Dynamical formation of correlations in the the Bose-Einstein condensate

László Erdős University of Munich

Toronto, 2009 Dec

1

MANY BODY QUANTUM DYNAMICS

 $\mathbf{x} = (x_1, x_2, \ldots, x_N)$ position of the particles, $x_j \in \mathbb{R}^d$ Wave function: $\mathsf{\Psi}_N(x_1,\ldots,x_N) \in L^2_{s_1}$ (bosons)

The time evolution

$$
i\partial_t \Psi_{N,t} = H_N \Psi_{N,t}
$$

is governed by the Hamiltonian (energy) operator

$$
H_N = \sum_{j=1}^N \left[-\Delta_{x_j} + U(x_j) \right] + \sum_{i < j} V(x_i - x_j)
$$

U one-body potential (typically trapping, i.e. $\lim_{x\to\infty}U(x)=\infty$) V is the interaction, typically repulsive, $V \geq 0$.

In density matrix formalism, $\gamma_{N,t}=|\Psi_{N,t}\rangle\langle\Psi_{N,t}|$ (projection)

$$
i\partial_t \Psi_{N,t} = H_N \Psi_{N,t} \quad \Longleftrightarrow \quad i\partial_t \gamma_{N,t} = \left[H_N, \gamma_{N,t}\right]
$$

SOFT MEAN FIELD POTENTIAL =→ HARTREE EQUATION

$$
H_N = \sum_{j=1}^{N} \left[-\Delta_{x_j} + U(x_j) \right] + \frac{1}{N} \sum_{i < j} V(x_i - x_j)
$$

THEOREM: If $\Psi_0 = \prod_j \varphi_0(x_j)$, then $\Psi_t \approx \prod_j \varphi_t(x_j)$ as $N \to \infty$

where
$$
i\partial_t \varphi_t = (-\Delta + U)\varphi_t + \left(V \star |\varphi_t|^2\right)\varphi_t
$$

Each particle: subject to the same mean-field potential

$$
\frac{1}{N}\sum_{j=1}^{N}V(x-x_j)|\varphi(x_j)|^2 \approx (V\star|\varphi|^2)(x)
$$

(Law of large numbers if the state is indeed ^a product)

Hepp, Spohn, Ginibre–Velo, Bardos–Golse–Mauser, E-Yau $GOAL: V = Dirac delta interaction \implies GP eq. (cubic NLS)$

BOSE-EINSTEIN CONDENSATION (BEC)

Free (non-interacting) bosons in a trap $U_L(x) = U(x/L)$

$$
H_0 = \sum_{j=1}^{N} (-\Delta_{x_j} + U_L(x_j))
$$

is the direct sum of the one-body operator $-\Delta + U_L$.

Prob. to find an eigenstate with energy E is $\sim e^{-\beta E}$ $\beta = 1/T$ inverse temperature)

 $\mathsf{BEC}\,\,(d=3)$: At low temperature, the prob to find the ground state of $-\Delta + U_L$ is strictly positive uniformly for all L. (Remark: no BEC in $d=2$ for positive temperature)

1) Does the same hold with interaction? (OPEN)

2) Experiment: Trap BEC and observe the evolution of the condensate as the trap removed \implies Gross-Pitaevskii (GP) equation (this talk)

MATHEMATICAL DEFINITION OF BEC

One-particle marginal density of a general N -body state Ψ_N^{\dagger}

$$
\gamma_N^{(1)}(x; x') := \int \Psi_N(x, Y) \overline{\Psi}_N(x', Y) dY, \qquad Y = (x_2, \dots x_N)
$$

Operator on the one-particle space, $0 \leq \gamma_N^{(1)} \leq 1$, Tr $\gamma_N^{(1)} = 1$.

 γ (k) $X^{(k)}_N(x_1,\ldots x_k ; x'_1, \ldots x'_k)$, is defined similarly (k -particle marg. dens.)

Spectral decomposition: $\gamma_N^{(\mathsf{1})}$ $= \sum_j \lambda_j |\phi_j\rangle \langle \phi_j|.$

 $DEFINITION:$ Ψ_N is a (sequence of) condensate states if

lim inf $\displaystyle\liminf_{N\to\infty}\,\max_{i}$ j $\lambda_j > 0$

Example: $\mathsf{\Psi}_N = \varphi^{\otimes N} = \prod_j \varphi(x_j)$, then $\gamma_N^{(1)} = \ket{\phi}\!\bra{\phi}$ (projection)

TYPICAL SCALES

$$
H_N = \sum_{j=1}^{N} \left[-\Delta_{x_j} + U_L(x_j) \right] + \sum_{i < j} V(x_i - x_j)
$$

 U_L is a one-body "trapping" potential with lengthscale L $V \geq 0$ is the (repulsive) interaction potential with lengthscale a.

Parameters of ^a typical experiment (rubidium atom at Cornell)

$$
a \sim 10^{-3} \mu m
$$
, $L \sim 1 \mu m$, $N = 10^3$, density $\rho = N/L^3 = 10^3 \mu m^{-3}$

Note that $a/L \sim O(1/N)$

Key parameter: $\varrho a^3 \ll 1$ Effectively low density system with ^a strong local interaction.

In units where the trap $L = O(1)$, the system is at high density on the scale of the trap but it is in the dilute regime viewed on the scale of the interaction $a \sim O(1/N)$.

SCATTERING LENGTH

Characterizes the effective lengthscale of the interaction.

Let supp V be compact. Consider the zero energy scattering eq.

$$
\left[-\Delta + \frac{1}{2}V\right]f = 0, \qquad f(x) \to 1, \ |x| \to \infty
$$

Then $f = 1 - w$ with $w(x) = \frac{a_0}{|x|}$, for some a_0 .

 a_{O} is called the scattering length of V

Alternatively:

$$
\int |\nabla w|^2 + V(1 - w)^2 = \int V(1 - w) = 8\pi a_0
$$

Rescaling: $N^2 V(Nx)$ has scattering length $a = a_\mathrm{0}/N$.

In a dilute gas of neutral bosons, the scattering length is the only characteristic lengthscale of the interaction.

HAMILTONIAN

$$
H_N = \sum_{j=1}^{N} \left[-\Delta_{x_j} + U(x_j) \right] + \sum_{i < j} N^2 V(N(x_i - x_j))
$$

Interaction potential has scattering length ¹/N.

 GP -theory: Many-body interactions and correlations \rightarrow nonlinear, on-site self-interaction with coupling $=$ scattering length

Lieb, Seiringer, Yngvason (1999) proved that the GP functional is asymptotically exact for the ground state energy, i.e.

$$
\lim_{N \to \infty} \inf \mathrm{Spec} \frac{H_N}{N} = \inf_{u} \int_{\mathbb{R}^3} \left[|\nabla u|^2 + U|u|^2 + 4\pi a_0 |u|^4 \right]
$$

Lieb and Seiringer (2001) showed that the one particle density matrix of the ground state of H_N converges to the minimizer u .

Dynamics: the ground state of trapped BEC is a highly excited state for the system without the trap. The (time dependent) GP theory describes also excited states and their evolutions!

DERIVATION OF TIME DEPENDENT GP EQUATION

THEOREM [E-Schlein-Yau] Assume $V \geq 0$, smooth, spherical, and external potential is removed $U=0.$

Initial state

\n
$$
\Psi_N(\mathbf{x}) = \prod_{j=1}^N \varphi(x_j), \qquad \varphi \in H^1(\mathbb{R}^3)
$$

Then, for fixed k,t , for the k -particle density matrix of $\Psi_{N,t}$

$$
\gamma_{N,t}^{(k)} \to |\varphi_t\rangle\langle\varphi_t|^{\otimes k} \qquad N \to \infty \quad \text{(in trace norm)}
$$

where φ_t is the solution of the GP equation

$$
i\partial_t \varphi_t = \left[-\Delta + 8\pi a_0 |\varphi_t|^2 \right] \varphi_t, \qquad \varphi_{t=0} = \varphi
$$

The theorem also holds if the initial state Ψ_N has finite energy per particle, $\langle \Psi_N, H_N \Psi_N \rangle \leq CN$, and it exhibits BEC, in particular, it holds for the trapped ground state (experiment)

[Alternative proof announced by Pickl with different conditions]

HARTREE EQUATION WITH DIRAC DELTA ??

$$
H = \sum_{j} (-\Delta_j) + \frac{1}{N} \sum_{i < j} V(x_i - x_j) \quad \implies \quad i\partial_t \varphi_t = -\Delta \varphi_t + (V \ast |\varphi_t|^2) \varphi_t
$$

The interaction can be written as

$$
V_N(x) = N^2 V(Nx) = \frac{1}{N} N^3 V(Nx) \approx \frac{b_0}{N} \delta(x), \text{ with } b_0 := \int V,
$$

and $(\delta * |\varphi|^2) \varphi = |\varphi|^2 \varphi$ but $8\pi a_0 < b_0$ (strictly!)

It is not just ^a Dirac-delta version of the mean field model.

Explanation: The wave function has ^a specific stationary short scale correlation structure:

$$
\Psi_{N,t} \sim \prod_{j=1}^N \varphi_t(x_j) \prod_{i < j} (1 - w_N(x_i - x_j))
$$

where $1\!-\!w_N(x)=1\!-\!w(Nx)$ is the zero energy scattering mode.

The interaction energy for such ^a state is

$$
\left\langle \Psi, \sum_{k < j} V_N(x_j - x_k) \Psi \right\rangle = \frac{N^2}{2} \int V_N(x - y) \left[1 - w_N(x - y) \right]^2 |\varphi(x)|^2 |\varphi(y)|^2 \, \mathrm{d}x \, \mathrm{d}y
$$
\n
$$
\approx \frac{N}{2} \int V(1 - w)^2 \int |\varphi|^4
$$

if φ is "smooth", i.e. essentially constant on the range of $V_N.$ But V_N , $(1-w_N)^2$ live on the same scale and $\int V(1-w)^2 < \int V$. The kinetic energy also picks up contribution from ∇w .

BBGKY HIERARCHY

$$
H_N = -\sum_{j=1}^{N} \Delta_j + \frac{1}{N} \sum_{j < k} V(x_j - x_k)
$$

 $V = V_N$ may depend on N so that $\int V_N = O(1)$.

Recall the Schrödinger equation in commutator form

 $i\partial_t\gamma_{N,t} = [H_N, \gamma_{N,t}]$

Take the partial trace wrt. $2, 3, \ldots N$ particles

$$
i\partial_t \gamma_{N,t}^{(1)} = \left[-\Delta_1, \gamma_{N,t}^{(1)} \right] + \frac{N-1}{N} \text{Tr}_{x_2} \left[V(x_1 - x_2), \gamma_{N,t}^{(2)} \right]
$$

Similar equations for each k -marginals form a system of N coupled coupled equation – BBGKY hierarchy.

$$
i\partial_t \gamma_{N,t}^{(1)}(x_1; x_1') = (-\Delta_{x_1} + \Delta_{x_1'}) \gamma_{N,t}^{(1)}(x_1; x_1')
$$

+
$$
\int dx_2 \left(V(x_1 - x_2) - V(x_1' - x_2) \right) \gamma_{N,t}^{(2)}(x_1, x_2; x_1', x_2) + o(1).
$$

To get a closed equation for $\gamma_{N,t}^{(1)}$, we need some relation between $\gamma_{N,t}^{(1)}$ and $\gamma_{N,t}^{(2)}$. Most natural: independence

Propagation of chaos: No production of correlations

If initially
$$
\gamma_{N,0}^{(2)} = \gamma_{N,0}^{(1)} \otimes \gamma_{N,0}^{(1)}
$$
, then hopefully $\gamma_{N,t}^{(2)} \approx \gamma_{N,t}^{(1)} \otimes \gamma_{N,t}^{(1)}$

No exact factorization for finite N, but maybe it holds for $N \to \infty$.

Suppose
$$
\gamma_{\infty,t}^{(k)}
$$
 is a (weak) limit point of $\gamma_{N,t}^{(k)}$ with
\n
$$
\gamma_{\infty,t}^{(2)}(x_1, x_2; x_1', x_2') = \gamma_{\infty,t}^{(1)}(x_1, x_1') \gamma_{\infty,t}^{(1)}(x_2; x_2').
$$

$$
i\partial_t \gamma_{N,t}^{(1)}(x_1; x_1') = (-\Delta_{x_1} + \Delta_{x_1'}) \gamma_{N,t}^{(1)}(x_1; x_1')
$$

+
$$
\int dx_2 \left(V(x_1 - x_2) - V(x_1' - x_2) \right) \underbrace{\gamma_{N,t}^{(2)}(x_1, x_2; x_1', x_2)}_{\rightarrow \gamma_{\infty,t}^{(1)}(x_1, x_1') \gamma_{\infty,t}^{(1)}(x_2; x_2)} + o(1)
$$

With the notation $\rho_t(x) := \gamma_{\infty,t}^{(1)}(x;x)$, it converges, to

$$
i\partial_t \gamma_{\infty,t}^{(1)}(x_1; x_1') = (-\Delta_{x_1} + \Delta_{x_1'}) \gamma_{\infty,t}^{(1)}(x_1; x_1')
$$

+
$$
\left(V * \varrho_t(x_1) - V * \varrho_t(x_1')\right) \gamma_{\infty,t}^{(1)}(x_1; x_1')
$$

 $i\partial_t \gamma_{\infty,t}^{(1)} = \left| -\Delta + V * \varrho_t, \ \gamma_{\infty,t}^{(1)} \right|$ Hartree eq for density matrix If $V = V_N = N^2 V(Nx)$, then the short scale structure is relevant. For $\gamma_{N,t}^{(2)}(x_1, x_2; x_1', x_2) = (1-w_N(x_1-x_2))\gamma_{N,t}^{(1)}(x_1, x_1')\gamma_{N,t}^{(1)}(x_2, x_2),$

$$
\implies \int V_N(x_1 - x_2)(1 - w_N(x_1 - x_2)) \Big[\text{Smooth} \Big] = 8\pi a_0
$$

GENERAL SCHEME OF THE PROOF

$$
i\partial_t \gamma_{N,t}^{(k)} = \sum_{j=1}^k \left[-\Delta_j, \gamma_{N,t}^{(k)} \right] + \frac{1}{N} \sum_{i < j}^k \left[V(x_i - x_j), \gamma_{N,t}^{(k)} \right] + \frac{N - k}{N} \sum_{j=1}^k \text{Tr}_{k+1} \left[V(x_j - x_{k+1}), \gamma_{N,t}^{(k+1)} \right]
$$
\n
$$
\text{formally converges to the } \infty \text{ Hartree hierarchy: } (k = 1, 2, ...)
$$
\n
$$
i\partial_t \gamma_{\infty,t}^{(k)} = \sum_{j=1}^k \left[-\Delta_j, \gamma_{\infty,t}^{(k)} \right] + \sum_{j=1}^k \text{Tr}_{x_{k+1}} \left[V(x_j - x_{k+1}), \gamma_{\infty,t}^{(k+1)} \right] \quad (*)
$$
\n
$$
\left\{ \gamma_t^{(k)} = \otimes_1^k \gamma_t^{(1)} \right\}_{k=1,2...} \text{ solves } (*) \quad \Longleftrightarrow \quad i\partial_t \gamma_t^{(1)} = \left[-\Delta + V * \varrho_t, \gamma_t^{(1)} \right]
$$
\n
$$
\text{If we knew that } \left\{ \begin{array}{l} (*) \text{ had a unique solution, and} \\ \lim_N \gamma_{N,t}^{(k)} \text{ exists and satisfies } (*) \end{array} \right.
$$

then the limit must be the factorized one

⇒ Propagation of chaos + convergence to Hartree eq.

Step 1: Prove apriori bound on $\gamma_{N,t}^{(k)}$ uniformly in N. Need a good norm and space $H!$ (Sobolev)

Step 2: Choose a convergent subsequence: $\gamma_{N,t}^{(k)} \rightarrow \gamma_{\infty,t}^{(k)}$ in \mathcal{H}

Step 3: $\gamma_{\infty,t}^{(k)}$ satisfies the infinite hierarchy (need regularity)

Step 4: Let $\gamma_t^{(1)}$ solve NLHE/NLS. Then $\gamma_t^{(k)} = \otimes \gamma_t^{(1)}$ solves the ∞ -hierarchy in H .

Step 5: Show that the ∞ -hierarchy has a unique solution in H.

Key mathematical steps: Apriori bound and uniqueness

Apriori bound: conservation of $H^k \implies$ mixed Sob. bound

Uniqueness: Many-body version of Strichartz via Feynman graphs

PERSISTENCE OF THE LOCAL STRUCTURE

One of the main ingredients of the previous proof is

$$
\int \left| \nabla_i \nabla_j \frac{\Psi_N(\mathbf{x})}{1 - w_N (x_i - x_j)} \right|^2 \mathrm{d}\mathbf{x} \le C \left\langle \Psi_N, \frac{H_N^2}{N^2} \Psi_N \right\rangle
$$

Note that

$$
\int \left| \nabla_i \nabla_j \frac{1}{1 - w_N (x_i - x_j)} \right|^2 dx \approx CN
$$

thus boundedness of H_N^2/N^2 detects the short scale structure.

Since H_N^2 is conserved, for initial data $\Psi_{N, \mathsf{O}}$ with

$$
\langle \Psi_{N,0}, H_N^2 \Psi_{N,0} \rangle \leq C N^2,
$$

the same holds for $\Psi_{N,t}$, and thus the short scale structure present in the initial state $\Psi_{N, \mathsf{0}}$ is preserved for later times.

Does it emerge dynamically?

A SURPRISE FOR THE PRODUCT INITIAL STATE

NL energy predicts the wrong NL evolution for $\mathsf{\Psi}_{N}=\varphi^{\otimes N}$

$$
\frac{1}{N}\langle\Psi_N,H_N\Psi_N\rangle \to \int\left[|\nabla\varphi|^2 + \frac{b_0}{2}|\varphi|^4\right]
$$

since, recalling $V_N(x) = \frac{1}{N}$ $\frac{1}{N}N^{\mathbf{3}}V(Nx)$,

$$
\int \frac{1}{N} \sum_{i < j} V_N(x_i - x_j) \prod_{j=1}^N |\varphi(x_j)|^2 \to \frac{b_0}{2} |\varphi|^4
$$

but the marginals of $\Psi_{N,t}$ factorize, $\gamma^{(1)}_{N,t} \rightarrow |\varphi_t\rangle\langle\varphi_t|$, with

$$
i\partial\varphi_t = -\Delta\varphi_t + 8\pi a_0 |\varphi_t|^2 \varphi_t \qquad (b_0 > 8\pi a_0!!)
$$

Energy lost?

No. In E-S-Y theorem, the limit holds in L^2 (trace norm) but not in $H^1.$

EXPLANATION

The product state instantenously builds up a short scale correlation to minimize its local energy. This short scale correlation then drives the orbitals according to a_0 . The excess energy is diffused into incoherent modes on scales $1/N \ll \ell \ll 1$ and does not influence the evolution of the condensate.

Our main result: The dynamical emergence of the short scale structure, characterized by the correlation factor $1 - w_N(x_i - x_j)$.

The short scale structure must hold for scales

$$
\frac{1}{N} \le |x_i - x_j| \le \ell
$$

with some $\ell \leq N^{-1/3}$ (typical nearest neighbor distance).

For larger distances, three particle correlations may occur, but to maintain the GP dynamics, it is sufficient if $1 - w_N$ is present on the scale $|x_i - x_j| \approx N^{-1}$ (range of V_N).

DYNAMICAL EMERGENCE OF THE CORRELATION

Theorem: [E-Michelangeli-Schlein, 2008]

Let $V_N(x)=N^2V(Nx)$, $\mathsf{\Psi}_N=\varphi^{\otimes N}$, φ smooth, decaying. Define

$$
\mathcal{F}_N(t) := \int \theta_\ell(x_1 - x_2) \left| \frac{\Psi_{N,t}(x)}{1 - w_N(x_1 - x_2)} - \prod_{j=1}^N \varphi_t(x_j) \right|^2 dx
$$

with a smooth cutoff on scale $\ell \geq N^{-1}.$ Then for $t \leq N^{-1}$

$$
\mathcal{F}_N(t) \leq C \mathcal{F}_N(0) \Big(\frac{1}{N^{1/5}} \frac{(N^2 t)^2}{N \ell} + \frac{(N \ell)^4}{\langle N^2 t \rangle} \Big)
$$

(modulo logs). Concretely, with $\ell=\frac{1}{N}$, we have

$$
\mathcal{F}_N(t) \ll \mathcal{F}_N(0), \quad \text{ for } \quad \frac{1}{N^2} \ll t \ll \frac{1}{N^{2-\frac{1}{10}}}
$$

Remark: Natural lengthscale $\approx \frac{1}{N}$, natural timescale $\approx \frac{1}{N}$ N^2

$$
\mathcal{F}_N(t) = \int \theta_\ell(x_1 - x_2) \Big| \frac{\Psi_{N,t}(\mathbf{x})}{1 - w_N(x_1 - x_2)} - \prod_{j=1}^N \varphi_t(x_j) \Big|^2 \mathrm{d}\mathbf{x}
$$

$$
\mathcal{F}_N(t) \le C \mathcal{F}_N(0) \Big(\frac{1}{N^{1/5}} \frac{(N^2 t)^2}{N \ell} + \frac{(N \ell)^4}{\langle N^2 t \rangle} \Big)
$$

After an initial time layer of order $t \geq \frac{1}{N^2}$, it is expected that $\mathcal{F}_N(t) \ll \mathcal{F}_N(0)$ for all times, but we cannot control many body effects for larger times (first term).

The formation of the $1 - w_N$ structure is a two-body scattering event on time scale $t \sim \frac{1}{N^2}$ (second term). The effective scattering time increases as ℓ (window size) increases.

Strategy of proof: (i) reduce to the two-body problem locally; (ii) analyse the two body scattering with ^a constant initial data.

REDUCTION TO THE TWO-BODY ANALYSIS

Decouple the particles 1 and 2 from the rest:

$$
\widetilde{H}_N = -\Delta_1 - \Delta_2 + V_N(x_1 - x_2) + \sum_{j=3}^N (-\Delta_j) + \sum_{j=1}^2 \sum_{k=3}^N V_N(x_j - x_k)
$$

and let $\widetilde{\Psi}_{N,t}$ be the time evolution of \widetilde{H}_N . Note that

$$
\widetilde{\Psi}_{N,t}(\mathbf{x}) = \psi_t(x_1, x_2) \Phi_t(x_3, \dots, x_N)
$$

Then (essentially)

$$
\mathcal{F}_N(t) \le C \int \theta_\ell (x_1 - x_2) \Big| \Psi_{N,t}(\mathbf{x}) - \widetilde{\Psi}_{N,t}(\mathbf{x}) \Big|^2 d\mathbf{x}
$$

+ $C\ell^2 \int \theta_\ell (x_1 - x_2) \Big| \frac{\psi_t(x_1, x_2)}{1 - \psi_N(x_1 - x_2)} - \varphi(x_1) \varphi(x_2) \Big|^2 d\mathbf{x}_1 d\mathbf{x}_2 + Error$
\n $\equiv C \left(\mathcal{G}_N(t) + \mathcal{K}_N(t) \right) + Error$
\n \downarrow
\ndeteriorates in time\n \qquad a 2-body problem

22

TWO-BODY SCATTERING

By Poincaré inequality and by a change of variables,

$$
x = x_2 - x_1, \qquad \eta = \frac{x_1 + x_2}{2}
$$

$$
\mathcal{K}_N(t) = C\ell^2 \int \theta_\ell (x_1 - x_2) \left| \frac{\psi_t(x_1, x_2)}{1 - w_N(x_1 - x_2)} - \varphi(x_1)\varphi(x_2) \right|^2 dx_1 dx_2
$$

$$
\le C\ell^2 \int dx d\eta \theta_{2\ell}(x) \left| \nabla_x \frac{e^{-it\eta_N} \psi_\eta(x)}{1 - w_N(x)} \right|^2 + Error
$$

where

$$
\mathfrak{h}_N = -2\Delta_x + V_N(x)
$$

is the two-body Hamiltonian in relative coordinates and

$$
\psi_{\eta}(x) = \varphi(\eta + x/2)\varphi(\eta - x/2)
$$

Practically, think of $\psi_\eta(x)=1$ on the relevant short scale, forget η and smuggle in $1 = \omega_N + (1 - \omega_N)$

Thus, modulo negligible errors,

$$
\mathcal{K}_N(t) \le C\ell^2 \int \mathrm{d}x \theta_\ell(x) \left[\left| \nabla_x \frac{e^{-it\mathfrak{h}_N} w_N(x)}{1 - w_N(x)} \right|^2 + \left| \nabla_x \frac{e^{-it\mathfrak{h}_N} (1 - w_N)(x)}{1 - w_N(x)} \right|^2 \right]
$$

The second term is (essentially) zero, since (modulo domains)

$$
\mathfrak{h}_N(1-w_N)=0 \quad \Longrightarrow \quad e^{-it\mathfrak{h}_N}(1-w_N)=1-w_N
$$

For the first term, using the wave operator

$$
\Omega = \lim_{t \to \infty} e^{it(-\Delta + \frac{1}{2}V)} e^{it\Delta}
$$

after rescaling $x \to x/N, \ t = T/N^2,$ we need to control

$$
\int \theta_{N\ell} \Big|\nabla \frac{\Omega e^{2iT\Delta}\Omega^* w}{1-w}\Big|^2 \leq \|\nabla w\|_2^2 \|\Omega e^{2iT\Delta}\Omega^* w\|_\infty^2 + (N\ell)^3 \|\nabla \Omega e^{2iT\Delta}\Omega^* w\|_\infty^2
$$

Recall that $w(x) \sim \frac{1}{|x|}$ at large distances and recall that

$$
\Omega, \Omega^* : W^{k,p} \to W^{k,p}
$$
 bounded $1 \leq p \leq \infty$ [Yajima] (assuming V is nice), we need only a dispersive estimate for slowly decaying initial data (like $\Omega^* w \in L^{3+\varepsilon}$, but $\notin L^p$, $p \leq 3$).

NEW DISPERSIVE ESTIMATE

Theorem: In three dimensions,

$$
\left\|e^{it\Delta}f\right\|_{q} \leq \frac{C}{t^{\frac{3}{2}\left(\frac{1}{s}-\frac{1}{q}\right)}}\Big(\|f\|_{s}+\|\nabla f\|_{\frac{3s}{s+3}}\Big)+\frac{C}{t^{\frac{3}{2}\left(\frac{1}{r}-\frac{1}{q}\right)-1}}\|\nabla^{2}f\|_{r}
$$

with

$$
\frac{3}{2} \le s \le \infty, \qquad \max\{3, s\} \le q \le \infty, \qquad 1 \le r \le \frac{3q}{3+2q}
$$

In particular, when $q=\infty$ and $3\leq s\leq \infty$ and $r=\frac{3s}{3\pm 2s}$ $\frac{\mathsf{d} s}{3+2s}$, then

$$
\left\|e^{it\Delta}f\right\|_{\infty} \leq \frac{C}{t^{\frac{3}{2s}}}\Big(\|f\|_{s}+\|\nabla f\|_{\frac{3s}{s+3}}+\|\nabla^2 f\|_{\frac{3s}{3+2s}}\Big)
$$

Standard dispersion estimate requires $f\in L^p,~p< 2.$ Here: some additional regularity can be used to perform integration by parts.

Putting all these together, we control the two body scattering term $\mathcal{K}_N(t)$. The

CONCLUSIONS

• We derived the GP equation from many-body Ham. with interaction on scale $1/N$. Coupling const. = scattering length.

• Conservation of H^k can imply bounds in Sobolev space and Stricharz can be strengthened with Feynman diagrams in many body problems

• A specific short scale correlation structure is preserved and even emerges along the dynamics. In the $N \to \infty$ limit, this structure is negligible in L^2 sense but not in energy sense, thus it influences the dynamics via the emergence of the scatt. length.

• We proved ^a new dispersive estimate for slowly decaying but regular initial data.

• Open question: persistence of the short scale structure for all times

To estimate \mathcal{G}_N , enlarge the window to size $\widetilde{\ell} \gg \ell$ and control

$$
\widetilde{\mathcal{G}}_N(t) := \int \theta_{\widetilde{\ell}}(x_1 - x_2) \left| \Psi_{N,t}(\mathbf{x}) - \widetilde{\Psi}_{N,t}(\mathbf{x}) \right|^2 \mathrm{d}\mathbf{x} =: \int \theta_{12} |\delta \Psi|^2
$$

and estimate its derivative

$$
\left|\frac{d}{dt}\tilde{G}_N(t)\right| \lesssim \langle \nabla \sqrt{\theta} \cdot \nabla (\delta \Psi), \sqrt{\theta} (\delta \Psi) \rangle + \langle \delta \Psi, \theta_{12} \sum_{k \ge 3} V_{1k} \widetilde{\Psi} \rangle
$$

$$
\lesssim C \big(\widetilde{\ell}^{-1} + N \widetilde{\ell}^{3/2} \big) \mathcal{G}_{N,t}^{1/2}
$$
 (1)

by using energy conservation and the fact that

$$
\|\psi_t\|_\infty \leq C \log N
$$

for the two body solution

$$
\psi_t = e^{-it\mathfrak{h}_N} \varphi^{\otimes 2}, \qquad \mathfrak{h}_N = -\Delta_1 - \Delta_2 + V_N(x_1 - x_2)
$$

Optimizing in (1) gives $\widetilde{\ell} \sim N^{-2/5}$ and by Gronwall

$$
|\mathcal{G}'_N(t)| \leq CN^{2/5} \mathcal{G}_N(t)^{1/2} \quad \Longrightarrow \quad \mathcal{G}_N(t) \leq CN^{-1/5}(Nt^2)
$$

METHODS OF THE PROOF

Two main issues to handle:

1) Proving propagation of chaos, i.e. that the higher order density matrices (correlation functions) remain asymptotically factorized,

$$
\gamma_{N,t}^{(k)}\approx\left[\gamma_{N,t}^{(1)}\right]^{\otimes k}
$$

at least on larger scales or in the limit.

2) Justifying the short scale correlation structure which eventually vanishes in the L^2 limit, but does not vanish in H^1 sense and is thus influences the dynamics (via the scattering length).

1) is done via the limiting BBGKY hierarchy.

2) is done via conservation of H_N^2 along the time evolution.

FUNDAMENTAL DIFFICULTY OF N-BODY ANALYSIS

There is no good norm. The conserved L^2 -norm is too strong. $\Psi(x_1, \ldots x_N)$ carries info of all particles (too detailed).

Keep only information about the $k\text{-}$ particle correlations:

$$
\gamma_{\Psi}^{(k)}(X_k, X'_k) := \int \Psi(X_k, Y_{N-k}) \overline{\Psi}(X'_k, Y_{N-k}) dY_{N-k}
$$

where $X_k = (x_1, \ldots x_k)$. It is a partial trace

$$
\gamma_\Psi^{(k)} = \mathrm{Tr}_k |\Psi\rangle\langle\Psi|
$$

It monitors only k particles.

Good news: Most physical observables involve only $k\,=\,1,2$ particle marginals. Enough to control them.

Bad news: there is no closed equation for them.

BASIC TOOL: BBGKY HIERARCHY

$$
H = -\sum_{j=1}^{N} \Delta_j + \frac{1}{N} \sum_{j < k} V(x_j - x_k)
$$

 $V = V_N$ may depend on N so that $\int V_N = O(1)$

Take the k -th partial trace of the Schrödinger eq.

$$
i\partial_t \gamma_{N,t} = [H, \gamma_{N,t}] \quad \Longrightarrow
$$

$$
i\partial_t \gamma_{N,t}^{(k)} = \sum_{j=1}^k \left[-\Delta_j, \gamma_{N,t}^{(k)} \right] + \frac{1}{N} \sum_{i < j}^k \left[V(x_i - x_j), \gamma_{N,t}^{(k)} \right] + \frac{N-k}{N} \sum_{j=1}^k \text{Tr}_{k+1} \left[V(x_j - x_{k+1}), \gamma_{N,t}^{(k+1)} \right]
$$

A system of N coupled equations. $(k = 1, 2, \ldots, N)$

Last eq. is just the original $N\text{-body}$ Schr. eq. Tautological? Closure? Wish: Propag. of chaos: $\gamma_N^{(2)}\approx\gamma_N^{(1)}\otimes\gamma_N^{(1)}$ $(N\to\infty)$

GENERAL SCHEME OF THE PROOF

$$
i\partial_t \gamma_{N,t}^{(k)} = \sum_{j=1}^k \left[-\Delta_j, \gamma_{N,t}^{(k)} \right] + \frac{1}{N} \sum_{i < j}^k \left[V(x_i - x_j), \gamma_{N,t}^{(k)} \right] + \frac{N - k}{N} \sum_{j=1}^k \text{Tr}_{k+1} \left[V(x_j - x_{k+1}), \gamma_{N,t}^{(k+1)} \right]
$$
\n
$$
\text{formally converges to the } \infty \text{ Hartree hierarchy: } (k = 1, 2, \ldots)
$$
\n
$$
i\partial_t \gamma_{\infty,t}^{(k)} = \sum_{j=1}^k \left[-\Delta_j, \gamma_{\infty,t}^{(k)} \right] + \sum_{j=1}^k \text{Tr}_{x_{k+1}} \left[V(x_j - x_{k+1}), \gamma_{\infty,t}^{(k+1)} \right] \quad (*)
$$
\n
$$
\left\{ \gamma_t^{(k)} = \otimes_1^k \gamma_t^{(1)} \right\}_{k=1,2,\ldots} \text{ solves (*)} \quad \Longleftrightarrow \quad i\partial_t \gamma_t^{(1)} = \left[-\Delta + V * \varrho_t, \gamma_t^{(1)} \right]
$$
\n
$$
\text{If we knew that } \left\{ \begin{array}{l} (*) \text{ had a unique solution, and} \\ \lim_N \gamma_{N,t}^{(k)} \text{ exists and satisfies (*)}, \end{array} \right.
$$

then the limit must be the factorized one

⇒ Propagation of chaos + convergence to Hartree eq.

Step 1: Prove apriori bound on $\gamma_{N,t}^{(k)}$ uniformly in N. Need a good norm and space $H!$ (Sobolev)

Step 2: Choose a convergent subsequence: $\gamma_{N,t}^{(k)} \rightarrow \gamma_{\infty,t}^{(k)}$ in H

Step 3: $\gamma_{\infty,t}^{(k)}$ satisfies the infinite hierarchy (need regularity)

Step 4: Let $\gamma_t^{(1)}$ solve NLHE/NLS. Then $\gamma_t^{(k)} = \otimes \gamma_t^{(1)}$ solves the ∞ -hierarchy in H .

Step 5: Show that the ∞ -hierarchy has a unique solution in H .

Key mathematical steps: Apriori bound and uniqueness

Apriori bound: conservation of $H^k \implies$ mixed Sob. bound

Uniqueness: Many-body version of Strichartz via Feynman graphs

APRIORI BOUNDS

Mixed Sobolev norm [E-Yau,01]

$$
\|\gamma^{(k)}\|_{\mathcal{H}^k} := \text{Tr}\, \nabla_1 \ldots \nabla_k \gamma^{(k)} \nabla_k \ldots \nabla_1
$$

can be used for potentials with weaker singularity (e.g. Coulomb).

$$
\langle \Psi_t, H^k \Psi_t \rangle
$$
 is conserved, we turn it into Sobolev-type norms
\n
$$
(\ast) \qquad \langle \Psi, H^k \Psi \rangle \ge (CN)^k \int |\nabla_1 \dots \nabla_k \Psi|^2 = (CN)^k ||\gamma^{(k)}||_{\mathcal{H}^k}
$$
\nso mixed Sob. norms stay under control as time evolves.

(*) is incorrect for the GP, w_N is too singular; $w_N(x) \sim \frac{a}{|x|}$

$$
\int \left| \nabla_1 \nabla_2 (1 - w_N(x_1 - x_2)) \right|^2 \ge \int \frac{a^2}{(|x| + a)^6} dx = O(a^{-1}) = O(N)
$$

After removing the singular part:

Proposition: Define

$$
\Phi_{12}(x) := \frac{\Psi(x)}{1 - w_N(x_1 - x_2)}
$$

Then

$$
\langle \Psi, H^2 \Psi \rangle \geq (CN)^2 \int |\nabla_1 \nabla_2 \Phi_{12}|^2
$$

Weak limit of Ψ and Φ_{12} are equal, but Φ_{12} can be controlled in Sobolev space. Use compactness for Φ_{12} ! Similarly for $k > 2$.

Key observation: For singular potentials, the upper bound

$$
\langle \Psi, H_N^2 \Psi \rangle \leq C N^2
$$

implies that Ψ has a short scale structure in any x_i $-x_j$ variable.

It is essentially ^a two-body phenomenon, but one needs to control that no third particle gets close.

UNIQUENESS OF THE ∞ -HIERARCHY IN SOBOLEV SPACE

$$
i\partial_t \gamma_t^{(k)} = \sum_{j=1}^k \left[-\Delta_j, \gamma_t^{(k)} \right] - i\sigma \sum_{j=1}^k \text{Tr}_{x_{k+1}} \left[\delta(x_j - x_{k+1}), \gamma_t^{(k+1)} \right]
$$

$$
B^{(k)} \gamma^{(k+1)}
$$

Iterate it in integral form:

$$
\gamma_t^{(k)} = \mathcal{U}(t)\gamma_0^{(k)} + \int_0^t \mathrm{d}s \, \mathcal{U}(t-s)B^{(k)}\mathcal{U}(s)\gamma_0^{k+1} + \dots
$$

$$
+ \int_{\sum_k s_k = t} \mathrm{d}s_1 \dots \mathrm{d}s_n \, \mathcal{U}(s_1)B^{(k)}\mathcal{U}(s_2)B^{(k+1)} \dots B^{(k+n-1)}\gamma_{s_n}^{k+n}
$$

$$
\mathcal{U}(t)\gamma^{(k)} := e^{it\sum_{j=1}^k \Delta_j} \gamma^{(k)} e^{-it\sum_{j=1}^k \Delta_j}
$$

 $\textbf{Problem 1. } \Vert B^{(k)} \gamma^{(k+1)} \Vert_{\mathcal{H}^k} \leq C \Vert \gamma^{(k+1)} \Vert_{\mathcal{H}^{k+1}}$ is wrong because $\delta(x) \not\leq (1 - \Delta)$. Need smoothing from $\mathcal U$!!

$$
\gamma_t^{(k)} = \mathcal{U}(t)\gamma_0^{(k)} + \int_0^t ds \, \mathcal{U}(t-s)B^{(k)}\mathcal{U}(s)\gamma_0^{k+1} + \dots
$$

+
$$
\int_{\sum_k s_k = t} ds_1 \dots ds_n \, \mathcal{U}(s_1)B^{(k)}\mathcal{U}(s_2)B^{(k+1)}\dots B^{(k+n-1)}\gamma_{s_n}^{k+n}
$$

Stricharz inequality? Space-time smoothing of $e^{it\Delta}$.

$$
\left\|e^{it\Delta}\psi\right\|_{L^p(L^q(\mathrm{d}x)\mathrm{d}t)} = \left[\int \mathrm{d}t \left(\int \mathrm{d}x|e^{it\Delta}\psi|^q\right)^{p/q}\right]^{1/p} \le C\|\psi\|_2
$$

(2 \le p \le \infty, 2/p + 3/q = 3/2)

Problem 2. $B^{(k)}B^{(k+1)}\dots B^{(k+n-1)} \approx n!$, because $B^{(k)} = \sum_{1}^{k} [\dots].$ This can destroy convergence. Gain back from time integral

$$
\int_{\sum_k s_k = t} \mathsf{d} s_1 \ldots \mathsf{d} s_n \leq \, \frac{1}{n!}
$$

Here $L^1(ds)$ was critically used, Stricharz destroys convergence.

We expand it into Feynman graphs, use combinatorial identities and do multiple integrals carefully.

An example for combinatorics:

The Duhamel expansion keeps track of the full time ordering and it counts the following two graphs separately:

Number of graphs on m vertices with time ordering: $m!$

Number of graphs on m vertices without time ordering $= C^m$

The resummation reduced $m!$ to C^m . The factorial was fake!

CONCLUSIONS

• We derived the GP equation from many-body Ham. with interaction on scale $1/N$. Coupling const. = scattering length.

• A specific short scale correlation structure is preserved or even emerges along the dynamics. In the $N \to \infty$ limit, this structure is negligible in L^2 sense (ensuring a closed eq. for the orbitals) but not in energy sense, thus it influences the dynamics via the emergence of the scatt. length.

• Conservation of H^k can imply bounds in Sobolev space

• Stricharz can be strengthened with Feynman diagrams in many body problems

IDEA OF THE H²-APRIORI BOUND

Work in one particle setting, i.e. in \mathbb{R}^3 .

$$
H = -\Delta + V, \qquad V(x) = \frac{1}{N} N^3 V_0(Nx)
$$

Let $f = 1 - w$ be the scattering solution

$$
(-\Delta + V)f = 0
$$

By scaling,

$$
f(x) = f_0(Nx) \sim \begin{cases} 1 - \frac{a_0}{Nx} & x \ge N^{-1} \\ O(1) & x \le N^{-1} \end{cases}
$$

(here a_0 is the scattering length of V_0).

Let Ψ be any wavefunction, factorize f out $(0 < f \leq 1)$

 $\Psi = f\Phi$

LEMMA: If V_0 is sufficiently small (e.g. a_0 is small), then

$$
(\Psi,H^2\Psi)\geq c\int|\Delta\Phi|^2
$$

$$
(\Psi, H^2 \Psi) \ge c \int |\Delta \Phi|^2 \qquad \qquad \Psi = f \Phi
$$

$$
H\Psi = (-\Delta + V)\Psi = fL[\Psi/f]
$$

with

$$
L := -\Delta + 2(\nabla \log f)\nabla
$$

FACT: L is self-adjoint with respect to $f^2(x)dx$:

$$
\int \bar{\Phi} L\Omega f^2 = \int L\bar{\Omega} \Phi f^2 = \int \nabla \bar{\Phi} \nabla \Omega f^2
$$

$$
(\Psi, H^2 \Psi) = \int |H \Psi|^2 = \int |L \Phi|^2 f^2 = \int \nabla \bar{\Phi} \nabla (L \Phi) f^2
$$

=
$$
\int \nabla \bar{\Phi} L (\nabla \Phi) f^2 + \int \nabla \bar{\Phi} [\nabla, L] \Phi f^2
$$

=
$$
\int |\nabla^2 \Phi|^2 f^2 + \int \nabla \bar{\Phi} \Big[\frac{\nabla^2 f}{f} + \frac{(\nabla f)^2}{f^2} \Big] \nabla \Phi f^2
$$

$$
(\Psi, H^2 \Psi) = \int |\nabla^2 \Phi|^2 f^2 + \int \nabla \bar{\Phi} \Big[\frac{\nabla^2 f}{f} + \frac{(\nabla f)^2}{f^2} \Big] \nabla \Phi f^2
$$

From the scaling of f :

$$
\nabla^2 f \sim \frac{a_0}{N|x|^3} \le \frac{a_0}{|x|^2}, \qquad (\nabla f)^2 \sim \left(\frac{a_0}{N|x|^2}\right)^2 \le \frac{a_0}{|x|^2},
$$

thus

$$
\left| \int \nabla \bar{\Phi} \left[\cdots \right] \nabla \Phi f^2 \right| \leq C a_0 \int \frac{1}{|x|^2} |\nabla \Phi|^2 \leq C a_0 \int |\nabla^2 \Phi|^2
$$

thus, after estimating $f^2 \ge C > 0$, we have

$$
(\Psi, H^2 \Psi) \ge C \int |\nabla^2 \Phi|^2 - C a_0 \int |\nabla^2 \Phi|^2 \ge C \int |\nabla^2 \Phi|^2
$$

if a_0 is small enough.

Special case: $k = 1$:

$$
i\partial_t \gamma_{N,t}^{(1)}(x_1; x_1') = (-\Delta_{x_1} + \Delta_{x_1'}) \gamma_{N,t}^{(1)}(x_1; x_1')
$$

+
$$
\int dx_2 \left(V(x_1 - x_2) - V(x_1' - x_2) \right) \gamma_{N,t}^{(2)}(x_1, x_2; x_1', x_2) + o(1).
$$

To get a closed equation for $\gamma_{N,t}^{(1)}$, we need some relation between $\gamma_{N,t}^{(1)}$ and $\gamma_{N,t}^{(2)}$. Most natural: independence

Propagation of chaos: No production of correlations

If initially
$$
\gamma_{N,0}^{(2)} = \gamma_{N,0}^{(1)} \otimes \gamma_{N,0}^{(1)}
$$
, then hopefully $\gamma_{N,t}^{(2)} \approx \gamma_{N,t}^{(1)} \otimes \gamma_{N,t}^{(1)}$

No exact factorization for finite N, but maybe it holds for $N \to \infty$.

Suppose
$$
\gamma_{\infty,t}^{(k)}
$$
 is a (weak) limit point of $\gamma_{N,t}^{(k)}$ with
\n
$$
\gamma_{\infty,t}^{(2)}(x_1, x_2; x_1', x_2') = \gamma_{\infty,t}^{(1)}(x_1, x_1') \gamma_{\infty,t}^{(1)}(x_2; x_2').
$$

$$
i\partial_t \gamma_{N,t}^{(1)}(x_1; x_1') = (-\Delta_{x_1} + \Delta_{x_1'}) \gamma_{N,t}^{(1)}(x_1; x_1')
$$

+
$$
\int dx_2 \left(V(x_1 - x_2) - V(x_1' - x_2) \right) \underbrace{\gamma_{N,t}^{(2)}(x_1, x_2; x_1', x_2)}_{\rightarrow \gamma_{\infty,t}^{(1)}(x_1, x_1') \gamma_{\infty,t}^{(1)}(x_2; x_2)} + o(1)
$$

With the notation $\rho_t(x) := \gamma_{\infty,t}^{(1)}(x;x)$, it converges, to

$$
i\partial_t \gamma_{\infty,t}^{(1)}(x_1; x_1') = (-\Delta_{x_1} + \Delta_{x_1'}) \gamma_{\infty,t}^{(1)}(x_1; x_1')
$$

+
$$
\left(V * \varrho_t(x_1) - V * \varrho_t(x_1')\right) \gamma_{\infty,t}^{(1)}(x_1; x_1')
$$

 $i\partial_t \gamma_{\infty,t}^{(1)} = \left| -\Delta + V * \varrho_t, \ \gamma_{\infty,t}^{(1)} \right|$ Hartree eq for density matrix If $V = V_N$ scaled, then the short scale structure can be relevant. For $\gamma_{N,t}^{(2)}(x_1, x_2; x'_1, x_2) = (1-w_N(x_1-x_2))\gamma_{N,t}^{(1)}(x_1, x'_1)\gamma_{N,t}^{(1)}(x_2, x_2),$

$$
\implies \int V_N(x_1 - x_2)(1 - w_N(x_1 - x_2)) \Big[\text{Smooth} \Big] = \begin{cases} 8\pi a_0 & \text{if } \beta = 1 \\ b_0 & \text{if } \beta < 1 \end{cases}
$$

Feynman graphs

Iteration the ∞-hierarchy: $\gamma_{\infty,t} = \mathcal{U}_t \gamma_0 + \int_0^t ds \, \mathcal{U}_{t-s} B \gamma_{\infty,s}$

$$
\gamma_{\infty,t}^{(k)} = \sum_{m=0}^{n} \Xi_m^{(k)}(t) + \Omega_n^{(k)}(t)
$$

$$
\Omega_n^{(k)} = \int \ldots \int ds_1 ds_2 \ldots ds_n \, \mathcal{U}_{t-s_1} B \mathcal{U}_{s_1-s_2} B \ldots \mathcal{U}_{s_{n-1}-s_n} B \gamma_{\infty, s_n}^{(k+n)}
$$

 $\Xi_m^{(k)}$ are similar but with the initial condition γ_0 at the end.

Feynman graphs: convenient representation of Ξ and Ω .

Lines represent free propagators.

E.g. the propagator line of the j -th particle between times s and t represent exp $[-i(s-t)\Delta_j]$:

Vertices represent B , e.g. $V(x_{\mathbf{1}})$ $(x_1, x_2; x_1', x_2')$ ζ_2) $\delta(x_2)$ $-x'$ $'_{2})$

$$
\Xi_m^{(k)} = \int \ldots \int ds_1 ds_2 \ldots ds_m \, \mathcal{U}_{t-s_1} B \mathcal{U}_{s_1-s_2} B \ldots \mathcal{U}_{s_{m-1}-s_m} B \mathcal{U}_{s_m} \gamma_{\infty,0}^{(k+m)}
$$

corresponds to summation over all graphs Γ of the form:

$$
\operatorname{Tr}\, \mathcal{O}\, \Xi_m^{(k)} = \sum_{\Gamma} \operatorname{Val}(\Gamma)
$$

Value of a graph Γ in momentum space

$$
\text{Val}(\Gamma) = \int \int \prod_{e \in E} d\alpha_e dp_e \prod_e \frac{1}{\alpha_e - p_e^2 + i\eta_e} \prod_{v \in V} \delta\left(\sum_{e \in v} \alpha_e\right) \delta\left(\sum_{e \in v} p_e\right)
$$

$$
\times e^{-it \sum_{e \in Root} (\alpha_e - i\eta_e)} \mathcal{O}(p_e : e \in \text{Root}) \gamma_0(p_e : e \in \text{Leaves})
$$

 $p_e \in \mathbb{R}^3$ is the momentum on edge e $\alpha_e \in \mathbb{R}$ variable dual to time running on the edge e. $\eta_e = O(1)$ regularizations satisfying certain compatibitility cond.

Two main issues to look at

• What happens to the $m!$ problem (combinatorial complexity of the BBGKY hiearchy)?

• What happens to the singular interaction $=$ large p problem In other words: why is Val(Γ) UV-finite?

Combinatorics reduced by resummation: $m!$ is artificial

Let $k=1$ for simplicity, i.e. we have a tree (not a forest).

The Duhamel expansion keeps track of the full time ordering and it counts the following two graphs separately:

Number of graphs on m vertices with time ordering: $m!$ (the j-th new vertex can join each of the $(j-1)$ earlier ones)

Number of graphs on m vertices without time ordering $=$ Number of binary trees $=$ Catalan numbers $\frac{1}{m-1}$ $\frac{1}{m+1}$ 2 m $\binom{2m}{m}\leq C^m$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

UV regime: Finiteness of Val(Γ)

$$
|\text{Val}(\Gamma)| \le \int \int \prod_{e \in E} d\alpha_e dp_e \prod_e \frac{1}{\langle \alpha_e - p_e^2 \rangle} \prod_{v \in V} \delta \left(\sum_{e \in v} \alpha_e \right) \delta \left(\sum_{e \in v} p_e \right)
$$

× $\mathcal{O}(p_e : e \in \text{Root}) \gamma_0(p_e : e \in \text{Leaves})$

 $\|\gamma_0\|_{\mathcal{H}^{(m+1)}}$ guarantees a $\langle p_e \rangle^{-5/2}$ decay on each leaf.

Power counting $(k = 1,$ one root case).

 $#$ of edges $= 3m + 2$, no. of leaves $= 2m + 2$ $#$ of effective p_e (and α_e) variables: $(3m + 2) - m = 2m + 2$ $2m + 2$ propagators are used for the convergence of α_e integrals Remaining m propagators give $\langle p^2 \rangle$ decay each.

Total p-decay: $\frac{5}{2}(2m+2)+2m=7m+5$ in 3 $(2m+2)$ dim. There is some room, but each variable must be checked. We follow the momentum decay on legs as we successively integrate out each vertex. There are 7 types of edges, 12 types of vertex integrations that form a closed system. \Box