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Preamble

Theorem (Eckart-Young, 1936)

Assume A ∈ Rn×n \ Sing. Then

dist(A,Sing) =
1

‖A−1‖
= max{δ : δBRn ⊆ ABRn}.

Theorem (distance to rank-deficiency)

Assume A ∈ Rm×n is of rank m ≤ n. Then

dist(A,Σ) = max{δ : δBRm ⊆ ABRn}

=
1

max
v∈BRm

min{‖x‖ : Ax = v}
=

1

“‖A−1‖”
.

Σ = rank-deficient matrices.



Proof of distance to rank-deficiency Theorem

Alternative

A ∈ Σ⇔ ∃y 6= 0,ATy = 0.

Norm-duality

“‖A−1‖” = max
v∈BRm

min{‖x‖ : Ax = v}

= max
u∈BRn

max
{
‖y‖ : ATy + u = 0

}
= “‖A−T‖”.

Rank-one construction

Find v ∈ Rm and u ∈ Rn such that

A + vuT ∈ Σ.



Theme

Extensions of the Eckart-Young Theorem:

From linear systems of equations to linear systems of
constraints

From unstructured (arbitrary) perturbations to structured
(e.g., sparse) perturbations

Connection with “best-conditioned” solutions

Why does this matter?

Distance to ill-posedness leads to a notion of condition
number for optimization (Renegar)

Conditioning is related to accuracy and performance of
algorithms

Work along these lines by: Belloni, Cheung, Cucker, Dunagan,
Epelman, Filipowski, Freund, Renegar, Vempala, etc.



From linear equations to linear constraints

Notice:

Given A ∈ Rm×n with m ≤ n, we have A 6∈ Σ⇔ ARn = Rm.

Equivalently, A 6∈ Σ if and only if Ax = b has a solution for all
b ∈ Rn.

How do we extend this to constraint systems?

Assume K ⊆ Rn is a closed convex cone (e.g., K = Rn
+).

Given A ∈ Rm×n with m ≤ n consider

Ax = b, x ∈ K (e.g., Ax = b, x ≥ 0)

and
c − ATy ∈ K ∗ (e.g., ATy ≤ c)

for b ∈ Rm, c ∈ Rn.



Well-posed and ill-posed matrices

Throughout this talk:

Assume K ⊆ Rn is a closed convex cone (e.g., K = Rn
+) and

m ≤ n.

Define

P := {A ∈ Rm×n : AK = Rm},

D := {A ∈ Rm×n : ATRm + K ∗ = Rn}.

Notice

A ∈ P ⇔ Ax = b, x ∈ K has a solution for all b ∈ Rm

A ∈ D ⇔ c − ATy ∈ K ∗ has a solution for all c ∈ Rn

Ill-posed instances

Σ := Rm×n \ (P ∪ D).



Theorem (Renegar, 1995)

(a) If A ∈ P then

dist(A,Σ) = max{δ : δBRm ⊆ A(BRn ∩ K )}.

(b) If A ∈ D then

dist(A,Σ) = max{δ : δBRn ⊆ ATBRm + K ∗}.



A more general setting: sublinear mappings

Definition

F : Rn ⇒ Rm is sublinear if graph(F ) = {(x , y) : y ∈ F (x)} is a
convex cone. In that case

‖F‖− := sup
x∈BRn

inf
y
{‖y‖ : y ∈ F (x)}.

Theorem (Lewis, 1998)

Assume F : Rn ⇒ Rm is a sublinear mapping with closed graph
and F is surjective. Then

inf{‖G‖ : G ∈ Rm×n, F + G is not surjective} =
1

‖F−1‖−
.



Conic systems: special case of sublinear mappings

Given K ⊆ Rn and A ∈ Rm×n consider

FA,P(x) :=

{
Ax , if x ∈ K
∅ otherwise

Then A ∈ P ⇔ FA,P surjective. Renegar’s distance Theorem (a)
follows.

Similarly, consider

FA,D(y) := ATy + K ∗.

Then A ∈ D ⇔ FA,D surjective. Renegar’s distance Theorem (b)
follows.



Structured distance to ill-posedness

Observe

Previous distance theorems assume unstructured (arbitrary)
data perturbations.

Often data perturbations are restricted to some specific
structure, e.g., sparsity or slack variables.

Ignoring such structure may lead to substantial
underestimation of the sensible distance to ill-posedness.



Structured distance to ill-posedness

Example

Take K = Rn
+ and

A =


0.1 −1 0 · · · 0
0 0.1 −1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0.1 −1

 ∈ P
Unstructured distance to ill-posedness = (0.1)n−1

Structured (sparse) distance = 0.1



Single block structure

Suppose we are only allowed to perturb a block of A: Assume
k ≤ m, ` ≤ n and put

∆ :=

{[
B 0
0 0

]
: B ∈ Rk×`

}
.

Proposition (P. 1998)

Assume A ∈ P. Then

dist∆(A,Σ) = max {δ : δBRk ⊆ {Ax : x ∈ K , x1:` ∈ BR`}}

=
1

max
v∈BRk

min{‖x1:`‖ : Ax = v , x ∈ K}

=
1

“‖A−1‖”
.



Proof of single block-structured distance Proposition

Alternative

A 6∈ P ⇔ ∃y 6= 0,ATy ∈ K ∗.

Norm-duality

“‖A−1‖−” = max
v∈BRk

min{‖x1:`‖ : Ax = v , x ∈ K}

= max
u∈BR`

max
{
‖y1:k‖ : ATy + u ∈ K ∗

}
= “‖A−T‖+”.

Rank-one construction

Find v ∈ R` and u ∈ Rk such that

A +

[
vuT 0

0 0

]
6∈ P.



Sublinear mappings: special case of conic systems

Given a sublinear mapping F : Rn ⇒ Rm, put

KF := graph(F ) ⊆ Rn+m and AF :=
[
0 Im

]
∈ Rm×(n+m).

Observe

F surjective ⇔ AF ∈ P
For B ∈ Rm×n, F + B not surjective ⇔ AF +

[
B 0

]
6∈ P.

Lewis’s distance theorem then follows from P’s single
block-structured distance proposition for conic systems.



Multiple block structure

Suppose Xj ⊆ Rn, Yj ⊆ Rm, j = 1, . . . , k. Let

∆ :=

B : B =
∑

j

Bj , Bj ∈ L(Xj ,Yj)

 ,

and for B =
∑

i Bj ∈ ∆, let ‖B‖∆ := maxj ‖Bj‖.

Theorem (P. 2003)

Assume A ∈ P. Then

dist∆(A,Σ) = sup
v j∈BYj

inf
x ,z

{
max

i

‖xi‖
zi

: z > 0,Ax =
∑

zjv
j , x ∈ K

}−1

Right-hand side: sort of “1/‖A−1‖”.



Proof of multiple block-structured distance Theorem

Alternative

A 6∈ P ⇔ ∃y 6= 0,ATy ∈ K ∗.

Norm-duality

“‖A−1‖−” = sup
v j∈BYj

inf
x ,z

{
max

i

‖xi‖
zi

: z > 0,Ax =
∑

zjv
j , x ∈ K

}

= sup
uj∈BXj

sup

{
min

i ,ui 6=0

‖yi‖
‖ui‖

: ATy +
∑

uj ∈ K ∗
}

= “‖A−T‖+”.

Rank-k construction

Find vj ∈ Yj , uj ∈ Xj , j = 1, . . . , k such that

A +
∑

j

vju
T
j 6∈ P.



Componentwise distance to singularity

Observation

Assume A ∈ Rn×n \ Sing and B ∈ Rn×n. Then

inf{|δ| : A + δB ∈ Sing} =
1

ρ0(A−1B)
.

ρ0(·) is the real spectral radius:

ρ0(M) := max{|λ| : λ is a real eigenvalue of M}.

(If M has no real eigenvalues, ρ0(M) := 0.)



Componentwise distance to singularity

Theorem (Rohn, 1989)

Assume A ∈ Rn×n \ Sing and E ∈ {0, 1}n×n. Then

inf{δ : ∃B with |B| ≤ δ E ,A + B ∈ Sing} =

1

maxS1,S2 ρ0(A−1S1ES2)
,

max taken over signature matrices.
S ∈ {−1, 1}n×n is a signature matrix if |S | = I .

Rohn’s Theorem can be recovered from multiple block-structured
distance Theorem.



Distance to ill-posedness and best-conditioned solutions

For the remaining of this presentation

Assume K = Rn
+, and given A ∈ Rm×n, write A =

[
a1 · · · an

]
.

Goffin-Cheung-Cucker’s condition number

Assume ai 6= 0, i = 1, . . . , n. Define

v(A) := max
‖y‖=1

min
j=1,...,n

aT
j y

‖aj‖
, C (A) :=

1

|v(A)|
.

Notice

A ∈ D ⇔ v(A) > 0

A ∈ P ⇔ v(A) < 0



Distance to ill-posedness and best-conditioned solutions

Geometric interpretation

When A ∈ D, v(A) is a measure of “thickness” of the cone

{y : ATy ≥ 0}.

v(A) is also a measure of the “best-conditioned” solution to

ATy ≥ 0.



Distance to ill-posedness and best-conditioned solutions

Theorem (Cheung & Cucker, 2001)

Assume ai 6= 0, i = 1, . . . , n. Then

|v(A)| = inf

{
max

i=1,...,n

‖ai − ãi‖
‖ai‖

: Ã ∈ Σ

}
.

Remark

This gives an identity between the best-conditioned solution
and distance to ill-posedness of the system of constraints.

The above distance theorem can be related to the
block-structured distance theorem: The right hand side is a
certain dist∆(A,Σ).



Stratified distance to ill-posedness

Can we restrict the distance to ill-posedness to Σ?

Motivation

When K = Rn, Σ = rank-deficient matrices.

The set of ill-posed instances Σ can be written as

Σ = Σm−1 ∪ Σm−2 ∪ · · · ∪ Σ1 ∪ Σ0

Σr = matrices with rank at most r .

Given A ∈ Σi \ Σi−1,

distΣi
(A,Σi−1) = σi (A).

σi (A): i-th (smallest positive) singular value of A.



Stratified distance to ill-posedness

Consider again K = Rn
+.

How can we stratify Σ?

Answer: Use a “canonical” partition P(A) = {B,N} of {1, . . . , n}.

Proposition

Assume A ∈ Rm×n. Then there exists a unique partition
B ∪ N = {1, . . . , n} such that for some x ∈ Rn, y ∈ Rm

ABxB = 0, xB > 0, AT
By = 0, AT

Ny > 0.

Observe

A ∈ D ⇔ B = ∅
A ∈ P ⇔ N = ∅ and rank(A) = m.



Stratified distance to ill-posedness

Assume A ∈ Rm×n and P(A) = {B,N}. Define

L = ker(AT
B) ⊆ Rm, and L⊥ = range(AB) ⊆ Rm.

If N 6= ∅, define

vN(A) := max
y∈L
‖y‖=1

min
j∈N

aT
j y

‖aj‖
.

If B 6= ∅, define

vB(A) = max
y∈L⊥
‖y‖=1

min
j∈B

aT
j y

‖aj‖
.



Stratified distance to ill-posedness

Theorem (Cheung-Cucker-P., 2008)

For A ∈ Rm×n

vN(A) = min
P(Ã)6=P(A)

ÃB=AB

max
j∈N

‖ãj − aj‖
‖aj‖

and

|vB(A)| = min
P(Ã) 6=P(A)

ÃN=AN

ker(ÃT
B)⊇L

max
j∈B

‖ãj − aj‖
‖aj‖

.



Conclusions

Ill-posed matrices (for systems of constraints) are an extension
of rank-deficient matrices (for systems of equations)

The Eckart-Young distance Theorem and its proof extend to
the distance to ill-posedness

Similar distance theorems hold when restricted to certain
manifolds.

Relationships between distance to ill-posedness and
“best-conditioned” solutions


