Vector-valued Reproducing Kernel Hilbert Spaces

with applications to Function Extension and Image Colorization

Minh Ha Quang

minh.ha.quang@staff.hu-berlin.de

Humboldt Universität zu Berlin

Vector-valued Reproducing Kernel Hilbert Spaces - p. 1/7

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension: 2 algorithms
- Application: Image Colorization
- Learning Theory Estimates (if time permits)

Positive Definite Kernels

- X any nonempty set
- $K: X \times X \to \mathbb{R}$ is a (real-valued) positive definite kernel if it is symmetric and

$$\sum_{i,j=1}^{N} a_i a_j K(x_i, x_j) \ge 0$$

for any finite set of points $\{x_i\}_{i=1}^N \in X$ and real numbers $\{a_i\}_{i=1}^N \in \mathbb{R}$.

Complex-valued kernels are often encountered in complex analysis.

RKHS

- Abstract theory due to Aronszajn (1950).
- *K* a positive definite kernel on $X \times X$. For each $x \in X$, there is a function $K_x : X \to \mathbb{R}$, with $K_x(t) = K(x, t)$.

$$\mathcal{H}_K = \overline{\{\sum_{i=1}^N a_i K_{x_i} : N \in \mathbb{N}\}}$$

with inner product

$$\langle \sum_{i} a_i K_{x_i}, \sum_{j} b_j K_{y_j} \rangle_K = \sum_{i,j} a_i b_j K(x_i, y_j)$$

• $\mathcal{H}_K = \mathsf{RKHS}$ associated with *K* (unique).

RKHS

■ **Reproducing Property**: for each $f \in \mathcal{H}_K$, for every $x \in X$

$$f(x) = \langle f, K_x \rangle_K$$

Assumption

$$\kappa = \sup_{x \in X} \sqrt{K(x, x)} < \infty$$

 $||f||_{\infty} \le \kappa ||f||_{K}$

Examples: RKHS

For s > n/2, the Sobolev space $H^s(\mathbb{R}^n)$, with

$$||f||_{H^{s}(\mathbb{R}^{n})}^{2} = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \left| (1+|\xi|^{2})^{s/2} \widehat{f}(\xi) \right|^{2} d\xi < \infty,$$

is an RKHS, with kernel

$$K(x,y) = \frac{1}{(2\pi)^n} \frac{1}{(1+|\xi|^2)^s} (x-y)$$

Examples: RKHS

• The Gaussian kernel $K(x, y) = \exp(-\frac{|x-y|^2}{\sigma^2})$ on \mathbb{R}^n induces the space

$$\mathcal{H}_{K} = \{ ||f||_{\mathcal{H}_{K}}^{2} = \frac{1}{(2\pi)^{n} (\sigma\sqrt{\pi})^{n}} \int_{\mathbb{R}^{n}} e^{\frac{\sigma^{2}|\xi|^{2}}{4}} |\widehat{f}(\xi)|^{2} d\xi < \infty \}.$$

• The Laplacian kernel $K(x, y) = \exp(-a|x - y|)$, a > 0, on \mathbb{R}^n induces the space

$$\mathcal{H}_{K} = \{ ||f||_{\mathcal{H}_{K}}^{2} = \frac{1}{(2\pi)^{n}} \frac{1}{aC(n)} \int_{\mathbb{R}^{n}} (a^{2} + |\xi|^{2})^{\frac{n+1}{2}} |\hat{f}(\xi)|^{2} d\xi < \infty$$

with
$$C(n) = 2^n \pi^{\frac{n-1}{2}} \Gamma(\frac{n+1}{2})$$

Examples: RKHS

- The Laplacian kernel has less smoothing effect than the Gaussian kernel (may be useful if we do not want very smooth functions)
- Generalization of the Gaussian kernel: $K(x,y) = \exp(-\frac{|x-y|^p}{\sigma^2})$, where $0 \le p \le 2$ (Schoenberg 1938).

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension: 2 algorithms
- Application: Image Colorization
- Learning Theory Estimates (if time permits)

- Laurent Schwartz (1964): very general framework for RKHS of functions with values in locally convex topological spaces
- Some recent works in machine learning related literature: Pontil-Micchelli(2005), Caponnetto-De Vito (2006), Reisert-Burkhardt (2007), Carmeli et al (2006).
- Here we will focus on RKHS of functions with values in a Hilbert space.

Operator-valued kernels

- *D* a nonempty set, \mathcal{W} a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle_{\mathcal{W}}$, $\mathcal{L}(W)$ the Banach space of bounded linear operators on \mathcal{W} .
- A function $K : D \times D \to \mathcal{L}(\mathcal{W})$ is said to be an operator-valued positive definite kernel if for each pair $(x, y) \in D \times D$, $K(x, y) \in \mathcal{L}(\mathcal{W})$ is a self-adjoint operator and

$$\sum_{i,j=1}^{N} \langle w_i, K(x_i, x_j) w_j \rangle_{\mathcal{W}} \ge 0$$

for every finite set of points $\{x_i\}_{i=1}^N$ in D and $\{w_i\}_{i=1}^N$ in \mathcal{W} , where $N \in \mathbb{N}$.

- \mathcal{W}^D = vector space of all functions $f: D \to \mathcal{W}$.
- For each $x \in D$ and $w \in W$, we form a function $K_x w = K(., x) w \in W^D$ defined by

 $(K_xw)(y) = K(y,x)w$ for all $y \in D$.

• Consider the set $\mathcal{H}_0 = \operatorname{span}\{K_x w \mid x \in D, w \in \mathcal{W}\} \subset \mathcal{W}^D$. For $f = \sum_{i=1}^N K_{x_i} w_i, g = \sum_{i=1}^N K_{y_i} z_i \in \mathcal{H}_0$, we define $\langle f, g \rangle_{\mathcal{H}_K} = \sum_{i=1}^N \langle w_i, K(x_i, y_j) z_j \rangle_{\mathcal{W}}.$

- Taking the closure of \mathcal{H}_0 gives the Hilbert space \mathcal{H}_K .
- The reproducing property is

 $\langle f(x), w \rangle_{\mathcal{W}} = \langle f, K_x w \rangle_{\mathcal{H}_K}$ for all $f \in \mathcal{H}_K$.

• For each $x \in D$ and $f \in \mathcal{H}_K$:

 $||f(x)||_{\mathcal{W}} \le \sqrt{||K(x,x)||} ||f||_{\mathcal{H}_K}.$

Simple example: let k(x, y) be a real-valued positive definite kernel and *B* a positive definite matrix. Then

K(x,y) = Bk(x,y)

is a matrix-valued kernel, which induces a vector-valued RKHS

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension: 2 algorithms
- Application: Image Colorization
- Learning Theory Estimates (if time permits)

Function Extension

- $D \subset \Omega$ are closed sets in a complete separable metric space
- $f: D \to \mathcal{W}$,
- Goal: extend $f: D \to W$ to $F: \Omega \to W$, such that F is close to f on the smaller set D, and reasonably well-behaved on the larger set Ω .

Extension Operator

- Assume we have a kernel $K : \Omega \times \Omega \to \mathcal{W}$.
- Assume that K(x, x) is compact for each x, and that $\sup_{x \in \Omega} ||K(x, x)|| < \infty$.
- For $f: D \to \mathcal{W}$, define $L_K: L^2_{\mu}(D; \mathcal{W}) \to \mathcal{H}_K(\Omega)$, with

$$L_K f(x) = \int_D K(x, y) f(y) d\mu(y),$$

for every $x \in \Omega$. This defines an extension operator. The adjoint operator $L_K^* : \mathcal{H}_K(\Omega) \to L^2_\mu(D; \mathcal{W})$ is the restriction operator: $L_K^*F = F|_D$

Function Extension

• Find the extension function $F: \Omega \to W$ by solving the minimization problem

$$\inf_{F \in \mathcal{H}_K(\Omega)} ||f - L_K^* F||^2_{L^2_\mu(D;\mathcal{W})} + \gamma ||F||^2_{\mathcal{H}_K(\Omega)},$$

This problem has a unique solution

$$F_{\gamma} = (L_K L_K^* + \gamma I)^{-1} L_K f$$

Function Extension: Spectral Algorithm

- Scalar version: Coifman-Lafon (2005)
- Considered as an operator $L^2_{\mu}(D; \mathcal{W}) \to L^2_{\mu}(D; \mathcal{W})$, L_K is compact, positive, with orthonormal spectrum $(\lambda_k, \phi_k)_{k=1}^{\infty}$.
- Eigenfunction extension: for $\lambda_k > 0$, we extend $\phi_k : D \to \mathcal{W}$ to $\Phi_k : \Omega \to \mathcal{W}$ by

$$\Phi_k(x) = \frac{1}{\lambda_k} \int_D K(x, y) \phi_k(y) d\mu(y), \quad \text{for } x \in \Omega.$$

• To be numerically reliable, one may want to consider only $\lambda_k > \delta$, for some given $\delta > 0$.

Function Extension: Spectral Algorithm

- Compute the eigenvalues and eigenfunctions $\{(\lambda_k, \phi_k)\}$ of $L_K : L^2_\mu(D; \mathcal{W}) \to L^2_\mu(D; \mathcal{W}).$
- Compute the expansion coefficients a_k 's of f in the basis $\{\phi_k\}$: $f = \sum_k a_k \phi_k$
- Compute $F_{\delta} = \sum_{k,\lambda_k > \delta} \frac{\lambda_k}{\lambda_k + \gamma} a_k \Phi_k$, for some $\delta > 0$
- Alternatively, to take care of the case $\lambda_k = 0$, compute directly

$$F_{\gamma}(x) = \sum_{k=1}^{\infty} \frac{a_k}{\lambda_k + \gamma} \int_D K(x, y) \phi_k(y) d\mu(y)$$

Function Extension: Least square

- Assume now that $D = \{x_i\}_{i=1}^m$, with $w_i = f(x_i)$.
- An algorithm with real kernel-based flavor:

$$F_{\gamma} = \arg\min_{F \in \mathcal{H}_{K}(\Omega)} \frac{1}{m} \sum_{i=1}^{m} ||F(x_{i}) - w_{i}||_{\mathcal{W}}^{2} + \gamma ||F||_{\mathcal{H}_{K}(\Omega)}^{2}.$$

• This has a unique solution $F_{\gamma} = \sum_{i=1}^{m} K_{x_i} a_i$, with $F_{\gamma}(x) = \sum_{i=1}^{m} K(x, x_i) a_i$, where the vectors $a'_i s \in \mathcal{W}$ satisfy the *m* linear equations

$$\sum_{j=1}^{m} K(x_i, x_j)a_j + m\gamma a_i = w_i.$$

Compare two algorithms

- Spectral: theoretically more general (*D* can be either discrete or continuous)
- If D is discrete and μ is the uniform distribution, then Least square and Spectral are the same analytically.
- Numerically, Least square is easier to implement and should be expected to be more stable (involves solving well-conditioned systems of linear equations, vs finding eigenvalues/eigenfunctions of the Spectral method).
- The basis functions in Least square are exact (based on the given data points)
- Here we will focus on the Least square method for numerical work

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension
- Application: Image Colorization
- Learning Theory Estimates (if time permits)

Image Colorization

- Joint work with Sung Ha Kang (Georgia Tech) and Triet Le (Yale)
- \square is the given grayscale image
- $D \subset \Omega$ is the given region with colors (often very small). The initial function here is $f : D \to \mathbb{R}^3$ (red, green, blue)
- Goal: extend the colors to all of Ω .
- Some (among many) other works this on problem: Levin-Lischinski-Weiss(2004), Sapiro(2005), Qiu-Guan(2005), Fornasier (2006), Buades-Coll-Lisani-Sbert(2007), Kang-March(2007), etc

Nonlocal kernel

- Simplest scenario: all the colors are independent.
- $K(x,y) = \text{diag}(k_1(x,y), k_2(x,y), k_3(x,y))$ where each k_i is a scalar-valued kernel.
- Here we will use scalar-valued kernels of the form

$$k(x,y) = \exp(-\frac{|g_r(x) - g_r(y)|^p}{\sigma_1})\exp(-\frac{|x - y|^p}{\sigma_2})$$

where $g_r(x)$ is the patch of radius r centered at x, of size $(2r+1) \times (2r+1)$, with g denoting the gray level.

Extend the color function using least square RKHS

Chromaticity and Brightness Model

For sharper resulting images, we consider the CB model of color.

- f(x) = B(x)C(x), where B(x) is the brightness, and $C(x) = (r(x), g(x), b(x)) \in S^2$.
- Assumption: we are given the brightness B(x) on all of Ω , but C(x) only on D.
- **Need**: to extend C(x) to all of Ω .
- **Problem**: the set of S^2 -valued functions is not a vector space

Stereographic Projection

- Solution for the S²-valued Chromaticity function: Stereographic projection
- Since the colors are all nonnegative and for symmetry, we need a symmetric stereographic projection that projects from the first quadrant
- Projection point: $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$
- Projection plane: X + Y + Z = 0

Stereographic Projection

- Forward projection from S^2 onto X + Y + Z = 0: $X = \frac{3x (x + y + z)}{\sqrt{3}(x + y + z + \sqrt{3})}, \quad Y = \frac{3y (x + y + z)}{\sqrt{3}(x + y + z + \sqrt{3})}, \quad Z = \frac{3z (x + y + z)}{\sqrt{3}(x + y + z + \sqrt{3})},$
- Inverse projection from X + Y + Z = 0 onto S^2 :

$$x = \frac{2\sqrt{3}X + 1 - (X^2 + Y^2 + Z^2)}{\sqrt{3}(1 + X^2 + Y^2 + Z^2)}, \quad y = \frac{2\sqrt{3}Y + 1 - (X^2 + Y^2 + Z^2)}{\sqrt{3}(1 + X^2 + Y^2 + Z^2)},$$
$$z = \frac{2\sqrt{3}Z + 1 - (X^2 + Y^2 + Z^2)}{\sqrt{3}(1 + X^2 + Y^2 + Z^2)}.$$

Image Colorization Algorithm

- Given: Brightness B(x) on all of Ω and Chromaticity on small subset $D \subset \Omega$
- Project $C(x): D \to S^2$ to $C(x): D \to \mathbb{R}^2$
- Extend C(x) to $\Omega :\to \mathbb{R}^2$ using the least square algorithm in the RKHS induced by the nonlocal kernel above (kernel constructed using B(x))
- Project the results back onto S² to get the extended Chromaticity function from $\Omega \to S^2$
- Multiply the resulting Chromaticity with the given Brightness to obtain the final answer.

Colorization Algorithm - Complexity

- Involves solving 2 systems of linear equations, each of size $m \times m$, where m = |D|
- Evaluation step involves computing kernel matrix of size $m \times M$, where $M = |\Omega|$
- Main computation time is in computing the kernel
- Explicit and unique solution, no iteration required

Figure 1: p = 1, r = 1, $\sigma_1 = 0.5$, $\sigma_2 = 1$. About 0.5% of color is given

Figure 2: p = 1, r = 1, $\sigma_1 = 0.5$, $\sigma_2 = 1$. About 1% of color is given

Figure 3: p = 1, r = 1, $\sigma_1 = 0.5$, $\sigma_2 = 1$. About 1% of color is given

Figure 4: p = 1, r = 2, $\sigma_1 = 0.5$, $\sigma_2 = 2$. About 0.96% of color is given

Numerical Examples - Cartoon

Figure 5: The colorization result with r = 0, p = 2, $\sigma_1 = 0.001$, and $\sigma_2 = 10$.

Figure 6: Chromaticity and Brightness model via Stereographic Projection vs. RGB channel: p = 1, r = 2, $\sigma_1 = 0.5$, and $\sigma_2 = 10$

Figure 7: p = 2, r = 2, $\sigma_1 = 0.1$, and $\sigma_2 = 10$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 37/7

Figure 8: p = 1, r = 0, $\sigma_1 = 0.05$, $\sigma_2 = 10$.

Vector-valued Reproducing Kernel Hilbert Spaces – p. 38/7

Figure 9: The colorization result with r = 10, p = 1.5 $\sigma_1 = 0.4$, $\sigma_2 = 10$. Less than 2% of color is given

Conclusion - Main Part

- Operator-valued positive definite kernels and their induced vector-valued RKHS
- Use of RKHS for the problem of function extension (vector-valued)
- An application in Image Colorization
- Full preprint of paper is: Minh Ha Quang, Sung Ha Kang, and Triet Le, Image and video colorization using vector-valued reproducing kernel Hilbert spaces, available on my website (or UCLA CAM reports)

Some questions

- Is stereographic projection optimal? More general method?
- How to incorporate geometry of the images (manifold structure)?
- Example: the eye

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- Function Extension
- Application: Image Colorization
- Learning Theory Estimates (if time permits)

Error Estimates - Learning Theory

- Input space $X \subset \mathbb{R}^n$ closed (complete separable metric space)
- Output space $Y \subset [-M, M]$ (finite dimensional inner product space)
- $Z = X \times Y$ equipped with an unknown probability measure ρ .
- $\rho(x,y) = \rho_X(x)\rho(y|x)$
- ρ determines a correspondence between X and Y.
- Learning algorithms: find functions $f : X \rightarrow Y$ to capture this correspondence.

Least Square Regression

• $\varepsilon_{\rho}(f) = \int_{X \times Y} (f(x) - y)^2 d\rho$ is minimized by the **regression function**

$$f_{\rho}(x) = \int_{Y} y d\rho(y|x)$$

- Assumption: $f_{\rho} \in L^2_{\rho_X}$
- $\varepsilon_{\rho}(f) \varepsilon_{\rho}(f_{\rho}) = ||f f_{\rho}||^{2}_{L^{2}_{\rho_{X}}}, f \in L^{2}_{\rho_{X}}$
- We want a function f_z that approximates f_ρ in the $|| ||_{L^2_{\rho_X}}$ norm.

Learning from Sample Data

- $\boldsymbol{\mathcal{S}} \in \boldsymbol{\mathcal{S}}_{\rho}$ is not computable, since ρ is unknown.
- Access to sample $\mathbf{z} = (x_i, y_i)_{i=1}^m \in (X \times Y)^m$, drawn IID according to ρ , thus can construct functions $f_{\mathbf{z}}$ based on this sample data, to approximate f_{ρ} or $sgn(f_{\rho})$.

Learning Algorithms with Kernel

Construct a function

$$f_{\mathbf{z},\lambda} = \arg\min_{\mathcal{H}_K} \frac{1}{m} \sum_{i=1}^m V(f(x_i), y_i) + \lambda \Omega(f)$$

where \mathcal{H}_K is a Reproducing Kernel Hilbert Spaces with norm $|| ||_K$, $\lambda > 0$

- $\Omega(f)$ is a regularization term characterizing the smoothness/capacity of f
- Typically $\Omega(f) = ||f||_K^2$.

Examples

- $V(f(x), y) = \max(0, 1 f(x)y)$: Support Vector Machine
- $V(f(x), y) = (f(x) y)^2$: Regularized Least Square

Regularized Least Square (RLS)

$$f_{\mathbf{z},\lambda} = \arg\min_{\mathcal{H}_K} \frac{1}{m} \sum_{i=1}^m (f(x_i) - y_i)^2 + \lambda ||f||_K^2$$

is uniquely given by

$$f_{\mathbf{z},\lambda} = \sum_{i=1}^{m} a_i K(x_i, .)$$

where

$$(K[\mathbf{x}] + m\lambda I)\mathbf{a} = \mathbf{y}$$

with $K[\mathbf{x}] = m \times m$ matrix having entries $K[\mathbf{x}]_{ij} = K(x_i, x_j)$.

Vector-valued Reproducing Kernel Hilbert Spaces – p. 48/7

Integral Operators induced by Kernels

• Consider $L_K : L^2_\mu \to L^2_\mu$, μ a finite Borel measure, K continuous, positive definite,

 $(L_K f)(x) = \int_X K(x,t) f(t) d\mu(t)$

- L_K is compact, positive, with eigenvalues $\{\gamma_k\}_{k=0}^{\infty}$ and eigenfunctions $\{\phi_k\}_{k=0}^{\infty}$
- $\gamma_{k+1} \leq \gamma_k$ and $\lim_{k \to \infty} \gamma_k = 0$

 $\sum_{k=0}^{\infty} \gamma_k \le \kappa^2$

where $\kappa^2 = \max_{x \in X} K(x, x)$.

• $\{\phi_k\}_{k=0}^{\infty}$ form an orthonormal basis in L^2_{μ}

Integral Operators

Mercer's Theorem (1909): K continuous, positive definite, μ a finite, strictly positive Borel measure on X

$$K(x,t) = \sum_{k=1}^{\infty} \gamma_k \phi_k(x) \phi_k(t)$$

where the convergence is absolute for each pair (x, t) and uniform on compact subsets.

$$\mathcal{H}_{K} = \{ f \in L^{2}_{\mu}(X) : ||f||^{2}_{K} = \sum_{k=0}^{\infty} \frac{|\langle f, \phi_{k} \rangle|^{2}}{\gamma_{k}} < \infty \}$$

Spectra and Convergence

Theorem 1 Suppose $|y| \le M$ almost surely. Assume that $f_{\rho} \in \mathcal{H}_K$. Then for any $0 < \delta < 1$, with probability at least $1 - \delta$,

$$\varepsilon_{\rho}(f_{\mathbf{z},\lambda_0}) - \varepsilon_{\rho}(f_{\rho}) \le 144(\log\frac{4}{\delta})\left[M + \kappa ||f_{\rho}||_K\right]^2 \left(\frac{D(\lambda_0)}{m}\right),$$

where λ_0 is the unique positive number satisfying

$$\lambda_0 = 144(\log\frac{4}{\delta}) \left(\frac{M+\kappa||f_\rho||_K}{||f_\rho||_K}\right)^2 \frac{D(\lambda_0)}{m}$$

$$D(\lambda) = \sum_{k=1}^{\infty} \frac{\gamma_k}{\lambda + \gamma_k} \le \frac{\kappa^2}{\lambda}$$

Effective Dimensionality

$$D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), \frac{\sqrt{m}}{12\sqrt{\log\frac{4}{\delta}}}\}$$

For $\delta = 0.05$ (so that we have a confidence level of 95%), we have

 $D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), 0.0398\sqrt{m}\},\$

For m = 1000 and m = 1000, 000, one has

 $D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), 1.26\}$

 $D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), 39.81\}$

Effective Dimensionality

$$D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), \frac{\sqrt{m}}{12\sqrt{\log\frac{4}{\delta}}}\}$$

• The order \sqrt{m} for the upper bound is tight.

Convergence Analysis Framework

- Sample Error/Approximation Error Decomposition
- Inverse Problem Formulation
- Law of Large Numbers for Vector-Valued Random Variables

Sample Error and Approximation Error

• Theoretical version of $f_{\mathbf{z},\lambda}$:

$$f_{\lambda} = \arg\min_{\mathcal{H}_{K}} \int_{Z} (f(x) - y)^{2} + \lambda ||f||_{K}^{2}$$

Error Decomposition

$$||f_{\mathbf{z},\lambda} - f_{\rho}||_{L^{2}_{\rho_{X}}} \leq ||f_{\mathbf{z},\lambda} - f_{\lambda}||_{L^{2}_{\rho_{X}}} + ||f_{\lambda} - f_{\rho}||_{L^{2}_{\rho_{X}}}$$

• For $\lambda > 0$ fixed

$$||f_{\mathbf{z},\lambda} - f_{\lambda}||_{L^2_{\rho_X}} o 0 \quad \text{as } m \to \infty$$

• As $\lambda \to 0$

 $||f_{\lambda} - f_{\rho}||_{L^2_{\rho_X}} \to 0$

Inverse Problem Formulation

Solve an ill-posed operator equation

Af = F

 $f \in H_1$, $F \in H_2$, H_1 , H_2 Hilbert spaces, by regularization.

• Find f^* that mimimizes

 $||Af - F||_2^2 + \lambda ||f||_1^2$

Normal Equation

 $f^* = (A^*A + \lambda I)^{-1}A^*F$

Inverse Problem Formulation

 $f_{\mathbf{z},\lambda} = \arg \min ||S_{\mathbf{x}}f - \mathbf{y}||_{\mathbb{R}^m}^2 + m\lambda ||f||^2$ where $S_{\mathbf{x}} : f \in \mathcal{H}_K \to (f(x_1), \dots, f(x_m)) \in \mathbb{R}^m$

$$S_{\mathbf{x}}^*: \mathbf{a} \in \mathbb{R}^m \to \sum_{i=1}^m a_i K_{x_i} \in \mathcal{H}_K$$

$$f_{\lambda} = \arg\min_{\mathcal{H}_{K}} ||Jf - f_{\rho}||_{L^{2}_{\rho_{X}}}^{2} + \lambda ||f||_{K}^{2}$$

where $J : \mathcal{H}_K \to L^2_{\rho_X}$ = inclusion operator and $J^* = L_K : L^2_{\rho_X} \to \mathcal{H}_K$:

$$(L_K f)(t) = \int_Z K(x, t) f(x) d\rho_X(x)$$

Inverse Problem Formulation

$$f_{\mathbf{z},\lambda} = (S_{\mathbf{x}}^* S_{\mathbf{x}} + m\lambda I)^{-1} S_{\mathbf{x}}^* \mathbf{y} = (\frac{1}{m} S_{\mathbf{x}}^* S_{\mathbf{x}} + \lambda I)^{-1} \frac{1}{m} S_{\mathbf{x}}^* \mathbf{y}$$

$$\frac{1}{m} S_{\mathbf{x}}^* S_{\mathbf{x}} f = \frac{1}{m} \sum_{i=1}^m f(x_i) K_{x_i} = \frac{1}{m} \sum_{i=1}^m \langle f, K_{x_i} \rangle_K K_{x_i}$$

$$\frac{1}{m}S_{\mathbf{x}}^{*}\mathbf{y} = \frac{1}{m}\sum_{i=1}^{m}y_{i}K_{x_{i}}$$

$$f_{\lambda} = (L_K + \lambda I)^{-1} L_K f_{\rho}$$

$$L_K f = \int_X \langle f, K_x \rangle_K K_x d\rho_X(x)$$

$$L_K f_{\rho} = \int_{\mathcal{Z}} y K_x d\rho(x, y)$$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 58/7

Law of Large Numbers

Theorem 2 (Pinelis, 1994) Let *H* be a Hilbert space with norm || || and ξ be a random variable on (Z, ρ) with values in *H*. Assume that $||\xi|| \leq M < \infty$ almost surely for a fixed constant M > 0. Let $\sigma^2(\xi) = E(||\xi||^2)$. Let $\{z_i\}_{i=1}^m$ be independently sampled according to ρ . Then for any $0 < \delta < 1$, with probability at least $1 - \delta$,

$$\left\|\frac{1}{m}\sum_{i=1}^{m}\xi(z_i) - E\xi\right\| \le \frac{2M\log\frac{2}{\delta}}{m} + \sqrt{\frac{2\sigma^2(\xi)\log\frac{2}{\delta}}{m}}.$$

• Apply to estimate $||f_{\mathbf{z},\lambda} - f_{\lambda}||_{L^{2}_{\rho_{X}}}$.

Acknowledgement

- Institute for Pure and Applied Mathematics (IPAM)
- German Research Foundation (DFG)
- Hausdorff Institute for Mathematics (HIM) in Bonn (Junior Program in Analysis, September-October 2008)

Thank you

for listening!

Feature Maps

Typical intuition of learning with kernels (for classification):

- Kernels map data implicitly into (high dimensional)
 feature spaces via feature maps, by Mercer's theorem
- Nonlinearly separable data in input space become linearly separable in feature space
- Linear classifiers are constructed in feature space

Feature Maps via Mercer's Theorem

Standard feature map in learning literature $\Phi: X \to \ell^2$:

 $\Phi(x) = (\sqrt{\gamma_k}\phi_k(x))_k$

- Φ depends on the measure μ
- Φ is **not unique**: there is a different map for each measure μ
- Φ is difficult to compute in general

Non-Mercer Feature Maps

• A kernel K on X induces a mapping $\Phi: X \to H_K$

 $\Phi: x \to K_x$

• By definition of \langle,\rangle_K

 $K(x,t) = \langle K_x, K_t \rangle_K = \langle \Phi(x), \Phi(t) \rangle_K$

- Φ : feature map, H_K : feature space
- is explicit, not implicit
- Φ depends only on K and the domain X

Other Non-Mercer Feature Maps

- The map $\Phi: x \to K_x \in H_K$ is universal, true for any positive definite kernel K
- Other maps, for specific kernels:
 - Polynomial kernel $K(x,t) = \langle x,t \rangle^2$

$$\Phi: (x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1x_2) \in \mathbb{R}^3$$

• Gaussian kernel $K(x,t) = e^{-\frac{||x-t||^2}{\sigma^2}}$

$$\Phi: x \to e^{-\frac{||x||^2}{\sigma^2}} \left(\sqrt{\frac{(2/\sigma^2)^k C_{\alpha}^k}{k!}} x^{\alpha}\right)_{|\alpha|=k,k=0}^{\infty} \in \ell^2$$

See also Steinwart et al (2005)

Equivalence of Feature Maps

Invariance of geometry: if $\Phi_1, \Phi_2 : X \to H$ are two feature maps, then for i = 1, 2

 $||\Phi_i(x) - \Phi_i(t)||^2 = K(x, x) + K(t, t) - 2K(x, t)$

• Each choice of $\Phi: X \to H_{\Phi}$ is equivalent to a factorization of $\Phi_K: x \to K_x$

Image of Mapped Data

Image of $x_1^2 + x_2^2 \le 1$ under $\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

Basic Semi-supervised Learning

- Encounter when we have abundant unlabeled data, but not much labeled data.
- We wish to utilize the unlabeled data to gain some knowledge of the geometry or underlying marginal distribution of the input data.
- Following material is research carried out by Niyogi, Belkin, Sindhwani, and others.

Basic Semi-supervised Learning

- Labeled data: $(x_i, y_i)_{i=1}^l$.
- Unlabeled data: $(x_i)_{i=l+1}^{l+u}$.
- If the input data x_i 's actually lie on or close to a low dimensional manifold (in a much higher dimensional ambient space), then we should try to reflect this.
- The new optimization problem is

$$f^* = \arg\min_{f \in \mathcal{H}_K} \frac{1}{l} \sum_{i=1}^l V(f(x_i), y_i) + \lambda_A ||f||_K^2 + \lambda_I ||f||_I^2.$$

Graph Laplacian

- A major concept from Spectral Graph Theory (see for example Fan Chung's book). From the input data points x_i, one can create a graph.
- W is the weight matrix of the graph.
- D is the diagonal matrix given by $D_{ii} = \sum_{j=1}^{l+u} W_{ij}$.
- The graph Laplacian is L = D W.
- L has many applications in machine learning.
- If $f = [f(x_1), \dots, f(x_{l+u})]$, then

$$\mathbf{f}^T L \mathbf{f} = \frac{1}{2} \sum_{i,j=1}^{l+u} (f(x_i) - f(x_j))^2 W_{ij}$$

Laplacian RLS

$$f^* = \arg\min_{f \in \mathcal{H}_K} \frac{1}{l} \sum_{i=1}^l (f(x_i) - y_i)^2 + \lambda_A ||f||_K^2 + \frac{\lambda_I}{(l+u)^2} \mathbf{f}^T L \mathbf{f}.$$

The solution has the form

$$f^*(x) = \sum_{i=1}^{l+u} \alpha_i K(x_i, x).$$

$$\alpha = (JK[\mathbf{x}] + \lambda_A lI + \frac{\lambda_I l}{(l+u)^2} LK[\mathbf{x}])^{-1} \mathbf{y},$$

- diag(1 - 1 0 - 0)

with J = diag(1, ..., 1, 0, ..., 0).