On the distance to ill-posedness

Javier Peña Carnegie Mellon University

> Fields Institute Toronto, Canada October 2009

Preamble

Theorem (Eckart-Young, 1936) Assume $A \in \mathbb{R}^{n \times n} \setminus$ Sing. Then

$$
\mathsf{dist}(A,\mathsf{Sing}) = \frac{1}{\|A^{-1}\|} = \max\{\delta : \delta \mathbb{B}_{\mathbb{R}^n} \subseteq A \mathbb{B}_{\mathbb{R}^n}\}.
$$

Theorem (distance to rank-deficiency)

Assume $A \in \mathbb{R}^{m \times n}$ is of rank $m \leq n$. Then

$$
dist(A, \Sigma) = \max \{ \delta : \delta \mathbb{B}_{\mathbb{R}^m} \subseteq A \mathbb{B}_{\mathbb{R}^n} \}
$$

=
$$
\frac{1}{\max_{v \in \mathbb{B}_{R^m}} \min \{ ||x|| : Ax = v \}} = \frac{1}{||A^{-1}||^n}.
$$

 Σ = rank-deficient matrices.

Proof of distance to rank-deficiency Theorem

Alternative

$$
A\in \Sigma\Leftrightarrow \exists y\neq 0, A^Ty=0.
$$

Norm-duality

"
$$
||A^{-1}||
$$
" = $\max_{v \in \mathbb{B}_{\mathbb{R}^m}}$ min{ $||x|| : Ax = v$ }
= $\max_{u \in \mathbb{B}_{\mathbb{R}^n}}$ max { $||y|| : A^T y + u = 0$ } = " $||A^{-T}||$ ".

Rank-one construction

Find $v \in \mathbb{R}^m$ and $u \in \mathbb{R}^n$ such that

$$
A + vu^{\mathsf{T}} \in \Sigma.
$$

Theme

Extensions of the Eckart-Young Theorem:

- **•** From linear systems of equations to linear systems of constraints
- From unstructured (arbitrary) perturbations to structured (e.g., sparse) perturbations
- Connection with "best-conditioned" solutions

Why does this matter?

- Distance to ill-posedness leads to a notion of condition number for optimization (Renegar)
- Conditioning is related to accuracy and performance of algorithms
- Work along these lines by: Belloni, Cheung, Cucker, Dunagan, Epelman, Filipowski, Freund, Renegar, Vempala, etc.

From linear equations to linear constraints

Notice:

Given $A \in \mathbb{R}^{m \times n}$ with $m \leq n$, we have $A \not\in \Sigma \Leftrightarrow A \mathbb{R}^n = \mathbb{R}^m$.

Equivalently, $A \notin \Sigma$ if and only if $Ax = b$ has a solution for all $b \in \mathbb{R}^n$.

How do we extend this to constraint systems?

Assume $K\subseteq \mathbb{R}^n$ is a closed convex cone (e.g., $K=\mathbb{R}^n_+$). Given $A \in \mathbb{R}^{m \times n}$ with $m \leq n$ consider

$$
Ax = b, x \in K \quad (e.g., Ax = b, x \ge 0)
$$

and

$$
c - A^{\mathsf{T}} y \in K^* \ \ (\text{e.g., } A^{\mathsf{T}} y \leq c)
$$

for $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

Well-posed and ill-posed matrices

Throughout this talk:

Assume $K\subseteq \mathbb{R}^n$ is a closed convex cone (e.g., $K=\mathbb{R}^n_+$) and $m \leq n$.

Define

$$
\mathcal{P} := \{ A \in \mathbb{R}^{m \times n} : A K = \mathbb{R}^m \},
$$

$$
\mathcal{D} := \{ A \in \mathbb{R}^{m \times n} : A^{\mathsf{T}} \mathbb{R}^m + K^* = \mathbb{R}^n \}.
$$

Notice

•
$$
A \in \mathcal{P} \Leftrightarrow Ax = b, x \in K
$$
 has a solution for all $b \in \mathbb{R}^m$

 $A \in \mathcal{D} \Leftrightarrow c - A^{\mathsf{T}} y \in \mathsf{K}^*$ has a solution for all $c \in \mathbb{R}^n$

Ill-posed instances

$$
\Sigma := \mathbb{R}^{m \times n} \setminus (\mathcal{P} \cup \mathcal{D}).
$$

Theorem (Renegar, 1995) (a) If $A \in \mathcal{P}$ then $dist(A, \Sigma) = max\{\delta : \delta \mathbb{B}_{\mathbb{R}^m} \subseteq A(\mathbb{B}_{\mathbb{R}^n} \cap K)\}.$ (b) If $A \in \mathcal{D}$ then $\mathsf{dist}(A,\Sigma) = \mathsf{max}\{\delta: \delta \mathbb{B}_{\mathbb{R}^n} \subseteq A^\mathsf{T} \mathbb{B}_{\mathbb{R}^m} + K^*\}.$ A more general setting: sublinear mappings

Definition

 $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is sublinear if graph $(F) = \{(x, y) : y \in F(x)\}$ is a convex cone. In that case

$$
||F||^{-} := \sup_{x \in \mathbb{B}_{R^n}} \inf_{y} \{ ||y|| : y \in F(x) \}.
$$

Theorem (Lewis, 1998)

Assume $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is a sublinear mapping with closed graph and F is surjective. Then

$$
\inf\{\|G\|: G\in\mathbb{R}^{m\times n},\; F+G \;\text{is not surjective}\}=\frac{1}{\|F^{-1}\|^{-}}.
$$

Conic systems: special case of sublinear mappings

Given $K \subseteq \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$ consider

$$
\mathsf{F}_{A,\mathcal{P}}(x) := \left\{ \begin{array}{l} Ax, \text{ if } x \in \mathsf{K} \\ \emptyset \text{ otherwise} \end{array} \right.
$$

Then $A \in \mathcal{P} \Leftrightarrow F_{A,\mathcal{P}}$ surjective. Renegar's distance Theorem (a) follows.

Similarly, consider

$$
F_{A,\mathcal{D}}(y) := A^{\mathsf{T}}y + K^*.
$$

Then $A \in \mathcal{D} \Leftrightarrow F_{A,\mathcal{D}}$ surjective. Renegar's distance Theorem (b) follows.

Structured distance to ill-posedness

Observe

- Previous distance theorems assume unstructured (arbitrary) data perturbations.
- Often data perturbations are restricted to some specific structure, e.g., sparsity or slack variables.
- Ignoring such structure may lead to substantial underestimation of the sensible distance to ill-posedness.

Structured distance to ill-posedness

Example

Take $K=\mathbb{R}^n_+$ and

$$
A = \begin{bmatrix} 0.1 & -1 & 0 & \cdots & 0 \\ 0 & 0.1 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0.1 & -1 \end{bmatrix} \in \mathcal{P}
$$

Unstructured distance to ill-posedness = $(0.1)^{n-1}$ Structured (sparse) distance $= 0.1$

Single block structure

Suppose we are only allowed to perturb a block of A: Assume $k \le m, \ell \le n$ and put

$$
\Delta := \left\{ \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} : B \in \mathbb{R}^{k \times \ell} \right\}.
$$

Proposition (P. 1998) Assume $A \in \mathcal{P}$. Then

$$
\begin{aligned}\n\text{dist}_{\Delta}(A, \Sigma) &= \max \left\{ \delta : \delta \mathbb{B}_{\mathbb{R}^k} \subseteq \{ Ax : x \in K, x_{1:\ell} \in \mathbb{B}_{\mathbb{R}^\ell} \} \right\} \\
&= \frac{1}{\max_{v \in \mathbb{B}_{\mathbb{R}^k}} \min \{ \|x_{1:\ell}\| : Ax = v, x \in K \}} \\
&= \frac{1}{\|A^{-1}\|^{n}}.\n\end{aligned}
$$

Proof of single block-structured distance Proposition

Alternative

$$
A \notin \mathcal{P} \Leftrightarrow \exists y \neq 0, A^{\mathsf{T}}y \in \mathsf{K}^*.
$$

Norm-duality

$$
\begin{aligned}\n\|\mathcal{A}^{-1}\|^{-\nu} &= \max_{v \in \mathbb{B}_{\mathbb{R}^k}} \min\{\|x_{1:\ell}\| : Ax = v, x \in K\} \\
&= \max_{u \in \mathbb{B}_{\mathbb{R}^\ell}} \max\left\{\|y_{1:k}\| : A^{\mathsf{T}}y + u \in K^*\right\} = \|\mathcal{A}^{-\mathsf{T}}\|^{+\nu}.\n\end{aligned}
$$

Rank-one construction

Find $v \in \mathbb{R}^{\ell}$ and $u \in \mathbb{R}^k$ such that

$$
A + \begin{bmatrix} vu^{\mathsf{T}} & 0 \\ 0 & 0 \end{bmatrix} \notin \mathcal{P}.
$$

Sublinear mappings: special case of conic systems

Given a sublinear mapping $F: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$, put

$$
K_F := \mathrm{graph}(F) \subseteq \mathbb{R}^{n+m} \text{ and } A_F := \begin{bmatrix} 0 & I_m \end{bmatrix} \in \mathbb{R}^{m \times (n+m)}.
$$

Observe

- F surjective $\Leftrightarrow A_F \in \mathcal{P}$
- For $B \in \mathbb{R}^{m \times n}$, $F + B$ not surjective $\Leftrightarrow A_F + \begin{bmatrix} B & 0 \end{bmatrix} \notin \mathcal{P}$.

Lewis's distance theorem then follows from P's single block-structured distance proposition for conic systems.

Multiple block structure

Suppose
$$
X_j \subseteq \mathbb{R}^n
$$
, $Y_j \subseteq \mathbb{R}^m$, $j = 1, ..., k$. Let

$$
\Delta := \left\{ B : B = \sum_j B_j, B_j \in L(X_j, Y_j) \right\},\
$$

and for $B = \sum_i B_j \in \Delta$, let $\|B\|_{\Delta} := \max_j \|B_j\|.$

Theorem (P. 2003)

Assume $A \in \mathcal{P}$. Then

$$
dist_{\Delta}(A, \Sigma) = \left(\sup_{v^j \in \mathbb{B}_{Y_j}} \inf_{x,z} \left\{\max_{i} \frac{||x_i||}{z_i} : z > 0, Ax = \sum_{i} z_j v^j, x \in K\right\}\right)^{-1}
$$

Right-hand side: sort of " $1/||A^{-1}||$ ".

Proof of multiple block-structured distance Theorem **Alternative**

$$
A \notin \mathcal{P} \Leftrightarrow \exists y \neq 0, A^{\mathsf{T}}y \in \mathsf{K}^*.
$$

Norm-duality

$$
\|A^{-1}\|^{-n} = \sup_{v^j \in \mathbb{B}_{Y_j}} \inf_{x,z} \left\{ \max_i \frac{\|x_i\|}{z_i} : z > 0, Ax = \sum z_j v^j, x \in K \right\}
$$

=
$$
\sup_{u^j \in \mathbb{B}_{X_j}} \sup \left\{ \min_{i, u^j \neq 0} \frac{\|y_i\|}{\|u^j\|} : A^T y + \sum u^j \in K^* \right\} = \omega \|A^{-T}\|^{+n}.
$$

Rank-k construction

Find $v_j \in Y_j$, $u_j \in X_j$, $j = 1, \ldots, k$ such that

$$
A+\sum_j v_j u_j^{\mathsf{T}}\not\in\mathcal{P}.
$$

Componentwise distance to singularity

Observation

Assume $A \in \mathbb{R}^{n \times n} \setminus \mathsf{Sing}$ and $B \in \mathbb{R}^{n \times n}$. Then

$$
\inf\{|\delta|: A+\delta B\in \mathsf{Sing}\}=\frac{1}{\rho_0(A^{-1}B)}.
$$

 $\rho_0(\cdot)$ is the real spectral radius:

 $\rho_0(M) := \max\{|\lambda| : \lambda$ is a real eigenvalue of M.

(If M has no real eigenvalues, $\rho_0(M) := 0.$)

Componentwise distance to singularity

Theorem (Rohn, 1989)

Assume $A \in \mathbb{R}^{n \times n} \setminus \text{Sing}$ and $E \in \{0,1\}^{n \times n}$. Then

$$
\inf \{ \delta : \exists B \text{ with } |B| \le \delta E, A+B \in \text{Sing} \} = \frac{1}{\max_{S_1, S_2} \rho_0(A^{-1}S_1ES_2)},
$$

max taken over signature matrices. $S \in \{-1,1\}^{n \times n}$ is a signature matrix if $|S| = 1$.

Rohn's Theorem can be recovered from multiple block-structured distance Theorem.

Distance to ill-posedness and best-conditioned solutions

For the remaining of this presentation Assume $K=\mathbb{R}^n_+$, and given $A\in\mathbb{R}^{m\times n}$, write $A=\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$.

Goffin-Cheung-Cucker's condition number Assume $a_i \neq 0$, $i = 1, \ldots, n$. Define

$$
v(A) := \max_{\|y\|=1} \min_{j=1,\dots,n} \frac{a_j^Ty}{\|a_j\|}, \ \mathscr{C}(A) := \frac{1}{|v(A)|}.
$$

Notice

\n- $$
A \in \mathcal{D} \Leftrightarrow v(A) > 0
$$
\n- $A \in \mathcal{P} \Leftrightarrow v(A) < 0$
\n

Distance to ill-posedness and best-conditioned solutions

Geometric interpretation

When $A \in \mathcal{D}$, $v(A)$ is a measure of "thickness" of the cone

$$
\{y: A^{\mathsf{T}}y \geq 0\}.
$$

 $v(A)$ is also a measure of the "best-conditioned" solution to

$$
A^{\mathsf{T}}y\geq 0.
$$

Distance to ill-posedness and best-conditioned solutions

Theorem (Cheung & Cucker, 2001) Assume $a_i \neq 0$, $i = 1, \ldots, n$. Then

$$
|v(A)| = \inf \left\{ \max_{i=1,\dots,n} \frac{\|a_i - \tilde{a}_i\|}{\|a_i\|} : \tilde{A} \in \Sigma \right\}.
$$

Remark

- This gives an identity between the best-conditioned solution and distance to ill-posedness of the system of constraints.
- The above distance theorem can be related to the block-structured distance theorem: The right hand side is a certain dist $\Delta(A,\Sigma)$.

Can we restrict the distance to ill-posedness to Σ ?

Motivation

- When $K = \mathbb{R}^n$, $\Sigma =$ rank-deficient matrices.
- The set of ill-posed instances Σ can be written as

$$
\Sigma=\Sigma_{m-1}\cup\Sigma_{m-2}\cup\cdots\cup\Sigma_1\cup\Sigma_0
$$

 Σ_r = matrices with rank at most r.

 \bullet Given $A \in \Sigma_i \setminus \Sigma_{i-1}$,

$$
dist_{\Sigma_i}(A,\Sigma_{i-1})=\sigma_i(A).
$$

 $\sigma_i(A)$: *i*-th (smallest positive) singular value of A.

Consider again $K = \mathbb{R}^n_+$.

How can we stratify Σ ?

Answer: Use a "canonical" partition $\mathscr{P}(A) = \{B, N\}$ of $\{1, \ldots, n\}$.

Proposition

Assume $A \in \mathbb{R}^{m \times n}$. Then there exists a unique partition $B \cup N = \{1, \ldots, n\}$ such that for some $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$

$$
A_Bx_B=0,\,x_B>0,\;A_B^Ty=0,\;A_N^Ty>0.
$$

Observe

$$
\bullet \ \ A \in \mathcal{D} \Leftrightarrow B = \emptyset
$$

 \bullet $A \in \mathcal{P} \Leftrightarrow N = \emptyset$ and rank $(A) = m$.

Assume
$$
A \in \mathbb{R}^{m \times n}
$$
 and $\mathcal{P}(A) = \{B, N\}$. Define
\n
$$
L = \ker(A_B^T) \subseteq \mathbb{R}^m
$$
, and $L_{\perp} = \text{range}(A_B) \subseteq \mathbb{R}^m$.

If $N \neq \emptyset$, define

$$
v_N(A) := \max_{\substack{y \in L \\ ||y||=1}} \min_{j \in N} \frac{a_j^Ty}{||a_j||}.
$$

If $B \neq \emptyset$, define

$$
v_B(A) = \max_{\substack{y \in L_\perp \\ ||y||=1}} \min_{j \in B} \frac{a_j^Ty}{||a_j||}.
$$

Theorem (Cheung-Cucker-P., 2008) For $A \in \mathbb{R}^{m \times n}$ kaj − ajkola − ajkola

$$
v_N(A) = \min_{\substack{\mathscr{P}(\tilde{A}) \neq \mathscr{P}(A) \\ \tilde{A}_B = A_B}} \max_{j \in N} \frac{\|\tilde{a}_j - a_j\|}{\|a_j\|}
$$

and

$$
|v_B(A)| = \min_{\substack{\mathscr{P}(\tilde{A}) \neq \mathscr{P}(A) \\ \tilde{A}_N = A_N \\ \ker(\tilde{A}_B^T) \supseteq L}} \max_{j \in B} \frac{\|\tilde{a}_j - a_j\|}{\|a_j\|}.
$$

Conclusions

- Ill-posed matrices (for systems of constraints) are an extension of rank-deficient matrices (for systems of equations)
- The Eckart-Young distance Theorem and its proof extend to the distance to ill-posedness
- Similar distance theorems hold when restricted to certain manifolds.
- Relationships between distance to ill-posedness and "best-conditioned" solutions