countable Borel equivalence
relation E is universal iff F ≤B E
for every countable Borel
equivalence relation F .

Theorem (JKL)
The orbit equivalence relation
E∞ of the shift action of the
free group F2 on 2F2 is universal.
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The measurable vs. Borel settings

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data ( X ,EX
G ) “remember” the group G

and its action on X?

Dirty Little Secret

We cannot possibly recover the group G from the data ( X ,EX
G )

unless we add the hypotheses that:
G acts freely on X ; and
there exists a G-invariant probability measure µ on X .
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Essentially free relations

Definition
The countable Borel equivalence relation E on X is free iff there
exists a countable group G with a free Borel action on X such
that EX

G = E.
The countable Borel equivalence relation E is essentially free iff
there exists a free countable Borel equivalence relation F such
that E ∼B F.

Theorem (Thomas 2006)
The universal countable Borel equivalence relation E∞ is not
essentially free.
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Strongly universal relations

Question (Thomas 2006)
Does there exist a countable Borel equivalence relation E on a
standard Borel space X such that:

there exists an E-invariant probability measure µ on X;
whenever Y ⊆ X is a Borel subset with µ(Y ) = 1, then E � Y
is countable universal?

Main Theorem (MC)
Let E be a countable Borel equivalence relation on the standard
Borel space X and let µ be a (not necessarily E-invariant) Borel
probability measure on X.
Then there exists a Borel subset Y ⊆ X with µ(Y ) = 1 such that
E � Y is not universal.
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Countable Borel Equivalence Relations

t

Essentially
Free

t E0

E∞

Baire category methods

Measure theoretic
methods

New
methods
needed
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Turing Reducibility

Convention
Throughout the powerset P(N) will be identified with 2N by identifying
subsets of N with their characteristic functions.

Definition
If x, y ∈ 2N, then x is Turing reducible to y, written x ≤T y, iff there
exists a y-oracle Turing machine which computes x.

Remark
In other words, there is an algorithm which computes x modulo an
oracle correctly answer questions of the form “Is n ∈ y?”

Simon Thomas (Rutgers University) Toronto Set Theory Seminar May 1st 2009



A Notion of Largeness

Definition
For each z ∈ 2N, the corresponding cone is Cz = { x ∈ 2N | z ≤T x }.

Suppose zn = {an,` | ` ∈ N } ∈ 2N for each n ∈ N and define

⊕zn = {pan,`
n | n, ` ∈ N } ∈ 2N,

where pn is the nth prime.

Then zm ≤T ⊕zn for each m ∈ N and so C⊕zn ⊆
⋂

n Czn .

Remark
It is well-known that if C  2N is a proper cone, then C is both
null and meager.
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The Turing equivalence relation

Definition
The Turing equivalence relation ≡T on 2N is defined by

x ≡T y iff x ≤T y & y ≤T x ,

where ≤T denotes Turing reducibility.

Remark
Clearly ≡T is a countable Borel equivalence relation on 2N.
However, ≡T is not essentially free and is not induced by
the action of any countable subgroup of Sym(N).
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Martin’s Theorem

Theorem (Martin)
If X ⊆ 2N is a ≡T -invariant Borel subset, then either X or 2N r X
contains a cone.

Remark
For later use, notice that if X ⊆ 2N is a ≡T -invariant Borel subset, then
the following are equivalent:

(i) X contains a cone.
(ii) For all z ∈ 2N, there exists x ∈ X with z ≤T x .
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Ergodicity

Definition
Let G be a countable group and let X be a standard Borel G-space.
Then the G-invariant probability measure µ is said to be ergodic iff
µ(A) = 0, 1 for every G-invariant Borel subset A ⊆ X.

Theorem
If µ is a G-invariant probability measure on the standard Borel G-space
X, then the following statements are equivalent.

The action of G on (X , µ) is ergodic.
If Y is a standard Borel space and f : X → Y is a G-invariant
Borel function, then there exists a G-invariant Borel subset
M ⊆ X with µ(M) = 1 such that f � M is a constant function.

Simon Thomas (Rutgers University) Toronto Set Theory Seminar May 1st 2009



Ergodicity for Turing equivalence

Theorem (Folklore)
If ϕ : 2N → 2N is a ≡T -invariant Borel map, then there exists a cone C
such that ϕ � C is a constant map.

Proof.
For each n ∈ N, there exists εn ∈ { 0,1 } such that
Xn = { x ∈ 2N | ϕ(x)(n) = εn } contains a cone.

Hence there exists a cone C ⊆
⋂

Xn and clearly ϕ � C
is a constant map.
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Proof of Martin’s Theorem

Suppose that X ⊆ 2N is a ≡T -invariant Borel subset.

Consider the two player Borel game G(X )

s(0) s(1) s(2) s(3) · · ·

where I wins iff s = ( s(0) s(1) s(2) · · · ) ∈ X .

Then the Borel game G(X ) is determined. Suppose,
for example, that σ : 2<N → 2 is a winning strategy for I.

Let σ ≤T t ∈ 2N and consider the run of G(X ) where
II plays t = ( s(1) s(3) s(5) · · · )
I responds with σ and plays ( s(0) s(2) s(4) · · · ).

Then s ∈ X and s ≡T t . Hence t ∈ X and so Cσ ⊆ X .
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Strong Ergodicity

Definition

Suppose that E, F are countable Borel equivalence relations
on the standard Borel spaces X, Y and that µ is an E-invariant
Borel probability measure on X.
Then E is said to be F-ergodic iff for every Borel homomorphism
ϕ : X → Y from E to F, there exists a Borel subset Z ⊆ X with
µ(Z ) = 1 such that ϕ maps Z into a single F-class.

Example (Jones-Schmidt)
E∞ is E0-ergodic.
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Strong Ergodicity for Turing equivalence

Definition
Let E be a countable Borel equivalence relation on the standard
Borel space X. Then ≡T is said to be E-m-ergodic iff for every
Borel homomorphism ϕ : 2N → X from ≡T to E, there exists a
cone C ⊆ 2N such that ϕ maps C into a single E-class.

Target
Classify the countable Borel equivalence relations E such that
≡T is E-m-ergodic.

Question
When is it “obvious” that ≡T is not E-m-ergodic?
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Weakly universal countable Borel equivalence relation

Definition
The Borel homomorphism ϕ : X ′ → X from E ′ to E is said to be a
weak Borel reduction iff ϕ is countable-to-one. In this case, we
write E ′ ≤w

B E.
A countable Borel equivalence relation E is said to be weakly
universal iff F ≤w

B E for every countable Borel equivalence
relation F .

Some Examples
If E is universal, then E is weakly universal.
The Turing equivalence relation ≡T is weakly universal.

Observation
If E is weakly universal, then ≡T is not E-m-ergodic.

Simon Thomas (Rutgers University) Toronto Set Theory Seminar May 1st 2009



Strong Ergodicity for Turing equivalence

Strong Ergodicity Theorem (MC)
If E is any countable Borel equivalence relation, then exactly one of
the following conditions holds:
(a) E is weakly universal.
(b) ≡T is E-m-ergodic.

Remark
There are currently no nonsmooth countable Borel equivalence
relations E for which it has been proved that ≡T is E-m-ergodic.
In particular, it is not known whether ≡T is E0-m-ergodic, where
E0 denotes the eventual equality equivalence relation on 2N.
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The Kechris-Miller Theorem

Observation
Let E, F be countable Borel equivalence relations.

If E ≤B F, then E ≤w
B F.

If E ⊆ F, then E ≤w
B F.

Theorem (Kechris-Miller)
If E, F are countable Borel equivalence relations on the uncountable
standard Borel spaces X, Y respectively, then the following conditions
are equivalent:

(i) E ≤w
B F.

(ii) There exists a countable Borel equivalence relation S ⊆ F on Y
such that S ∼B E.
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The weak universality of Turing equivalence

Proposition (Kechris)
≡T is weakly universal.

Proof.
Identifying the free group F2 with a suitably chosen group of recursive
permutations of N, we have that E∞ ⊆≡T .

Remark
If C = {x ∈ 2N | z ≤T x} is a cone, then the map y 7→ y ⊕ z is a
weak Borel reduction from ≡T to ≡T � C and hence ≡T � C is also
weakly universal.
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Martin’s Conjecture

The Martin Conjecture (MC)
If ϕ : 2N → 2N is a Borel homomorphism from ≡T to ≡T , then exactly
one of the following conditions holds:

(i) There exists a cone C ⊆ 2N such that ϕ maps C into a single
≡T -class.

(ii) There exists a cone C ⊆ 2N such that x ≤T ϕ(x) for all x ∈ C.

Theorem (Slaman-Steel)
Suppose that ϕ : 2N → 2N is a Borel homomorphism from ≡T to ≡T .
If ϕ(x) <T x on a cone, then there exists a cone C ⊆ 2N such that
ϕ maps C into a single ≡T -class.
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Some easy consequences of Martin’s Conjecture

Theorem (MC)
If ϕ : 2N → 2N is a Borel homomorphism from ≡T to ≡T , then exactly
one of the following conditions holds:

(i) There exists a cone C ⊆ 2N such that ϕ maps C into a single
≡T -class.

(ii) There exists a cone C ⊆ 2N such that ϕ � C is a weak Borel
reduction from ≡T � C to ≡T .

Furthermore, in case (ii), if D ⊆ 2N is any cone, then [ϕ(D) ]≡ T

contains a cone.
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Some easy consequences of Martin’s Conjecture

Corollary (MC)
≡T <B (≡T t ≡T ).
In particular, ≡T is not countable universal.

Corollary (MC)
If A ⊆ 2N is a ≡T -invariant Borel subset, then ≡T � A is weakly
universal iff A contains a cone.

Remark
There are currently no naturally occurring classes D ⊆ 2N for which it
is known that ≡T � D is not weakly universal.
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Proof of the Strong Ergodicity Theorem (MC)

Let E be any countable Borel equivalence relation.

Since E ≤w
B ≡T , we can suppose that E ⊆ ≡T .

Suppose that ϕ : 2N → 2N is a Borel homomorphism from
≡T to E and that ϕ does not map any cone to a single E-class.

Then ϕ is also a Borel homomorphism from ≡T to ≡T and
clearly ϕ does not map any cone to a single ≡T -class.

Hence there exists a cone C such that ϕ � C is countable-to-one.

Since ≡T � C is weakly universal and (≡T � C) ≤w
B E , it follows

that E is weakly universal.
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Some applications of the Strong Ergodicity Theorem

Theorem (MC)
There exist uncountably many weakly universal countable Borel
equivalence relations up to Borel bireducibility.

Definition
The countable group G is (weakly) action universal iff there exists
a standard Borel G-space X such that EX

G is (weakly) universal.

Theorem (MC)
If G is a countable group, then the following are equivalent.
(a) G is weakly universal.
(b) The conjugacy relation on the space of subgroups of G is

weakly universal.
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Borel Boundedness

Definition
If c, d ∈ NN, then:

c ≤∗ d iff c(n) ≤ d(n) for all but finitely many n ∈ N.
c =∗ d iff both c ≤∗ d and d ≤∗ c.

Easy Observation
Suppose that E is a countable Borel equivalence relation on the
standard Borel space X and that σ : X → NN is any map. Then there
exists a map ψ : X/E → NN such that σ(x) ≤∗ ψ([x ]E) for all x ∈ X.
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An application of Feldman-Moore

Lemma
Suppose that E is a countable Borel equivalence relation on the
standard Borel space X and that σ : X → NN is any map. Then there
exists a Borel map ψ : X → NN such that for all x ∈ X,

σ(y) ≤∗ ψ(x) for all y ∈ [x ]E

Proof.
By Feldman-Moore, we can realize E by a Borel action of a
countable group G = { γm | m ∈ N }.

Define ψ(x)(n) = max{σ(γm · x)(n) | m ≤ n }.
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Borel Boundedness

Definition (Boykin-Jackson)
The countable Borel equivalence relation E on the standard Borel
space X is said to be Borel-Bounded iff for every Borel map
θ : X → NN, there exists a Borel homomorphism ϕ : X → NN

from E to =∗ such that θ(x) ≤∗ ϕ(x) for all x ∈ X

Theorem (Boykin-Jackson)
If E is hyperfinite, then E is Borel-Bounded.

Question (Boykin-Jackson)
Is Borel-Boundedness equivalent to hyperfiniteness?

Problem (Boykin-Jackson)
Find an example of a countable Borel equivalence relation which
is not Borel-Bounded.
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Solovay’s Observation

Proposition
If ( X , µ ) is a standard Borel probability space and θ : X → NN is a
Borel map, then there exists a function h ∈ NN such that

µ( { x ∈ X | θ(x) ≤∗ h } ) = 1.

Proof.
For each n ∈ N, there exists h(n) ∈ N such that

µ( { x ∈ X | θ(x)(n) > h(n) } ) ≤ (1/2)n+1.

By the Borel-Cantelli Lemma, we have that

µ( { x ∈ X | θ(x)(n) > h(n) for infinitely many n } ) = 0.
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An application of Martin’s Conjecture

Theorem (MC)
The Turing equivalence relation ≡T is not Borel-Bounded.

Corollary (MC)
If E is a weakly universal countable Borel equivalence relation, then
E is not Borel-Bounded. In particular, E∞ is not Borel-Bounded.

Proof.
By Boykin-Jackson, if E is Borel-Bounded and F ≤w

B E , then
F is also Borel-Bounded.
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Growth Rates

Definition
Identifying each r ∈ 2N with the corresponding subset of N, define the
Borel map θ : 2N → NN by:

θ(r) is the increasing enumeration of r ∩ 2N, if r ∩ 2N is infinite;
θ(r) is the zero function, otherwise.

Observation
For each h ∈ NN, the ≡T -invariant Borel set

Dh = { r ∈ 2N | (∃s ∈ 2N ) s ≡T r and h < θ(s) }

contains a cone.
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Proof of Theorem (MC)

Suppose that ϕ : 2N → NN is a Borel homomorphism from
≡T to =∗ such that θ(r) ≤∗ ϕ(r) for all r ∈ 2N.

Since =∗ is hyperfinite, it follows that ≡T is =∗-m-ergodic.

Hence there exists a cone C such that ϕ maps C into a
single =∗-class; say, [ h ]=∗ .

But then C ∩ Dh = ∅, which is a contradiction.
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Strongly universal relations

Question (Thomas 2006)
Does there exist a countable Borel equivalence relation E on a
standard Borel space X such that:

there exists an ergodic E-invariant probability measure µ on X;
whenever Y ⊆ X is a Borel subset with µ(Y ) = 1, then E � Y is
countable universal?

Theorem (MC)
Let E be a countable Borel equivalence relation on the standard Borel
space X and let µ be a (not necessarily E-invariant) Borel probability
measure on X. Then there exists a Borel subset Y ⊆ X with µ(Y ) = 1
such that E � Y is not weakly universal.
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Proof of Theorem (MC)

Let E be a countable Borel equivalence relation on the standard
Borel space X and let µ be a Borel probability measure on X .
Let θ : 2N → NN be the Borel map defined earlier.
By the Feldman-Moore Theorem, there exists a Borel map
ψ : 2N → NN such that if r ≡T s, then θ(s) ≤∗ ψ(r).
Let ϕ : X → 2N be a weak Borel reduction from E to ≡T and
let π : X → NN be the Borel map defined by π = ψ ◦ ϕ.
Then there exists a function h ∈ NN such that the Borel set
Y = { x ∈ X | π(x) ≤∗ h } satisfies µ(Y ) = 1.
Since the Borel set Z = [ϕ(Y ) ]≡ T satisfies Z ∩ Dh = ∅, it follows
that ≡T � Z is not weakly universal.
Since (E � Y ) ≤w

B (≡T � Z ), it follows that E � Y is not weakly
universal.
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Some Open Problems

Problem
Prove that ≡T is E0-m-ergodic.

Problem
Find a naturally occurring classes of degree D ⊆ 2N such that
≡T � D is not weakly universal.
For example, how about the classes of minimal degrees,
hyperimmune-free degrees, ... ?
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