Some Consequences of Martin's Conjecture

Simon Thomas

Rutgers University

May 1st 2009

Standard Borel Spaces

Definition

A standard Borel space is a Polish space X equipped with its σ -algebra of Borel subsets.

Some Examples

- ullet \mathbb{R} , [0,1], $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, ...
- If σ is a sentence of $L_{\omega_1\omega}$, then

$$\mathsf{Mod}(\sigma) = \{ \mathcal{M} = \langle \mathbb{N}, \cdots \rangle \mid \mathcal{M} \vDash \sigma \}$$

is a standard Borel space.

Theorem (Kuratowski)

There exists a unique uncountable standard Borel space up to isomorphism.

Borel Maps and Equivalence Relations

Definition

Let X, Y be standard Borel spaces.

- Then the map $\varphi: X \to Y$ is Borel iff graph(φ) is a Borel subset of $X \times Y$.
- Equivalently, $\varphi: X \to Y$ is Borel iff $\varphi^{-1}(B)$ is a Borel set for each Borel set $B \subseteq Y$.

Definition

If X is a standard Borel space, then a Borel equivalence relation on X is an equivalence relation $E \subseteq X^2$ which is a Borel subset of X^2 .

Countable Borel equivalence relations

Definition

The Borel equivalence relation E on the standard Borel space X is said to be countable iff every E-class is countable.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E_G^X is a countable Borel equivalence relation.

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E = E_G^X$.

Borel reductions

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

• $E \leq_B F$ iff there exists a Borel map $f: X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

In this case, f is called a Borel reduction from E to F.

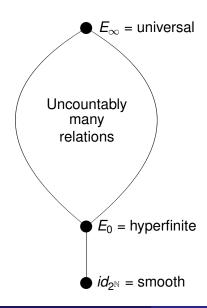
- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ iff both $E \le_B F$ and $E \nsim_B F$.

Definition

More generally, $f: X \to Y$ is a Borel homomorphism from E to F iff

$$x E y \Longrightarrow f(x) F f(y).$$

Countable Borel equivalence relations



Definition

The Borel equivalence relation E is smooth iff $E \leq_B id_{2^{\mathbb{N}}}$.

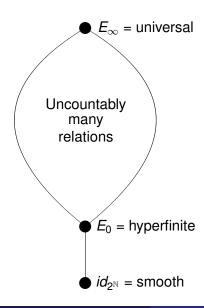
Definition

 E_0 is the equivalence relation of eventual equality on $2^{\mathbb{N}}$.

Theorem (Adams-Kechris 2000)

There exist 2^{\aleph_0} many countable Borel equivalence relations up to Borel bireducibility.

Countable Borel equivalence relations



Definition

A countable Borel equivalence relation E is universal iff $F \leq_B E$ for every countable Borel equivalence relation F.

Theorem (JKL)

The orbit equivalence relation E_{∞} of the shift action of the free group \mathbb{F}_2 on $2^{\mathbb{F}_2}$ is universal.

The measurable vs. Borel settings

Let *G* be a countable group and let *X* be a standard Borel *G*-space.

The Fundamental Question in the Borel setting

To what extent does the data (X, E_G^X) "remember" the group G and its action on X?

Dirty Little Secret

We cannot possibly recover the group G from the data (X, E_G^X) unless we add the hypotheses that:

- G acts freely on X; and
- there exists a G-invariant probability measure μ on X.

Essentially free relations

Definition

- The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that E_G^X = E.
- The countable Borel equivalence relation E is essentially free iff there exists a free countable Borel equivalence relation F such that $E \sim_B F$.

Theorem (Thomas 2006)

The universal countable Borel equivalence relation E_{∞} is not essentially free.

Strongly universal relations

Question (Thomas 2006)

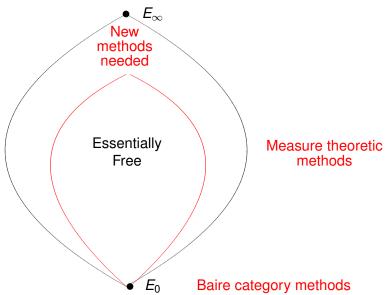
Does there exist a countable Borel equivalence relation E on a standard Borel space X such that:

- there exists an E-invariant probability measure μ on X;
- whenever $Y \subseteq X$ is a Borel subset with $\mu(Y) = 1$, then $E \upharpoonright Y$ is countable universal?

Main Theorem (MC)

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X.
- Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is not universal.

Countable Borel Equivalence Relations



Turing Reducibility

Convention

Throughout the powerset $\mathcal{P}(\mathbb{N})$ will be identified with $2^{\mathbb{N}}$ by identifying subsets of \mathbb{N} with their characteristic functions.

Definition

If $x, y \in 2^{\mathbb{N}}$, then x is Turing reducible to y, written $x \leq_T y$, iff there exists a y-oracle Turing machine which computes x.

Remark

In other words, there is an algorithm which computes x modulo an oracle correctly answer questions of the form "Is $n \in y$?"

A Notion of Largeness

Definition

For each $z \in 2^{\mathbb{N}}$, the corresponding cone is $C_z = \{ x \in 2^{\mathbb{N}} \mid z \leq_T x \}$.

• Suppose $z_n = \{ a_{n,\ell} \mid \ell \in \mathbb{N} \} \in 2^{\mathbb{N}} \text{ for each } n \in \mathbb{N} \text{ and define }$

$$\oplus z_n = \{ p_n^{a_{n,\ell}} \mid n,\ell \in \mathbb{N} \} \in 2^{\mathbb{N}},$$

where p_n is the nth prime.

• Then $z_m \leq_T \oplus z_n$ for each $m \in \mathbb{N}$ and so $C_{\oplus z_n} \subseteq \bigcap_n C_{z_n}$.

Remark

It is well-known that if $C \subsetneq 2^{\mathbb{N}}$ is a proper cone, then C is both null and meager.

The Turing equivalence relation

Definition

The Turing equivalence relation \equiv_T on $2^{\mathbb{N}}$ is defined by

$$x \equiv_T y$$
 iff $x \leq_T y \& y \leq_T x$,

where \leq_T denotes Turing reducibility.

Remark

- Clearly \equiv_T is a countable Borel equivalence relation on $2^{\mathbb{N}}$.
- However, \equiv_T is not essentially free and is not induced by the action of any countable subgroup of Sym(\mathbb{N}).

Martin's Theorem

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset, then either X or $2^{\mathbb{N}} \setminus X$ contains a cone.

Remark

For later use, notice that if $X \subseteq 2^{\mathbb{N}}$ is a $\equiv_{\mathcal{T}}$ -invariant Borel subset, then the following are equivalent:

- (i) X contains a cone.
- (ii) For all $z \in 2^{\mathbb{N}}$, there exists $x \in X$ with $z \leq_T x$.

Ergodicity

Definition

Let G be a countable group and let X be a standard Borel G-space. Then the G-invariant probability measure μ is said to be ergodic iff $\mu(A) = 0$, 1 for every G-invariant Borel subset $A \subseteq X$.

Theorem

If μ is a G-invariant probability measure on the standard Borel G-space X, then the following statements are equivalent.

- The action of G on (X, μ) is ergodic.
- If Y is a standard Borel space and f: X → Y is a G-invariant Borel function, then there exists a G-invariant Borel subset M ⊆ X with μ(M) = 1 such that f ↾ M is a constant function.

Ergodicity for Turing equivalence

Theorem (Folklore)

If $\varphi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a $\equiv_{\mathcal{T}}$ -invariant Borel map, then there exists a cone C such that $\varphi \upharpoonright C$ is a constant map.

Proof.

- For each $n \in \mathbb{N}$, there exists $\varepsilon_n \in \{0, 1\}$ such that $X_n = \{x \in 2^{\mathbb{N}} \mid \varphi(x)(n) = \varepsilon_n\}$ contains a cone.
- Hence there exists a cone $C \subseteq \bigcap X_n$ and clearly $\varphi \upharpoonright C$ is a constant map.

Proof of Martin's Theorem

- Suppose that $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset.
- Consider the two player Borel game G(X)

$$s(0)$$
 $s(1)$ $s(2)$ $s(3)$ · · ·

where *I* wins iff $s = (s(0) s(1) s(2) \cdots) \in X$.

- Then the Borel game G(X) is determined. Suppose, for example, that $\sigma: 2^{<\mathbb{N}} \to 2$ is a winning strategy for I.
- Let $\sigma \leq_{\mathcal{T}} t \in 2^{\mathbb{N}}$ and consider the run of G(X) where
 - II plays $t = (s(1) s(3) s(5) \cdots)$
 - I responds with σ and plays $(s(0)s(2)s(4)\cdots)$.
- Then $s \in X$ and $s \equiv_T t$. Hence $t \in X$ and so $C_{\sigma} \subseteq X$.

Strong Ergodicity

Definition

- Suppose that E, F are countable Borel equivalence relations on the standard Borel spaces X, Y and that μ is an E-invariant Borel probability measure on X.
- Then E is said to be F-ergodic iff for every Borel homomorphism $\varphi: X \to Y$ from E to F, there exists a Borel subset $Z \subseteq X$ with $\mu(Z) = 1$ such that φ maps Z into a single F-class.

Example (Jones-Schmidt)

 E_{∞} is E_0 -ergodic.

Strong Ergodicity for Turing equivalence

Definition

Let E be a countable Borel equivalence relation on the standard Borel space X. Then \equiv_T is said to be E-m-ergodic iff for every Borel homomorphism $\varphi: 2^{\mathbb{N}} \to X$ from \equiv_T to E, there exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single E-class.

Target

Classify the countable Borel equivalence relations E such that \equiv_T is E-m-ergodic.

Question

When is it "obvious" that \equiv_T is not E-m-ergodic?

Weakly universal countable Borel equivalence relation

Definition

- The Borel homomorphism $\varphi: X' \to X$ from E' to E is said to be a weak Borel reduction iff φ is countable-to-one. In this case, we write $E' \leq_R^w E$.
- A countable Borel equivalence relation E is said to be weakly universal iff $F \leq_B^w E$ for every countable Borel equivalence relation F.

Some Examples

- If *E* is universal, then *E* is weakly universal.
- The Turing equivalence relation $\equiv_{\mathcal{T}}$ is weakly universal.

Observation

If E is weakly universal, then \equiv_T is not E-m-ergodic.

Strong Ergodicity for Turing equivalence

Strong Ergodicity Theorem (MC)

If E is any countable Borel equivalence relation, then exactly one of the following conditions holds:

- (a) E is weakly universal.
- (b) \equiv_T is E-m-ergodic.

Remark

- There are currently no nonsmooth countable Borel equivalence relations E for which it has been proved that \equiv_T is E-m-ergodic.
- In particular, it is not known whether \equiv_T is E_0 -m-ergodic, where E_0 denotes the eventual equality equivalence relation on $2^{\mathbb{N}}$.

The Kechris-Miller Theorem

Observation

Let E, F be countable Borel equivalence relations.

- If $E \leq_B F$, then $E \leq_B^w F$.
- If $E \subseteq F$, then $E \leq_B^w F$.

Theorem (Kechris-Miller)

If E, F are countable Borel equivalence relations on the uncountable standard Borel spaces X, Y respectively, then the following conditions are equivalent:

- (i) $E \leq_B^w F$.
- (ii) There exists a countable Borel equivalence relation $S \subseteq F$ on Y such that $S \sim_B E$.

The weak universality of Turing equivalence

Proposition (Kechris)

 \equiv_T is weakly universal.

Proof.

Identifying the free group \mathbb{F}_2 with a suitably chosen group of recursive permutations of \mathbb{N} , we have that $E_{\infty} \subseteq \equiv_{\mathcal{T}}$.

Remark

If $C = \{x \in 2^{\mathbb{N}} \mid z \leq_T x\}$ is a cone, then the map $y \mapsto y \oplus z$ is a weak Borel reduction from \equiv_T to $\equiv_T \upharpoonright C$ and hence $\equiv_T \upharpoonright C$ is also weakly universal.

Martin's Conjecture

The Martin Conjecture (MC)

If $\varphi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from \equiv_T to \equiv_T , then exactly one of the following conditions holds:

- (i) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single $\equiv_{\mathcal{T}}$ -class.
- (ii) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that $x \leq_T \varphi(x)$ for all $x \in C$.

Theorem (Slaman-Steel)

Suppose that $\varphi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from \equiv_T to \equiv_T . If $\varphi(x) <_T x$ on a cone, then there exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single \equiv_T -class.

Some easy consequences of Martin's Conjecture

Theorem (MC)

If $\varphi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from \equiv_T to \equiv_T , then exactly one of the following conditions holds:

- (i) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single $\equiv_{\mathcal{T}}$ -class.
- (ii) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that $\varphi \upharpoonright C$ is a weak Borel reduction from $\equiv \tau \upharpoonright C$ to $\equiv \tau$.

Furthermore, in case (ii), if $D \subseteq 2^{\mathbb{N}}$ is any cone, then $[\varphi(D)]_{\equiv \tau}$ contains a cone.

Some easy consequences of Martin's Conjecture

Corollary (MC)

- $\bullet \equiv_T <_B (\equiv_T \sqcup \equiv_T).$
- In particular, \equiv_T is not countable universal.

Corollary (MC)

If $A \subseteq 2^{\mathbb{N}}$ is $a \equiv_{\mathcal{T}}$ -invariant Borel subset, then $\equiv_{\mathcal{T}} \upharpoonright A$ is weakly universal iff A contains a cone.

Remark

There are currently no naturally occurring classes $D \subseteq 2^{\mathbb{N}}$ for which it is known that $\equiv_{\mathcal{T}} \upharpoonright D$ is not weakly universal.

Proof of the Strong Ergodicity Theorem (*MC*)

- Let *E* be any countable Borel equivalence relation.
- Since $E \leq_B^w \equiv_T$, we can suppose that $E \subseteq \equiv_T$.
- Suppose that $\varphi: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from $\equiv_{\mathcal{T}}$ to E and that φ does not map any cone to a single E-class.
- Then φ is also a Borel homomorphism from \equiv_T to \equiv_T and clearly φ does not map any cone to a single \equiv_T -class.
- Hence there exists a cone C such that $\varphi \upharpoonright C$ is countable-to-one.
- Since $\equiv_{\mathcal{T}} \upharpoonright C$ is weakly universal and $(\equiv_{\mathcal{T}} \upharpoonright C) \leq_{\mathcal{B}}^{w} E$, it follows that E is weakly universal.

Some applications of the Strong Ergodicity Theorem

Theorem (MC)

There exist uncountably many weakly universal countable Borel equivalence relations up to Borel bireducibility.

Definition

The countable group G is (weakly) action universal iff there exists a standard Borel G-space X such that E_G^X is (weakly) universal.

Theorem (MC)

If G is a countable group, then the following are equivalent.

- (a) G is weakly universal.
- (b) The conjugacy relation on the space of subgroups of G is weakly universal.

Borel Boundedness

Definition

If c, $d \in \mathbb{N}^{\mathbb{N}}$, then:

- $c \leq^* d$ iff $c(n) \leq d(n)$ for all but finitely many $n \in \mathbb{N}$.
- c = *d iff both $c \le *d$ and $d \le *c$.

Easy Observation

Suppose that E is a countable Borel equivalence relation on the standard Borel space X and that $\sigma: X \to \mathbb{N}^{\mathbb{N}}$ is any map. Then there exists a map $\psi: X/E \to \mathbb{N}^{\mathbb{N}}$ such that $\sigma(x) \leq^* \psi([x]_E)$ for all $x \in X$.

An application of Feldman-Moore

Lemma

Suppose that E is a countable Borel equivalence relation on the standard Borel space X and that $\sigma: X \to \mathbb{N}^{\mathbb{N}}$ is any map. Then there exists a Borel map $\psi: X \to \mathbb{N}^{\mathbb{N}}$ such that for all $x \in X$,

$$\sigma(y) \leq^* \psi(x)$$
 for all $y \in [x]_E$

Proof.

- By Feldman-Moore, we can realize E by a Borel action of a countable group $G = \{ \gamma_m \mid m \in \mathbb{N} \}$.
- Define $\psi(x)(n) = \max\{ \sigma(\gamma_m \cdot x)(n) \mid m \leq n \}.$

Borel Boundedness

Definition (Boykin-Jackson)

The countable Borel equivalence relation E on the standard Borel space X is said to be Borel-Bounded iff for every Borel map $\theta: X \to \mathbb{N}^{\mathbb{N}}$, there exists a Borel homomorphism $\varphi: X \to \mathbb{N}^{\mathbb{N}}$ from E to $=^*$ such that $\theta(x) \leq^* \varphi(x)$ for all $x \in X$

Theorem (Boykin-Jackson)

If E is hyperfinite, then E is Borel-Bounded.

Question (Boykin-Jackson)

Is Borel-Boundedness equivalent to hyperfiniteness?

Problem (Boykin-Jackson)

Find an example of a countable Borel equivalence relation which is not Borel-Bounded.

Solovay's Observation

Proposition

If (X, μ) is a standard Borel probability space and $\theta : X \to \mathbb{N}^{\mathbb{N}}$ is a Borel map, then there exists a function $h \in \mathbb{N}^{\mathbb{N}}$ such that

$$\mu(\{x \in X \mid \theta(x) \leq^* h\}) = 1.$$

Proof.

For each $n \in \mathbb{N}$, there exists $h(n) \in \mathbb{N}$ such that

$$\mu(\{x \in X \mid \theta(x)(n) > h(n)\}) \leq (1/2)^{n+1}.$$

By the Borel-Cantelli Lemma, we have that

$$\mu(\{x \in X \mid \theta(x)(n) > h(n) \text{ for infinitely many } n \}) = 0.$$

An application of Martin's Conjecture

Theorem (MC)

The Turing equivalence relation \equiv_T is not Borel-Bounded.

Corollary (MC)

If E is a weakly universal countable Borel equivalence relation, then E is not Borel-Bounded. In particular, E_{∞} is not Borel-Bounded.

Proof.

By Boykin-Jackson, if *E* is Borel-Bounded and $F \leq_B^w E$, then *F* is also Borel-Bounded.

Growth Rates

Definition

Identifying each $r \in 2^{\mathbb{N}}$ with the corresponding subset of \mathbb{N} , define the Borel map $\theta : 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by:

- $\theta(r)$ is the increasing enumeration of $r \cap 2\mathbb{N}$, if $r \cap 2\mathbb{N}$ is infinite;
- $\theta(r)$ is the zero function, otherwise.

Observation

For each $h \in \mathbb{N}^{\mathbb{N}}$, the \equiv_T -invariant Borel set

$$D_h = \{ r \in 2^{\mathbb{N}} \mid (\exists s \in 2^{\mathbb{N}}) \ s \equiv_T r \ and \ h < \theta(s) \}$$

contains a cone.

Proof of Theorem (MC)

- Suppose that $\varphi: 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a Borel homomorphism from $\equiv_{\mathcal{T}}$ to $=^*$ such that $\theta(r) \leq^* \varphi(r)$ for all $r \in 2^{\mathbb{N}}$.
- Since =* is hyperfinite, it follows that \equiv_T is =*-m-ergodic.
- Hence there exists a cone C such that φ maps C into a single =*-class; say, [h]=*.
- But then $C \cap D_h = \emptyset$, which is a contradiction.

Strongly universal relations

Question (Thomas 2006)

Does there exist a countable Borel equivalence relation E on a standard Borel space X such that:

- there exists an ergodic E-invariant probability measure μ on X;
- whenever $Y \subseteq X$ is a Borel subset with $\mu(Y) = 1$, then $E \upharpoonright Y$ is countable universal?

Theorem (MC)

Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X. Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is not weakly universal.

Proof of Theorem (MC)

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a Borel probability measure on X.
- Let $\theta: 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ be the Borel map defined earlier.
- By the Feldman-Moore Theorem, there exists a Borel map $\psi: 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that if $r \equiv_{\mathcal{T}} s$, then $\theta(s) \leq^* \psi(r)$.
- Let $\varphi: X \to 2^{\mathbb{N}}$ be a weak Borel reduction from E to $\equiv_{\mathcal{T}}$ and let $\pi: X \to \mathbb{N}^{\mathbb{N}}$ be the Borel map defined by $\pi = \psi \circ \varphi$.
- Then there exists a function $h \in \mathbb{N}^{\mathbb{N}}$ such that the Borel set $Y = \{ x \in X \mid \pi(x) \leq^* h \}$ satisfies $\mu(Y) = 1$.
- Since the Borel set $Z = [\varphi(Y)]_{\equiv_{\mathcal{T}}}$ satisfies $Z \cap D_h = \emptyset$, it follows that $\equiv_{\mathcal{T}} \upharpoonright Z$ is not weakly universal.
- Since $(E \upharpoonright Y) \leq_B^w (\equiv_T \upharpoonright Z)$, it follows that $E \upharpoonright Y$ is not weakly universal.

Some Open Problems

Problem

Prove that \equiv_T is E_0 -m-ergodic.

Problem

- Find a naturally occurring classes of degree $D \subseteq 2^{\mathbb{N}}$ such that $\equiv \tau \upharpoonright D$ is not weakly universal.
- For example, how about the classes of minimal degrees, hyperimmune-free degrees, ... ?