
2

Normwise Condition of Linear Equation
Solving

The QR factorization is one of the main engines in numerical linear algebra.
The following result, a backward analysis for linear equation solving using it, is
a particular case of Theorem 19.3 of [12].

Theorem 2.1. Let A ∈ Rn×n be invertible and b ∈ Rn. If the system Ax = b is
solved using the Householder QR factorization the computed solution x̃ satisfies

Ãx̃ = b̃

where Ã and b̃ satisfy the relative error bounds

‖Ã−A‖F ≤ nγcn‖A‖F and ‖b̃− b‖ ≤ nγcn‖b‖

for a small constant c and with γcn as defined in (1.5).

It follows from this backward stability result, (1.6), and Theorem 1.3 that
the relative error for the computed solution x̃ satisfies

(2.1)
‖x̃− x‖
‖x‖ ≤ cn2εmachcond(A, b) + o(εmach)

and the loss of precision is bounded by

(2.2) LoP(A−1b) ≤ 2 logβ n + logβ cond(A, b) + logβ c + o(1),

where cond(A, b) is the normwise condition number for linear equation solving

cond(A, b) = lim
δ→0

sup
max{RelError(A),RelError(b)}≤δ

RelError(A−1b)
δ

.

Inequality (2.1) calls for an understanding of what cond(A, b) is deeper than the
equality above. The pursuit of this understanding is the goal of this chapter.
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2.1 Turing’s Condition Number

The condition number cond(A, b) in the introduction is a normwise one. For
this reason, we begin by providing a brief review of norms (for a more detailed
treatment we refer the reader to Higham [12, Chapter 6]).

The three most useful norms in error analysis on the real vector space Rn

are the following:

‖x‖1 :=
n∑

i=1

|xi|, ‖x‖2 :=
( n∑

i=1

|xi|
)1/2

, ‖x‖∞ := max
1≤i≤n

|xi|.

These are special cases of the Hölder r-norm

‖x‖r :=
( n∑

i=1

|xi|r
)1/r

defined for a real number r ≥ 1. Even though we will only need the cases r ∈
{1, 2,∞}, stating the results for general Hölder norms avoids case distinctions
and thus saves space.

For a given r ≥ 1 there is exactly one r∗ ≥ 1 such that 1/r + 1/r∗ = 1. The
well-known Hölder inequality states that for x, z ∈ Rn we have

|xTz| ≤ ‖x‖r ‖z‖r∗ .

Moreover, equality holds if (|xi|r) and (|zi|r
∗
) are linearly dependent. This easily

implies that for any x ∈ Rn

(2.3) max
‖z‖r∗=1

xTz = ‖x‖r.

For this reason, one calls ‖ ‖r∗ the dual norm of ‖ ‖r. In particular, for each
x ∈ Rn with ‖x‖r = 1 there exists z ∈ Rn such that ‖z‖r∗ = 1 and zTx = 1.

We will adopt the notational convention ‖ ‖ := ‖ ‖2 for the Euclidean vector
norm. Note that this norm is dual to itself. Note as well that ‖ ‖1 and ‖ ‖∞
are dual to each other.

To the vector norms ‖ ‖r on a domain space Rn and ‖ ‖s on a range space
Rm, one associates the subordinate matrix norm ‖ ‖rs on the vector space of
linear operators A : Rn → Rm defined by

(2.4) ‖A‖rs := sup
x∈Rp

x)=0

‖Ax‖s

‖x‖r
= sup
‖x‖r=1

‖Ax‖s.

By compactness of the unit sphere the supremum is a minimum. In case r = s
we write ‖ ‖r instead of ‖ ‖rr. It is easy to show that

‖A‖1 = max
j

m∑

i=1

|aij |, ‖A‖∞ = max
i

n∑

j=1

|aij |.
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(We recall that we already met ‖ ‖∞ in Section 1.4.) Furthermore, when r = 2,
‖ ‖2 is called the spectral norm and it is written simply as ‖ ‖.

We note that the following submultiplicativity property of matrix norms
holds: for r, s, t ≥ 1 and matrices A, B we have

(2.5) ‖AB‖rs ≤ ‖A‖ts ‖B‖rt

provided the matrix product is defined.
Most of what we will need about operator norms is stated in the following

simple lemma.

Lemma 2.2. 1. For y ∈ Rm and v ∈ Rn we have ‖yvT‖rs = ‖y‖s ‖v‖r∗ .

2. Suppose that x ∈ Rn and y ∈ Rm satisfy ‖x‖r = ‖y‖s = 1. Then there
exists B ∈ Rm×n such that ‖B‖rs = 1 and Bx = y.

Proof. (1) We have

‖yvT‖rs = max
‖x‖r=1

‖yvTx‖s = ‖y‖s max
‖x‖r=1

|vTx| = ‖y‖s‖v‖r∗ ,

where the last equality holds due to (2.3).
(2) By (2.3) there exists z ∈ Rn such that ‖z‖r∗ = 1 and zTx = 1. For

B := yzT we have Bx = y and

‖B‖rs = max
‖x′‖r=1

‖yzTx′‖s = ‖y‖s max
‖x′‖r=1

|zTx′| = ‖y‖s ‖z‖r∗ = 1,

where we again used (2.3) for the second last equality.

We now proceed to exhibit a characterization of the normwise condition
number for linear equation solving, pursuing the theme described in §1.5.2.

Let m = n and fix norms ‖ ‖r and ‖ ‖s on Rn. Also, let

Σ := {A ∈ Rn×n | det(A) = 0}

denote the set of ill-posed matrices and put D := Rn×n \Σ. We define the map
κrs : D → R by

κrs(A) := ‖A‖rs‖A−1‖sr.

Note that κrs(A) ≥ 1, since 1 = ‖I‖r ≤ ‖A‖rs‖A−1‖sr = κrs(A).

Theorem 2.3. Let ϕ : D×Rn → Rn be given by ϕ(A, b) = A−1b. We measure
the relative error in D × Rn by

RelError(A, b) = max

{
‖Ã−A‖rs

‖A‖rs
,
‖b̃− b‖s

‖b‖s

}
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and we measure the relative error in the solution space normwise with respect
to ‖ ‖r. Then

condϕ(A, b) = κrs(A) +
‖A−1‖sr‖b‖s

‖A−1b‖r
.

In particular, we have

κrs(A) ≤ condϕ(A, b) ≤ 2κrs(A).

Proof. Let Ã = A − E and b̃ = b + f . By definition, ‖E‖rs ≤ R‖A‖rs and
‖f‖s ≤ R‖b‖s where, for simplicity, R = RelError(A, b). We have, for R → 0,

(A−E)−1 = A−1(I−EA−1)−1 = A−1
(
I+EA−1+o(R)

)
= A−1+A−1EA−1+o(R).

This implies, writing x := A−1b and x̃ := Ã−1b̃,

(2.6) x̃− x = (A− E)−1(b + f)− x = A−1Ex + A−1f + o(R).

Taking norms and using (2.5) we conclude

‖x̃− x‖r ≤ ‖A−1‖sr‖E‖rs‖x‖r + ‖A−1‖sr‖f‖s + o(R)
≤ ‖A−1‖sr‖A‖rs‖x‖rR + ‖A−1‖sr‖b‖sR + o(R),

hence
‖x̃− x‖r

R‖x‖r
≤ κrs(A) +

‖A−1‖sr‖b‖s

‖x‖r
,

which shows the upper bound in the claimed equality.
For the corresponding lower bound we choose y ∈ Rm such that ‖y‖s = 1

and ‖A−1y‖r = ‖A−1‖sr. Further, we choose v ∈ Rn such that ‖v‖r∗ = 1 and
vTx = ‖x‖r, which is possible by (2.3). Now we put

(2.7) E := R‖A‖rs yvT, f := ±R‖b‖s y.

We note that
‖E‖rs = R‖A‖rs, ‖f‖s = R‖b‖s,

the first equality since, by Lemma 2.2(1), ‖yvT‖rs = ‖y‖s‖v‖r∗ = 1. We have

A−1Ex = R‖A‖rs A−1y vTx = R‖A‖rs‖x‖rA
−1y

and hence ‖A−1Ex‖r = κrs(A)‖x‖rR. Similarly, A−1f = ±R‖b‖sA−1y and
‖A−1f‖r = ‖A−1‖sr‖b‖sR. Since A−1Ex and A−1f are both proportional to
A−1y, we obtain from (2.6)

‖x̃− x‖r = κrs(A)‖x‖rR + ‖A−1‖sr‖b‖sR

when choosing the sign for f in (2.7) appropriately. This proves the claimed
lower bound.
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Theorem 2.3 —together with (2.1)— immediately yields a bound for the loss
of precision in linear equation solving.

Corollary 2.4. Let A ∈ Rn×n be invertible and b ∈ Rn. If the system Ax = b
is solved using the Householder QR factorization, then the computed solution x̃
satisfies, for a small constant c,

LoP(A−1b) ≤ 2 logβ n + logβ κrs(A) + logβ c + o(1)

where o(1) is for εmach → 0.

The next result shows that κrs actually coincides with the condition number
for the problem of matrix inversion.

Theorem 2.5. Let ψ : D → Rn×n be given by ψ(A) = A−1. We measure the
relative error on the data space and solution space with respect to ‖ ‖rs and
‖ ‖sr, respectively. Then we have

condψ(A) = κrs(A).

Proof. Let E ∈ Rn×n be such that Ã = A− E. Then RelError(A) = ‖E‖rs

‖A‖rs
. As

in the proof of Theorem 2.3 we have for ‖E‖ → 0,

(2.8) ‖Ã−1 −A−1‖sr = ‖A−1EA−1‖sr + o
(
‖E‖

)
.

Hence, ‖A−1EA−1‖sr ≤ ‖A−1‖sr‖E‖rsA−1‖sr. Consequently, we obtain

RelError(A−1) =
‖Ã−1 −A−1‖sr

‖A−1‖sr
≤ ‖A−1‖sr‖E‖rs + o

(
‖E‖)

)
.

We conclude that
RelError(A−1)
RelError(A)

≤ ‖A‖rs‖A−1‖sr + o(1)

and hence condψ(A) ≤ κrs(A).
To prove the reversed inequality it is enough to find arbitrary small ma-

trices E such that ‖A−1EA−1‖sr = ‖A−1‖2sr‖E‖rs since then we can proceed
from (2.8) as we did in Theorem 2.3 from(2.6).

To do so let y ∈ Rn be such that ‖y‖s = 1 and ‖A−1y‖r = ‖A−1‖sr. Define
x := 1

‖A−1‖sr
A−1y so that A−1y = ‖A−1‖srx and ‖x‖r = ‖y‖s = 1. For any

B ∈ Rn×n we have

‖A−1BA−1‖sr ≥ ‖A−1BA−1y‖r = ‖A−1‖sr · ‖A−1Bx‖r.

By Lemma 2.2(2) there exists B ∈ Rn×n such that Bx = y and ‖B‖rs = 1.
Therefore,

‖A−1BA−1‖sr ≥ ‖A−1‖sr · ‖A−1y‖r = ‖A−1‖2sr.

Taking E = δB with arbitrarily small δ finishes the proof.
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The most often considered case is r = s = 2, that is, when measuring the
error in both input and output space with the Euclidean norm. The resulting
condition number κ(A) := κ22(A) is so pervasive in numerical linear algebra that
it is commonly referred to as “the condition number of A” —without mention to
the function for which we want to measure condition. We remark that κ(A) was
originally introduced by Turing [19] and by von Neumann and Goldstine [21]
(Turing actually considered norms other than the spectral).

2.2 Condition and Distance to Ill-posedness

A goal of this section, now revisiting the discussion in §1.5.4, is to show that
the condition number κrs(A) can be expressed as the relativized inverse of the
distance from the square matrix A to the set Σ of singular matrices: a large
κrs(A) means that A is close to a singular matrix. In order to make this precise
we introduce the distance of A ∈ Rn×n to the set Σ of singular matrices

(2.9) drs(A,Σ) := min{‖A−B‖rs | B ∈ Σ}

defined with respect to the norm ‖ ‖rs. For the spectral norm we just write
d(A,Σ) := d22(A,Σ).

The following result was proved by Kahan, who attributes it to Gastinel
(cf. Higham [12, Thm.6.5]). For the special case of spectral norms, this funda-
mental result had been obtained much earlier, in 1936, by Eckart and Young [6].

Theorem 2.6. Let A ∈ Rn×n be nonsingular. Then

drs(A,Σ) =
1

‖A−1‖sr
.

Proof. Let A be nonsingular and A + E be singular. Then there exists an
x ∈ Rn \ {0} such that (A+E)x = 0. This means that x = −A−1Ex and hence

‖x‖r ≤ ‖A−1E‖rr · ‖x‖r ≤ ‖A−1‖sr · ‖E‖rs · ‖x‖r,

which implies ‖E‖rs ≥ ‖A−1‖−1
sr . Therefore drs(A,Σ) ≥ ‖A−1‖−1

sr .
To show the other inequality it suffices to find a singular matrix Ã with

drs(A, Ã) ≤ ‖A−1‖−1
sr . Let y ∈ Rn be such that ‖A−1‖sr = ‖A−1y‖r and

‖y‖s = 1. Writing x := A−1y we have ‖x‖r = ‖A−1‖sr, in particular x )= 0. By
Lemma 2.2(2) there exists B ∈ Rn×n such that ‖B‖rs = 1 and

B
x

‖x‖r
= −y.

Hence E := ‖x‖−1
r B satisfies Ex = −y and hence (A + E)x = 0. So the matrix

Ã := A + E must be singular. In addition, we have

drs(A, Ã) = ‖E‖rs = ‖x‖−1
r ‖B‖rs = ‖A−1‖−1

sr · ‖B‖rs = ‖A−1‖−1
sr ,

which finishes the proof.
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Defining κrs(A) := ∞ for a singular matrix, we immediately obtain the
following result which is known as the “Condition Number Theorem.”

Corollary 2.7. For nonzero A ∈ Rn×n we have

κrs(A) =
‖A‖rs

drs(A,Σ)
.

Thus the condition number κrs(A) can be seen as the inverse of a normalized
distance of A to the set of ill-posed inputs Σ.

Notation. In this book we will consider matrices both as given by its
columns or by its rows. In order to emphasize this distinction, and avoid am-
biguities, given vectors a1, . . . , an ∈ Rm we write (a1, . . . , an) for the matrix in
Rn×m whose rows are a1, . . . , an and [a1, . . . , an] for the matrix in Rm×n whose
columns are these vectors. Note that this notation dispense us with transposing
(x1, . . . , xn) when we want to emphasize that this is a column vector.

For a matrix A ∈ Rn×m, a vector c ∈ Rn, and an index j ∈ [m], we denote by
A(j : c) the matrix obtained by replacing the jth row of A by c. The meaning
of A[j : c] is defined similarly.

We draw now a consequence of Theorem 2.6 that will be used in several
variations throughout the book.

Proposition 2.8. For A ∈ Rn×n and r, s ≥ 1 there exists j ∈ [n] and c ∈ Rn

such that A[j : c] ∈ Σ and ‖aj − c‖s ≤ n1/r drs(A,Σ).

Proof. Theorem 2.6 states that ‖A−1‖sr = ε−1, when writing ε := drs(A,Σ).
There exists b ∈ Rn such that ‖b‖s = 1 and ‖A−1b‖r = ‖A−1‖sr. So if we
put v := A−1b, then ‖v‖r ≥ ε−1. This implies ‖v‖∞ ≥ n−1/r‖v‖r ≥ n−1/rε−1.
W.l.o.g. we may asssume that |vn| = ‖v‖∞.

Since Av = b, we can express vn by Cramer’s rule as follows

vn =
det([a1, . . . , an−1, b])

det(A)
.

This implies

0 = det(A)− v−1
n det([a1, . . . , an−1, b]) = det

([
a1, . . . , an−1, an − v−1

n b
])

.

Thus if we put c := an − v−1
n b we have A[i : c] ∈ Σ and

‖an − c‖s = |vn|−1‖b‖s = |vn|−1 ≤ n1/r ε.
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2.3 The Singular Value Decomposition

The singular value decomposition of a matrix is the numerically appropriate way
to discuss matrix rank. It also leads to a natural generalization of Theorem 2.6.

In this section we mainly work with the spectral norm and the Frobenius
norm of a matrix A = (aij) ∈ Rm×n, which is defined as

‖A‖F :=
( m∑

i=1

n∑

j=1

a2
ij

)1/2

.

Clearly, ‖A‖F equals the Euclidean norm of A when interpreted as an element
of Rmn. The advantage of the Frobenius norm is that it is induced by an inner
product on Rm×n.

Both the spectral norm and the Frobenius norm are invariant under orthog-
onal transformations.

Lemma 2.9. For A ∈ Rm×n and orthogonal matrices U ∈ Rm×m and V ∈
Rn×n we have ‖UAV ‖F = ‖A‖F and ‖UAV ‖ = ‖A‖.

Proof. For the first assertion let s1, . . . , sn denote the columns of A. Then Usi

is the ith column of UA. Since U is orthogonal we have ‖Usi‖ = ‖si‖ and
therefore

‖UA‖2F =
∑

i≤n

‖Usi‖2 =
∑

i≤n

‖si‖2 = ‖A‖2F .

In the same way one shows that ‖AV ‖F = ‖A‖F . The second assertion is shown
as follows

‖UAV ‖ = sup
‖x‖=1

‖UAV x‖ = sup
‖x‖=1

‖U(AV x)‖

= sup
‖x‖=1

‖AV x‖ = sup
‖x‖=1

‖A(V x)‖

= sup
‖x′‖=1

‖Ax′‖ = ‖A‖.

For conveniently stating the singular value decomposition, we extend the
usual notation for diagonal matrices from square to rectangular m×n-matrices.
We put p := min{n, m} and define, for a1, . . . , ap ∈ R,

diagm,n(a1, . . . , ap) := (bij) ∈ Rm×n with bij :=
{

ai if i = j
0 otherwise.

For notational convenience we usually drop the index, the format being clear
from the context.

The next result is known as the “Singular Value Decomposition Theorem”
(or, in short, the “SVD Theorem”).
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Theorem 2.10. For A ∈ Rm×n there exist orthogonal matrices U ∈ Rm×m and
V ∈ Rn×n such that

UTAV = diag(σ1, . . . ,σp),

with p = min{m, n} and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0.

Proof. Let x ∈ Rn, ‖x‖ = 1 be such that σ := ‖A‖ = ‖Ax‖ and define y :=
σ−1Ax ∈ Rm, so that ‖y‖ = 1 and Ax = σy. There exist matrices V2 ∈
Rn×(n−1) and U2 ∈ Rm×(m−1) such that V := [x, V2] and U := [y, U2] are
orthogonal.

We have for some w ∈ Rn−1 and B ∈ R(m−1)×(n−1) that

UTAV =
[
yT

UT
2

]
A[x, V2] =

[
yT

UT
2

]
[σy,AV2]

=
[
σ wT

0 B

]
=: A1.

Note that ‖A1‖ = ‖A‖ by the orthogonal invariance of the spectral norm. More-
over, we have for v ∈ Rn−1

‖Bv‖ =
∥∥∥∥

[
σ wT

0 B

] [
0
v

]∥∥∥∥ =
∥∥∥∥UTAV

[
0
v

]∥∥∥∥ ≤ ‖UTAV ‖ ‖v‖ ≤ ‖A‖ ‖v‖,

hence ‖B‖ ≤ ‖A‖.
We claim that w = 0. To see this, note

A1

[
σ
w

]
=

[
σ2 + wTw

∗

]

and therefore ∥∥∥∥A1

[
σ
w

]∥∥∥∥ ≥ σ2 + ‖w‖2.

On the other hand,
∥∥∥∥A1

[
σ
w

]∥∥∥∥ ≤ ‖A‖(σ2 + ‖w‖2)1/2 = σ(σ2 + ‖w‖2)1/2.

It follows that w = 0. The argument can now be completed by induction.

The nonnegative numbers σi in Theorem 8.14 are called the singular values
of A and are sometimes written σi(A). We will see soon enough (Corollary 2.15)
that they are uniquely determined by A. Sometimes one writes σmax and σmin

for σ1 and σp, respectively. The ith columns ui and vi of U and V in Theo-
rem 8.14 are called ith left singular vector and ith right singular vector of A,
respectively (in general, those are not uniquely determined).

Remark 2.11. If A ∈ Rn×n is symmetric, then the singular values of A are the
absolute values of its eigenvalues.
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The following result summarizes the main properties of the singular value
decomposition.

Proposition 2.12. Suppose that σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0
are the singular values of A ∈ Rm×n and ui, vi are left and right singular vectors
of A. Then:

1. A =
∑r

i=1 σiuivT
i (singular value decomposition of A),

2. rank(A) = r ,

3. ker(A) = span{vr+1, . . . , vn}, Im(A) = span{u1, . . . , ur},

4. ‖A‖ = σ1, ‖A‖2F = σ2
1 + . . . + σ2

p,

5. min‖x‖=1 ‖Ax‖ = σn , if m ≥ n,

6. κ(A) = σ1/σn , if m = n, A )= 0,

7. A and AT have the same singular values, in particular ‖A‖ = ‖AT‖,

8. ‖A‖ ≤ ‖A‖F ≤
√

rank(A)‖A‖.

Proof. In the case p = m ≤ n we have

(2.10) A = U · diagm,n(σ1, . . . ,σm) · V T = [u1 . . . um]




σ1vT

1
...

σmvT
m



 =
m∑

i=1

σiuiv
T
i .

The case n > m is treated similarly, which proves the first assertion. The second
assertion is immediate from the diagonal form of UTAV .

For showing (3) note that

(Av1, . . . , Avn) = AV = U diag(σ1, . . . ,σr, 0, . . . , 0) = (σ1u1, . . . ,σrur, 0, . . . , 0)

implies the inclusions span{vr+1, . . . , vn} ⊆ ker(A) and span{u1, . . . , ur} ⊆
Im(A). Equality follows by comparing the dimensions.

Assertion (4) is an immediate consequence of the orthogonal invariance of
the spectral norm and the Frobenius norm, cf. Lemma 2.9. For (5) note that

min
‖x‖=1

‖Ax‖ = min
‖x‖=1

∥∥ diagm,n(σ1, . . . ,σp)x
∥∥ =

{
σn if m ≥ n
0 otherwise.

For proving (6) suppose m = n and A ∈ Rn×n invertible. Then

V TA−1U = diag(σ−1
1 , . . . ,σ−1

n ).
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Hence σ−1
n ≥ σ−1

n−1 ≥ . . . ≥ σ−1
1 are the singular values of A−1. Assertion (4)

implies ‖A−1‖ = σ−1
n . Hence

κ(A) = ‖A‖ ·‖A−1‖ =
σ1

σn
.

The first part of Assertion (7) is trivial, the second easily follows from (4).
Finally, assertion (8) follows from (4) by noting σ2

1 + · · · + σ2
r ≤ rσ2

1 .

We draw now some conclusions from the singular value decomposition. For
a square matrix we always have κ(A) ≥ 1. So the best condition one can hope
for is κ(A) = 1. Orthogonal matrices A satisfy this property, since ‖A‖ = 1
(and A−1 is orthogonal as well). Of course, any nonzero multiple λA of an
orthogonal matrix A also satisfies

κ(A) = ‖λA‖ ·‖ λ−1A−1‖ = λλ−1‖A‖ = 1.

Proposition 2.12(6) implies that these are all matrices with κ(A) = 1.

Corollary 2.13. If κ(A) = 1 then σ1 = . . . = σn. This implies that UTAV =
σ1I and hence σ−1

1 A is orthogonal.

The following results extend Theorem 2.6 in the case of spectral norms.

Theorem 2.14. Let A =
∑r

i=1 σiuivT
i be a singular value decomposition of

A ∈ Rm×n and 0 ≤ k < r = rank(A). Then we have

min
rank(B)≤k

‖A−B‖ = ‖A−Ak‖ = σk+1,

where Ak :=
∑k

i=1 σiuivT
i .

Proof. As in (2.10) we get UTAkV = diag(σ1, . . . ,σk, 0, . . . , 0), which implies
that rank(Ak) = k. Moreover, UT(A − Ak)V = diag(0, . . . , 0, σk+1, . . . ,σp),
which implies that ‖A−Ak‖ = σk+1.

Let now B ∈ Rm×n with rank(B) ≤ k. Then dim(kerB) ≥ n − k and
therefore span{v1, . . . , vk+1}∩kerB )= 0. Let z be an element of this intersection
with ‖z‖ = 1. Then

Az =
r∑

i=1

σiuiv
T
i z =

r∑

i=1

σi 〈vi, z〉ui ,

and hence

‖Az‖2 =
r∑

i=1

σ2
i 〈vi, z〉2 ≥

k+1∑

i=1

σ2
i 〈vi, z〉2 ≥ σ2

k+1

k+1∑

i=1

〈vi, z〉2 = σ2
k+1.

Therefore,
‖A−B‖2 ≥ ‖(A−B)z‖2 = ‖Az‖2 ≥ σ2

k+1

completing the proof of the theorem.
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Corollary 2.15. The singular values σi of A are uniquely determined.

We can now extend some of the discussion in Section 2.1 from square to
rectangular matrices. Put p := min{m, n} and consider the set of ill-posed
matrices

Σ := {A ∈ Rm×n | rank(A) < p}.

We may measure the distance to ill-posedness from a matrix A ∈ Rm×n, sim-
ilarly as in (2.9), by the spectral norm, resulting in d(A,Σ). Alternatively, we
may also measure the distance from A to Σ with respect to the Frobenius norm
and define

dF (A,Σ) := min{‖A−B‖F | B ∈ Σ}.

It turns out that this gives the same distance as when using the spectral norm.

Corollary 2.16. For A ∈ Rm×n we have d(A,Σ) = dF (A,Σ) = σmin(A).

Proof. It is sufficient to show that dF (A,Σ) ≤ d(A,Σ) as the other inequality
is obvious. Theorem 2.6 with k = p − 1 tells us that d(A,Σ) equals to the
smallest singular value σp of A. Let now A =

∑p
i=1 σiuivT

i be a singular value
decomposition of A. Then B =

∑p−1
i=1 σiuivT

i lies in Σ and A − B = σnunvT
n

has Frobenius norm σn. Therefore dF (A,Σ) ≤ σp, completing the proof.

Remark 2.17. The singular value decomposition has a natural extension to
complex matrices and so have all the results in this and the previous sections.

We finish this section with two results that will be needed in Chapter 8.
Recall that σmin(A) denotes the smallest singular values of A.

Lemma 2.18. Let A ∈ Rm×n with n ≥ m and σmin(A) > 0. Denote by Bm

and Bn the closed unit balls in Rm and Rn, respectively. Then we have

σmin(A) = sup{λ > 0 | λBm ⊆ A(Bn)}.

Proof. By Theorem 8.14 we assume w.l.o.g. that A = diag(σ1, . . . ,σm). It fol-
lows that

A(Bn) =
{

y ∈ Rm | y2
1

σ2
1

+ . . . + y2
m

σ2
m
≤ 1

}
,

which is a hyperellipsoid with semi-axes σi. This shows the assertion (see Fig-
ure 8.2).
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σ1

σ2

y1

y2

Figure 2.1: Ball of maximal radius σ2 contained in an ellipse.

Remark 2.19. It is sometimes useful to visualize the singular values of A as
the lengths of the semi-axes of the hyperellipsoid {Ax | ‖x‖ = 1}.

We will also need the following perturbation result.

Lemma 2.20. For A, B ∈ Rm×n we have

|σmin(A + B)− σmin(A)| ≤‖ B‖.

Proof. Since A and AT have the same singular values, we assume w.l.o.g. that
n ≥ m. According to the characterization of σmin in Proposition 2.12 there
exists x ∈ Rn with ‖x‖ = 1 such that ‖Ax‖ = σmin(A). Then

σmin(A + B) ≤ ‖(A + B)x‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ σmin(A) + ‖B‖.

Since A, B were arbitrary we also get

σmin(A) = σmin((A + B) + (−B)) ≤ σmin(A + B) + ‖B‖.

This proves the assertion.

2.4 Least Squares and the Moore-Penrose Inverse

In Section 2.1 we studied the condition of solving a square system of linear equa-
tions. If, instead, there are more equations than variables (overdetermined case)
or less equations than variables (underdetermined case), the Moore-Penrose in-
verse and its condition naturally enter the game.

Let A ∈ Rm×n be of maximal rank p = min{m, n} with a singular value
decomposition

UTAV = diagm,n(σ1, . . . ,σp),

where σ1 ≥ σ2 ≥ . . . ≥ σp > 0. We define the Moore-Penrose inverse of A to be
the matrix

A† = V diagn,m(σ−1
1 , . . . ,σ−1

p )UT.
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From the geometric description of A† given below it follows that A† is in fact
independent of the choice of the orthogonal matrices U and V .

Lemma 2.21. 1. Suppose that m ≥ n and A ∈ Rm×n has rank n. Then the
matrix A defines a linear isomorphism A1 of Rn onto Im(A) and we have
A† = A−1

1 ◦π, where π : Rm → Im(A) denotes the orthogonal projection. In
particular, A†A = I. Moreover, ATA is invertible and A† = (ATA)−1AT.

2. Suppose that n ≥ m and A ∈ Rm×n has rank m. Then the matrix A
defines an isomorphism A2 : (kerA)⊥ → Rm and we have A† = ι ◦ A−1

2 ,
where ι : (kerA)⊥ → Rn denotes the embedding. In particular, AA† = I.
Moreover, AAT is invertible and A† = AT(AAT)−1.

Proof. The claims are obvious for the diagonal matrix A = diagm,n(σ1, . . . ,σp)
and easily extend to the general case by orthogonal invariance.

The following is obvious from the definition of A†.

Corollary 2.22. We have ‖A†‖ = 1
σmin(A) .

Suppose we are given a matrix A ∈ Rm×n, with m > n and rank(A) = n, as
well as b ∈ Rm. Since A, as a linear map, is not surjective, the system Ax = b
may have no solutions. We might therefore attempt to find the point x ∈ Rn

with Ax closest to b. That is, to solve the problem

(2.11) min
x∈Rn

‖Ax− b‖2.

Since A is injective there is a unique minimizer x for (2.11) namely, the preimage
of the projection c of b onto Im(A). From Lemma 2.21(1) it follows immediately
that the minimizer can be expressed as x = A†b (see Figure 2.2).

Figure 2.2: The spaces Im(A), Im(A)⊥ and the points b and c in Rm.

For the case of underdetermined systems we consider instead the case m < n
and rank(A) = m. For each b ∈ Rm, the set of solutions of Ax = b is an affine
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subspace of Rn of dimension n − m and therefore contains a unique point of
minimal norm. We want to find this point, i.e., to solve

(2.12) min
x|Ax=b

‖x‖2.

Lemma 2.21(2) implies that the solution of (2.12) again satisfies x = A†b.
So the Moore-Penrose inverse naturally yields the solution of linear least

squares problems and of underdetermined systems. What is the condition of
computing the Moore-Penrose inverse? Theorem 2.5 has a natural extension
showing that the quantity

κrs(A) := ‖A‖rs‖A†‖sr

equals the normwise condition for the computation of the Moore-Penrose inverse.

Theorem 2.23. Consider

ψ : {A ∈ Rm×n | rank(A) = min{m, n}}→ Rm×n, A 0→ A†.

Then we have condψ(A) = κrs(A), when measuring errors on the data space
with respect to ‖ ‖rs and on the solution space with respect to ‖ ‖sr.

Proof. Let Ã = A− E. We claim that for ‖E‖ → 0 we have

Ã† −A† = A†EA† + o(‖E‖).

For proving this we may assume w.l.o.g. that m ≥ n, hence A† = (ATA)−1AT,
and perform a computation similar as in the proof of Theorem 2.5. We leave
the straightforward details to the reader. The remaining arguments then follow
in exactly the same way as in the proof of Theorem 2.5, just by replacing A−1

by A†.

We note that the solution of linear least squares problems and underdeter-
mined systems has, in contrast with Moore-Penrose inversion, a normwise con-
dition that is only losely approximated by κ(A). Indeed, in 1973, P.-A. Wedin
gave tight upper bounds for this normwise condition from which it follows that
it varies between Θ(κ(A)) and Θ(κ(A)2) (see e.g., [12, Theorem 19.1] for the
precise statement). Interestingly, unlike Theorem 2.3, the normwise condition
for solving min ‖Ax− b‖ depends on b as well as on A.

We finally note that Theorem 2.6 has a natural extension: κ(A) is again the
relativized inverse of the distance to ill-posedness, where the latter now amounts
to rank-deficiency. The following is an immediate consequence of Corollary 2.16.

Corollary 2.24. For A ∈ Rm×n we have

κ(A) =
‖A‖

d(A,Σ)
=

‖A‖
dF (A,Σ)

,

where Σ = {A ∈ Rm×n | rank(A) < min{m, n}}.


