Vector-valued Reproducing KernelHilbert Spaces

with applications to Function Extension andImage Colorization

Minh Ha Quang

minh.ha.quang@staff.hu-berlin.de

Humboldt Universität zu Berlin

Vector-valued Reproducing Kernel Hilbert Spaces – p. 1/71

Outline of the Talk

- **Brief Review of Scalar-valued RKHS**
- Vector-valued RKHS
- **•** Function Extension: 2 algorithms
- **•** Application: Image Colorization
- **C** Learning Theory Estimates (if time permits)

Positive Definite Kernels

- X any nonempty set
- $K: X \times X \to \mathbb{R}$ is a (real-valued) positive definite
kernel if it is symmetric and kernel if it is symmetric and

$$
\sum_{i,j=1}^{N} a_i a_j K(x_i, x_j) \ge 0
$$

for any finite set of points $\{x_i\}_{i=1}^N$ $\frac{N}{i=1}\in X$ and real numbers $\{a_i\}_{i=1}^N$ $i=1}^N\in\mathbb{R}$.

Complex-valued kernels are often encountered incomplex analysis.

RKHS

- Abstract theory due to Aronszajn (1950).
- K a positive definite kernel on $X \times X$. For each $x \in X$,
there is a function $K \times Y$, \mathbb{P} with K (t) \mathbb{P} $K(x,t)$ there is a function $K_x: X \to \mathbb{R}$, with $K_x(t) = K(x, t)$.

$$
\mathcal{H}_K = \{ \sum_{i=1}^N a_i K_{x_i} : N \in \mathbb{N} \}
$$

with inner product

$$
\langle \sum_i a_i K_{x_i}, \sum_j b_j K_{y_j} \rangle_K = \sum_{i,j} a_i b_j K(x_i, y_j)
$$

 \mathcal{H}_K = RKHS associated with K (unique).

RKHS

Reproducing Property: for each $f \in \mathcal{H}_K$, for every \bullet $x \in X$

 $f(x) = \langle f, K_x \rangle_K$

Assumption

$$
\kappa = \sup_{x \in X} \sqrt{K(x, x)} < \infty
$$

 $||f||_{\infty} \leq \kappa ||f||_K$

Examples: RKHS

For $s > n/2$, the Sobolev space H^s $^s(\mathbb{R}^n$ $^{\,n}),$ with

$$
||f||_{H^{s}(\mathbb{R}^n)}^2 = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \left| (1+|\xi|^2)^{s/2} \hat{f}(\xi) \right|^2 d\xi < \infty,
$$

is an RKHS, with kernel

$$
K(x,y) = \frac{1}{(2\pi)^n} \frac{1}{(1+|\xi|^2)^s} (x-y)
$$

Examples: RKHS

2 $-\frac{|x|}{|x|}$ $y\vert$ The Gaussian kernel $K(x,y) = \exp(\frac{y^2}{2\pi i})$ $\frac{-y_{\parallel}}{\sigma^2}$) on \mathbb{R}^n \bullet induces the space

$$
\mathcal{H}_K=\{||f||^2_{\mathcal{H}_K}=\frac{1}{(2\pi)^n(\sigma\sqrt{\pi})^n}\int_{\mathbb{R}^n}e^{\frac{\sigma^2|\xi|^2}{4}}|\widehat{f}(\xi)|^2d\xi<\infty\}.
$$

The Laplacian kernel $K(x,y) = \exp{(-\frac{y^2}{2\hbar^2})}$ on \mathbb{R}^n induces the space $a|x$ $y\vert),\, a>0,$

$$
\mathcal{H}_K = \{||f||^2_{\mathcal{H}_K} = \frac{1}{(2\pi)^n} \frac{1}{aC(n)} \int_{\mathbb{R}^n} (a^2 + |\xi|^2)^{\frac{n+1}{2}} |\hat{f}(\xi)|^2 d\xi < \infty \}
$$

with
$$
C(n) = 2^n \pi^{\frac{n-1}{2}} \Gamma(\frac{n+1}{2})
$$

Examples: RKHS

- **•** The Laplacian kernel has less smoothing effect than the Gaussian kernel (may be useful if we do not want very smooth functions)
- **Generalization of the Gaussian kernel:** $K(x, y) = \exp(x)$ 1938). $-\frac{|x|}{|x|}$ $y\vert$ \boldsymbol{p} $\frac{-y_{\Gamma}}{\sigma^2}$), where $0\leq p\leq2$ (Schoenberg

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- **Vector-valued RKHS**
- **•** Function Extension: 2 algorithms
- **•** Application: Image Colorization
- Learning Theory Estimates (if time permits)

- Laurent Schwartz (1964): very general framework forRKHS of functions with values in locally convextopological spaces
- **Some recent works in machine learning related** literature: Pontil-Micchelli(2005), Caponnetto-De Vito(2006), Reisert-Burkhardt (2007), Carmeli et al (2006).
- **Here we will focus on RKHS of functions with values in** ^a Hilbert space.

Operator-valued kernels

- D a nonempty set, W a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle_W$ of the Banach space of inner product $\langle\cdot,\cdot\rangle_{\mathcal{W}},$ $\mathcal{L}(W)$ the Banach space of -24 bounded linear operators on ${\cal W}.$
- A function $K: D \times D \rightarrow \mathcal{L}(\mathcal{W})$ is said to be an
enerator valued pecitive definite kernel if fo * **^!!!^^ **operator-valued positive definite kernel** if for eachpair $(x,y)\in D\times D,$ $K(x,y)\in {\cal L}({\cal W})$ is a self-adjoint
energies and $r \cap n$ operator and

$$
\sum_{i,j=1}^{N} \langle w_i, K(x_i, x_j) w_j \rangle_{\mathcal{W}} \ge 0
$$

for every finite set of points $\{x_i\}_{i=1}^N$ $i{=}1$ $_{1}$ in D and $\{w_{i}\}_{i=1}^{N}$ $i{=}1$ $\frac{1}{1}$ in $\mathcal{W},$ where $N\in\mathbb{N}.$

- \mathcal{W}^D = vector space of all functions $f : D \rightarrow \mathcal{W}.$
- For each $x \in D$ and $w \in \mathcal{W}$, we form a function $K_xw=K(., x)w\in \mathcal{W}^D$ defined by

 $(K_xw)(y) = K(y,x)w$ for all $y \in D$.

Consider the set $\mathcal{H}_0 = \text{span}\{\mathrm{K}_\mathrm{x}\mathrm{w} \mid \mathrm{x} \in \mathrm{D},\ \mathrm{w} \in \mathcal{W}\} \subset \mathcal{W}^\mathrm{D}.$ For $f = \sum_{i=1}^{N} K_{x_i} w_i, g = \sum_{i=1}^{N} K_{y_i} z_i \in \mathcal{F}$ = $\sum_{i=1}^{N}$ $\prod\limits_{i=1}^{\scriptscriptstyle{IV}}K_{x_i}w_i$, $g=$ $\sum_{i=1}^{N}$ $\prod\limits_{i=1}^{N}K_{y_i}z_i$ $i_{i}\in\mathcal{H}_{0},$ we define $\langle \int f, g \rangle_{{\cal H}_K}=$ \sum^{N} $w_i, K($ $\mathcal{X}% _{T}=\mathbb{C}^{2}\times\mathbb{C}^{2}$ $x_i, y_j) z_j \rangle_{\mathcal{W}}.$

 $i,j=1$

- Taking the closure of \mathcal{H}_0 $_0$ gives the Hilbert space \mathcal{H}_K .
- The **reproducing property** is

 $\langle f(x), w \rangle_{\mathcal{W}}=$ $\langle f, K_xw\rangle_{\mathcal{H}_K}$ f_K for all $f \in \mathcal{H}$ $K\cdot$

For each $x\in D$ and $f\in\mathcal{H}_K$:

 $||f(x)||_{\mathcal{W}} \leq \sqrt{||K(x, x)||} ||f||_{\mathcal{H}_K}.$

Simple example: let $k(x,y)$ be a real-valued positive definite kernel and B a positive definite matrix. Then

 $K(x, y) = Bk(x, y)$

is ^a matrix-valued kernel, which induces ^avector-valued RKHS

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- Vector-valued RKHS
- **Function Extension: 2 algorithms**
- **•** Application: Image Colorization
- Learning Theory Estimates (if time permits)

Function Extension

- $D\subset\Omega$ are closed sets in a complete separable metric space
- $f: D \to W$,
- Goal: extend $f: D \to W$ to $F: \Omega \to W$, such that F is
close to f on the smaller set D and reasonably close to f on the smaller set D , and reasonably well-behaved on the larger set $\Omega.$

Extension Operator

- Assume we have a kernel $K:\Omega\times\Omega\rightarrow\mathcal{W}$.
- Assume that $K(x,x)$ is compact for each $x,$ and that $\sup_{x\in\Omega}||K(x,x)||<$ $_{\Omega}$ $||K(x,x)|| < \infty$.
- For $f: D \to \mathcal{W}$, define L_K $_K: L^2_\mu$ $\mu^2_\mu(D;\mathcal{W}) \rightarrow \mathcal{H}_K(\Omega)$, with

$$
L_K f(x) = \int_D K(x, y) f(y) d\mu(y),
$$

for every $x\in\Omega$. This defines an extension operator. The adjoint operator L^{\ast}_I restriction operator: L^{\ast}_I $K\,$ $\frac{*}{K} : \mathcal{H}_K(\Omega) \rightarrow L^2_{\mu}$ $_{\mu}^{2}(D;\mathcal{W})$ is the $\frac{*}{K}F=$ $F|_D$

Function Extension

Find the extension function $F : \Omega \rightarrow \mathcal{W}$ by solving the
minimization problem minimization problem

$$
\inf_{F \in \mathcal{H}_K(\Omega)} ||f - L_K^* F||_{L^2(\Omega; \mathcal{W})}^2 + \gamma ||F||_{\mathcal{H}_K(\Omega)}^2,
$$

• This problem has a unique solution

$$
F_{\gamma} = (L_K L_K^* + \gamma I)^{-1} L_K f
$$

Function Extension: Spectral Algorithm

- Scalar version: Coifman-Lafon (2005)
- Considered as an operator L^2_μ thonorma: $^2_\mu(D;\mathcal{W})\rightarrow L^2_\mu$ 00ctrur $_{\mu}^{2}(D;\mathcal{W})$, L_{K} is compact, positive, with orthonormal spectrum $(\lambda_k,\phi_k)_{k=}^\infty$ $k{=}1$.
- Eigenfunction extension: for $\lambda_k>0,$ we extend $\phi_k:D\to\mathcal{W}$ to $\Phi_k:\Omega\to\mathcal{W}$ by $\kappa: D \to \mathcal{W}$ to Φ_k $k: \Omega \rightarrow W$ by

$$
\Phi_k(x) = \frac{1}{\lambda_k} \int_D K(x, y) \phi_k(y) d\mu(y), \quad \text{for } x \in \Omega.
$$

To be numerically reliable, one may want to consideronly λ_k $k>\delta$, for some given $\delta>0.$

Function Extension: Spectral Algorithm

- Compute the eigenvalues and eigenfunctions $\{(\lambda_k,\phi_k)\}$ of L_K $_K: L^2_\mu$ $\frac{2}{\mu}(D;\mathcal{W})\rightarrow L^2_{\mu}$ $_{\mu}^{2}(D;\mathcal{W}).$
- Compute the expansion coefficients a_k 's of f in the basis $\{\phi_k\}$: f = $\sum_k a_k \phi_k$
- Compute $F_\delta=$ $\sum_{k,\lambda_k>\delta}$ λ \boldsymbol{k} $\lambda_k{+}\gamma$ $a_k\Phi_k$, for some $\delta>0$
- Alternatively, to take care of the case λ_k $_{k} = 0$, compute directly

$$
F_{\gamma}(x) = \sum_{k=1}^{\infty} \frac{a_k}{\lambda_k + \gamma} \int_D K(x, y) \phi_k(y) d\mu(y)
$$

Function Extension: Least square

- Assume now that $D=\,$ $\{x_i\}_{i=1}^m$, with $w_i=$ $f(x_i)$.
- An algorithm with real kernel-based flavor:

$$
F_{\gamma} = \arg \min_{F \in \mathcal{H}_K(\Omega)} \frac{1}{m} \sum_{i=1}^m ||F(x_i) - w_i||_W^2 + \gamma ||F||_{\mathcal{H}_K(\Omega)}^2.
$$

This has a unique solution $F_\gamma=$ $F_{\gamma}(x) = \sum_{i=1}^m K(x,x_i)a_i,$ where the vectors $a_i's$ \in $\sum_{i=1}^{m}$ $\frac{m}{i=1}K_{x_i}a_i$, with satisfy the m linear equations $\frac{m}{i=1}\,K(x,x_i)a_i$, where the vectors a $i_s's \in \mathcal{W}$

$$
\sum_{j=1}^{m} K(x_i, x_j) a_j + m \gamma a_i = w_i.
$$

Compare two algorithms

- Spectral: theoretically more general (*D* can be either
diserate ar continuaus) discrete or continuous)
- If D is discrete and μ is the uniform distribution, then
Least square and Spectral are the same analytically Least square and Spectral are the same analytically.
- Numerically, Least square is easier to implement and should be expected to be more stable (involves solving well-conditioned systems of linear equations, vs findingeigenvalues/eigenfunctions of the Spectral method).
- **•** The basis functions in Least square are exact (based on the given data points)
- Here we will focus on the Least square method fornumerical work

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- **Vector-valued RKHS**
- **•** Function Extension
- **Application: Image Colorization**
- **C** Learning Theory Estimates (if time permits)

Image Colorization

- Joint work with Sung Ha Kang (Georgia Tech) and Triet Le (Yale)
- Ω is the given grayscale image
- $D\subset\Omega$ is the given region with colors (often very small).
The same of the same space of the space of the solution of the set of the The initial function here is $f : D \to \mathbb{R}^3$ 3 (red, green, blue)
- Goal: extend the colors to all of $\Omega.$
- **Some (among many) other works this on problem:** Levin-Lischinski-Weiss(2004), Sapiro(2005), Qiu-Guan(2005), Fornasier (2006), Buades-Coll-Lisani-Sbert(2007), Kang-March(2007), etc

Nonlocal kernel

- Simplest scenario: all the colors are independent.
- $K(x,y) = \text{diag}(k_1(x,y), k_2(x,y), k_3(x,y))$ where each k_i is ^a scalar-valued kernel.
- **•** Here we will use scalar-valued kernels of the form

$$
k(x, y) = \exp(-\frac{|g_r(x) - g_r(y)|^p}{\sigma_1}) \exp(-\frac{|x - y|^p}{\sigma_2})
$$

where $g_r(x)$ is the patch of radius r centered at x , of size $(2r+1)\times(2r+1)$, with g denoting the gray level.

Extend the color function using least square RKHS

Chromaticity and Brightness Model

For sharper resulting images, we consider the CB model of color.

- $f(x)=B(x)C(x),$ where $B(x)$ is the brightness, and (1) (1) (1) $C(x) = (r(x), g(x), b(x)) \in S^2$.
- **Assumption**: we are given the brightness $B(x)$ on all of $\Omega,$ but $C(x)$ only on $D.$
- **Need**: to extend $C(x)$ to all of Ω .
- **Problem**: the set of S^2 -valued functions is not a vector space

Stereographic Projection

- **Solution** for the S²-valued Chromaticity function: Stereographic projection
- Since the colors are all nonnegative and for symmetry, we need ^a symmetric stereographic projection that projects from the first quadrant
- Projection point: (− $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}})$
- Projection plane: $X + Y + Z = 0$

Stereographic Projection

- Forward projection from S^2 onto $X+Y+Z=0$: \bullet $\frac{3x-(x+y+z)}{\sqrt{3}(x+y+z+\sqrt{3})}, \quad Y =$ $\frac{x-(x)}{x}$ $\frac{3y-(x+y+z)}{\sqrt{3}(x+y+z+\sqrt{3})}, Z =$ $\frac{3y - (x)}{x}$ $\frac{3z-(x+y+z)}{\sqrt{3}(x+y+z+\sqrt{3})},$ $z-(x$ 3+ $y+$ 3+ $y+$ 3 $\, + \,$ $y+$ $X=\frac{3x-(x+y+z)}{\sqrt{2}}$, $Y=\frac{3y-(x+y+z)}{\sqrt{2}}$, $Z=\frac{3y-(x+y+z)}{\sqrt{2}}$ $x \$ z
- Inverse projection from $X+Y+Z=0$ onto S^2 <u>≃:</u>

$$
x = \frac{2\sqrt{3}X + 1 - (X^2 + Y^2 + Z^2)}{\sqrt{3}(1 + X^2 + Y^2 + Z^2)}, \quad y = \frac{2\sqrt{3}Y + 1 - (X^2 + Y^2 + Z^2)}{\sqrt{3}(1 + X^2 + Y^2 + Z^2)},
$$

$$
z = \frac{2\sqrt{3}Z + 1 - (X^2 + Y^2 + Z^2)}{\sqrt{3}(1 + X^2 + Y^2 + Z^2)}.
$$

Image Colorization Algorithm

- Given: Brightness $B(x)$ on all of Ω and Chromaticity on
small subset $D=0$ small subset $D\subset\Omega$
- Project $C(x):D\to S^2$ to $C(x):D\to\mathbb{R}^2$
- Extend $C(x)$ to $\Omega: \to \mathbb{R}^2$ using the least square : حمد ماء algorithm in the RKHS induced by the nonlocal kernel above (kernel constructed using $B(x)\bm)$
- Project the results back onto S^2 to get the extended Chromaticity function from $\Omega\to S^2$
- Multiply the resulting Chromaticity with the givenBrightness to obtain the final answer.

Colorization Algorithm - Complexity

- Involves solving ² systems of linear equations, each of size $m\times m$, where $m=$ $=|D|$
- Evaluation step involves computing kernel matrix of size $m\times M$, where $M=$ $= |\Omega|$
- Main computation time is in computing the kernel
- Explicit and unique solution, no iteration required

Figure 1: $p=1, \, r=1, \, \sigma$ $t_1 = 0.5, \sigma$ $_2 = 1$. About 0.5% of color is given

Figure 2: $p=1, r=1, \sigma$ $t_1 = 0.5, \sigma$ $_2 = 1$. About 1% of color is given

Figure 3: $p=1, \, r=1, \, \sigma$ $t_1 = 0.5, \sigma$ $_2 = 1$. About 1% of color is given

Figure 4: $p=1, r=2, \sigma$ $_1 = 0.5$, σ $\epsilon_2 = 2$. About 0.96% of color is given

Numerical Examples - Cartoon

Figure 5: The colorization result with $r = 0, p = 2,$ σ_1 $n_1 = 0.001$, and σ_2 $_2 = 10.$

Figure 6: Chromaticity and Brightness model viaStereographic Projection vs. RGB channel: $p=1$, $r=2$, σ 1 $_{1} = 0.5$, and σ_2 $_{2} = 10$

Figure 7: $p=2, r=2, \sigma$ 1 $_1 = 0.1$, and σ_2 $_2 = 10$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 37/71

Figure 8: $p=1, \, r=0, \, \sigma$ $t_1 = 0.05$, σ $_{2} = 10.$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 38/71

Figure 9: The colorization result with $r = 10, p = 1.5$ σ_1 $t_1 = 0.4$, σ $\epsilon_2 = 10$. Less than 2% of color is given

Conclusion - Main Part

- Operator-valued positive definite kernels and their induced vector-valued RKHS
- Use of RKHS for the problem of function extension (vector-valued)
- An application in Image Colorization
- Full preprint of paper is: Minh Ha Quang, Sung Ha Kang, and Triet Le, *Image and video colorization using vector-valued reproducing kernel Hilbert spaces*, availableon my website (or UCLA CAM reports)

Some questions

- Is stereographic projection optimal? More general \bullet method?
- How to incorporate geometry of the images (manifold \bullet structure)?
- Example: the eye

Outline of the Talk

- Brief Review of Scalar-valued RKHS
- **Vector-valued RKHS**
- **•** Function Extension
- **•** Application: Image Colorization
- **Learning Theory Estimates** (if time permits) \bullet

Error Estimates - Learning Theory

- Input space $X\subset\mathbb{R}^n$ closed (complete separable metric space)
- Output space $Y\subset [-M,M]$ (finite dimensional inner
product ancee) product space)
- $Z=X\times Y$ equipped with an unknown probability measure ρ .
- $\rho(x,y) = \rho_X(x)\rho(y|x)$
- ρ determines a correspondence between X and Y .
- Learning algorithms: find functions $f : X \to Y$ to capture this correspondence.

Least Square Regression

 $\varepsilon_{\rho}(f) = \int_{X \times Y}(f(x))$ **regression function** $-y)^2d\rho$ is minimized by the

$$
f_{\rho}(x) = \int_Y y d\rho(y|x)
$$

- **Assumption**: $f_\rho\in L^2_\rho$ ρ_X
- ε $\varepsilon_\rho(f)$ −ε $\varepsilon_{\rho}(f_{\rho})=||f$ $f_\rho||_I^2$ L^2_{\circ} ρ_X , f $\in L^{2}$ ρ_X
- We want a function $f_\mathbf{z}$ that approximates f_ρ in the $|| \ ||$ L^2_{\circ} ρ_X norm.

Learning from Sample Data

- ε_ρ is not computable, since ρ is unknown.
- Access to sample $\mathbf{z} = (x_i, y_i)_{i=1}^m$ according to ρ , thus can construct functions $f_{\mathbf{z}}$ based $\frac{m}{i=1}\in (X\times Y)^m$, drawn IID on this sample data, to approximate f_ρ or $sgn(f_\rho).$

Learning Algorithms with Kernel

Construct ^a function

$$
f_{\mathbf{z},\lambda} = \arg\min_{\mathcal{H}_K} \frac{1}{m} \sum_{i=1}^m V(f(x_i), y_i) + \lambda \Omega(f)
$$

where \mathcal{H}_K $\mathsf{norm} \mid \mid \mid$ K is a Reproducing Kernel Hilbert Spaces with $_K, \, \lambda >0$

- $\Omega(f)$ is a regularization term characterizing the smoothness/capacity of f
- Typically $\Omega(f) = ||f||_F^2$ K^{\centerdot}

Examples

- $V(f(x), y) = \max(0, 1 f(x)y)$: Support Vector Machine
- $V(f(x), y) = (f(x) y)^2$: Regularized Least Square

Regularized Least Square (RLS)

$$
f_{\mathbf{z},\lambda} = \arg\min_{\mathcal{H}_K} \frac{1}{m} \sum_{i=1}^m (f(x_i) - y_i)^2 + \lambda ||f||_K^2
$$

is uniquely given by

$$
f_{\mathbf{z},\lambda} = \sum_{i=1}^{m} a_i K(x_i, .)
$$

where

$$
(K[\mathbf{x}] + m\lambda I)\mathbf{a} = \mathbf{y}
$$

with $K[\mathbf{x}] = m \times m$ matrix having entries $K[\mathbf{x}]_{ij}$ $=K(x_i, x_j).$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 48/71

Integral Operators induced by Kernels

Consider $L_K\;$ c nocitiv $_K: L^2_{\mu}$ μ $\rightarrow L^2$ continuous, positive definite, $_{\mu}^2$, μ a finite Borel measure, K

> $(L_K f)(x) = \int_X$ $K(x,t)f(t)d\mu(t)$

- L_K is compact, positive, $\bm{\kappa}$ eigenfunctions $\{\phi_k\}_{k=1}^\infty$ $_K$ is compact, positive, with eigenvalues $\{\gamma_k\}_{k=1}^\infty$ $k{=}0$ $_0$ and $k{=}0$
- $\gamma_{k+1}\leq \gamma_k$ \overline{k} and \lim $k{\rightarrow}\infty$ γ_k $k = 0$

 $\sum_{k=1}^{\infty}$ $\sum_{k=0}^{\infty} \gamma_k \leq \kappa$ 2

where κ 2 $x^2 = \max_{x \in X} K(x, x).$

 $\{\phi_k\}_{k=0}^{\infty}$ form an orth $k{=}0$ $_0$ form an orthonormal basis in L^2_μ μ

Integral Operators

Mercer's Theorem (1909): K continuous, positive definite, μ a finite, strictly positive Borel measure on X

$$
K(x,t) = \sum_{k=1}^{\infty} \gamma_k \phi_k(x) \phi_k(t)
$$

where the convergence is absolute for each pair $\left(x,t\right)$ and uniform on compact subsets.

$$
\mathcal{H}_K = \{ f \in L^2_{\mu}(X) : ||f||_K^2 = \sum_{k=0}^{\infty} \frac{|\langle f, \phi_k \rangle|^2}{\gamma_k} < \infty \}
$$

Spectra and Convergence

Theorem 1 Suppose $|y| \leq M$ almost surely. Assume that $f \in \mathcal{H}_M$. Then for any $0 \leq \delta \leq 1$ with probability at least $f_{\rho}\in\mathcal{H}_K$. Then for any $0<\delta< 1$, with probability at least $1-\delta$ δ ,

$$
\varepsilon_{\rho}(f_{\mathbf{z},\lambda_0}) - \varepsilon_{\rho}(f_{\rho}) \le 144(\log \frac{4}{\delta}) \left[M + \kappa ||f_{\rho}||_K \right]^2 \left(\frac{D(\lambda_0)}{m} \right),
$$

where λ_0 $_{\rm 0}$ is the unique positive number satisfying

$$
\lambda_0 = 144(\log \frac{4}{\delta}) \left(\frac{M + \kappa ||f_\rho||_K}{||f_\rho||_K} \right)^2 \frac{D(\lambda_0)}{m}
$$

$$
D(\lambda) = \sum_{k=1}^{\infty} \frac{\gamma_k}{\lambda + \gamma_k} \le \frac{\kappa^2}{\lambda}
$$

Effective Dimensionality

$$
D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), \frac{\sqrt{m}}{12\sqrt{\log\frac{4}{\delta}}}\}
$$

For $\delta=0.05$ (so that we have a confidence level of 95%), we have

 $D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), 0.0398\sqrt{m}\},$

For $m=1000$ and $m=1000,000,$ one has

 $D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), 1.26\}$

 $D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), 39.81\}$

Effective Dimensionality

$$
D(\lambda_0) \le \min\{\dim(\mathcal{H}_K), \frac{\sqrt{m}}{12\sqrt{\log\frac{4}{\delta}}}\}
$$

The order \sqrt{m} for the upper bound is tight.

Convergence Analysis Framework

- Sample Error/Approximation Error Decomposition
- Inverse Problem Formulation
- Law of Large Numbers for Vector-Valued Random \bullet Variables

Sample Error and Approximation Error

Theoretical version of $f_{\mathbf{z},\lambda}$:

$$
f_{\lambda} = \arg\min_{\mathcal{H}_K} \int_Z (f(x) - y)^2 + \lambda ||f||_K^2
$$

C Error Decomposition

$$
||f_{\mathbf{z},\lambda}-f_{\rho}||_{L_{\rho_X}^2}\leq ||f_{\mathbf{z},\lambda}-f_{\lambda}||_{L_{\rho_X}^2}+||f_{\lambda}-f_{\rho}||_{L_{\rho_X}^2}
$$

For $\lambda > 0$ fixed

$$
||f_{\mathbf{z},\lambda} - f_{\lambda}||_{L^2_{\rho_X}} \to 0 \quad \text{as } m \to \infty
$$

As $\lambda\to0$

 $||f_\lambda$ $f_\rho||_{L^2_\rho}$ ρ_X $\longrightarrow 0$

Inverse Problem Formulation

Solve an ill-posed operator equation

Af $=F$

 $f\in H_1,\, F\in H_2,\, H_1,H_2$ Hilbert spaces, by regularization.

Find f^{\ast} that mimimizes

 $||Af$ $F||^2_2$ $\frac{2}{2}+\lambda||f||_1^2$ 1

Normal Equation

 f^\ast ⁼ (A^*) $(A + \lambda I)^{-1}$ $^1A^*$ *F

Inverse Problem Formulation

 $f_{\mathbf{z},\lambda} = \arg \min \quad ||S_{\mathbf{x}}f||$ $\mathbf{y}||^2_{\mathbb{R}}$ $\frac{2}{\mathbb{R}^m}+m\lambda||f||^2$ where $S_{\mathbf{x}} : f \in \mathcal{H}$ $K\rightarrow(f(x_1),\ldots,f(x_m))\in\mathbb{R}^m$

$$
S_{\mathbf{x}}^* : \mathbf{a} \in \mathbb{R}^m \to \sum_{i=1}^m a_i K_{x_i} \in \mathcal{H}_K
$$

$$
f_{\lambda} = \arg\min_{\mathcal{H}_K} ||Jf - f_{\rho}||^2_{L^2_{\rho_X}} + \lambda ||f||^2_K
$$

where $J:\mathcal{H}% _{T}=\{(\tau,\tau)\}\rightarrow\mathcal{H}_{T}$ $\tau = 72$ $K\rightarrow L^2_{\rho}$ $J^* = L_K : L^2_{\text{osc}} \to H$ ρ_X = $=$ inclusion operator and $^{\ast}=L_{K}$ $_K: L^2_\rho$ ρ_X $_{X}\rightarrow\mathcal{H}_{K}$

$$
(L_K f)(t) = \int_Z K(x, t) f(x) d\rho_X(x)
$$

Inverse Problem Formulation

$$
f_{\mathbf{z},\lambda} = (S_{\mathbf{x}}^* S_{\mathbf{x}} + m\lambda I)^{-1} S_{\mathbf{x}}^* \mathbf{y} = (\frac{1}{m} S_{\mathbf{x}}^* S_{\mathbf{x}} + \lambda I)^{-1} \frac{1}{m} S_{\mathbf{x}}^* \mathbf{y}
$$

$$
\frac{1}{m}S_{\mathbf{x}}^{*}S_{\mathbf{x}}f = \frac{1}{m}\sum_{i=1}^{m}f(x_{i})K_{x_{i}} = \frac{1}{m}\sum_{i=1}^{m}\langle f, K_{x_{i}}\rangle_{K}K_{x_{i}}
$$

$$
\frac{1}{m}S_{\mathbf{x}}^*\mathbf{y} = \frac{1}{m}\sum_{i=1}^m y_i K_{x_i}
$$

$$
f_{\lambda} = (L_K + \lambda I)^{-1} L_K f_{\rho}
$$

$$
L_K f = \int_X \langle f, K_x \rangle_K K_x d\rho_X(x)
$$

$$
L_K f_\rho = \int_Z y K_x d\rho(x, y)
$$

Vector-valued Reproducing Kernel Hilbert Spaces – p. 58/71

Law of Large Numbers

Theorem 2 (Pinelis, 1994) Let H be ^a Hilbert space with norm $|| \ ||$ and ξ be a random variable on (Z, ρ) with values in
Here assume that $|| \zeta || \leq M$, so almost surely for a fixed H. Assume that $||\xi|| \leq M < \infty$ almost surely for a fixed $\cos t$ of $\lambda \leq \frac{1}{2}$ of $\sin t$ and $\lambda \leq \frac{1}{2}$ constant $M>0.$ Let σ μ , μ and μ 2 $2(\xi) = E(||\xi||^2)$ independently sampled according to $\rho.$ Then for any $^{2}).$ Let $\{z_{i}\}_{i=1}^{m}$ $i{=}1$ $\frac{1}{1}$ be $0 < \delta < 1$, with probability at least 1δ ,

$$
\left\|\frac{1}{m}\sum_{i=1}^m\xi(z_i)-E\xi\right\|\leq \frac{2M\log\frac{2}{\delta}}{m}+\sqrt{\frac{2\sigma^2(\xi)\log\frac{2}{\delta}}{m}}.
$$

Apply to estimate $||f_{\mathbf{z},\lambda}$ $f_{\lambda}\vert\vert_{L^2_\rho}$ $\tilde{\rho}_X$.

Acknowledgement

- Institute for Pure and Applied Mathematics (IPAM)
- German Research Foundation (DFG)
- Hausdorff Institute for Mathematics (HIM) in Bonn(Junior Program in Analysis, September-October 2008)

Thank you

for listening!

Feature Maps

Typical intuition of learning with kernels (for classification):

- Kernels map data **implicitly** into (high dimensional) **feature spaces** via **feature maps**, by Mercer's theorem
- Nonlinearly separable data in input space becomelinearly separable in feature space
- **•** Linear classifiers are constructed in feature space

Feature Maps via Mercer's Theorem

Standard feature map in learning literature $\Phi : X \to \ell^2$ <u>≃:</u>

 $\Phi(x) = (\sqrt{\gamma_k} \phi_k(x))_k$

- Φ depends on the measure μ
- Φ is **not unique**: there is ^a different map for each measure μ
- Φ is difficult to compute in general

Non-Mercer Feature Maps

A kernel K on X induces a mapping $\Phi: X \to H_K$

 $\Phi: x \to K_x$

By definition of \langle,\rangle_K \bullet

> $K(x, t) = \langle K_x, K_t \rangle_K =$ $\langle \Phi(x), \Phi(t)\rangle_K$

- Φ : feature map, H_K : feature space
- Φ is **explicit**, not **implicit**
- Φ depends only on K and the domain X

Other Non-Mercer Feature Maps

- The map $\Phi: x \to K_x \in H_K$ is universal, true for any neglitive definite kernel K positive definite kernel K
- Other maps, for specific kernels:
	- Polynomial kernel $K(x,t) = \langle x, t \rangle^2$

$$
\Phi: (x_1, x_2) \to (x_1^2, x_2^2, \sqrt{2}x_1x_2) \in \mathbb{R}^3
$$

Gaussian kernel $K(x,t)=e$ [−]|| x $\frac{|x-t|}{2}$ 2σ2

$$
\Phi: x \to e^{-\frac{||x||^2}{\sigma^2}} (\sqrt{\frac{(2/\sigma^2)^k C_{\alpha}^k}{k!}} x^{\alpha})_{|\alpha|=k, k=0}^{\infty} \in \ell^2
$$

See also Steinwart et al (2005)

Equivalence of Feature Maps

Invariance of geometry: if Φ_1,Φ_2 feature maps, then for $i = 1, 2$ $_2: X \rightarrow H$ are two

> $||\Phi_i(x)$ $-|\Phi_i(t)||^2$ $X^2 = K(x, x) + K(t, t)$ $-2K(x,t)$

Each choice of $\Phi : X \to H_{\Phi}$ is equivalent to a
fectorization of Φ \sim \prime \sim factorization of $\Phi_{\pmb{K}}:x\rightarrow K_x$

Image of Mapped Data

Image of \overline{x} 2 $rac{2}{1}+x$ 2 $\frac{2}{2} \leq 1$ under $\Phi(x) = (x)$ 2 $\bar{1}, x_{\bar{1}}$ 2 $\frac{2}{2},\sqrt{2}x_1x_2)$

Basic Semi-supervised Learning

- Encounter when we have abundant **unlabeled** data, but not much **labeled** data.
- We wish to utilize the unlabeled data to gain some knowledge of the geometry or underlying marginal distribution of the input data.
- Following material is research carried out by Niyogi, Belkin, Sindhwani, and others.

Basic Semi-supervised Learning

- Labeled data: $(x_i, y_i)_{i=1}^l$.
- Unlabeled data: $(x_i)_{i=1}^{l+1}$ $u\$ $i = l + 1$.
- If the input data x_i 's actually lie on or close to a low dimensional manifold (in ^a much higher dimensional ambient space), then we should try to reflect this.
- The new optimization problem is

$$
f^* = \arg\min_{f \in \mathcal{H}_K} \frac{1}{l} \sum_{i=1}^l V(f(x_i), y_i) + \lambda_A ||f||_K^2 + \lambda_I ||f||_I^2.
$$

Graph Laplacian

- A major concept from Spectral Graph Theory (see forexample Fan Chung's book). From the input datapoints x_i , one can create a graph.
- W is the weight matrix of the graph.
- D is the diagonal matrix given by $D_{ii} =$ $\sum_{i=1}^{l+u}$ $\prod_{j=1}^{i+u}W_{ij}$.
- The graph Laplacian is $L=D-W.$
- L has many applications in machine learning.
- If $\mathbf{f} = [f(x_1), \dots, f(x_{l+u})]$, then

$$
\mathbf{f}^T L \mathbf{f} = \frac{1}{2} \sum_{i,j=1}^{l+u} (f(x_i) - f(x_j))^2 W_{ij}.
$$

Laplacian RLS

$$
f^* = \arg\min_{f \in \mathcal{H}_K} \frac{1}{l} \sum_{i=1}^l (f(x_i) - y_i)^2 + \lambda_A ||f||_K^2 + \frac{\lambda_I}{(l+u)^2} \mathbf{f}^T L \mathbf{f}.
$$

The solution has the form

$$
f^*(x) = \sum_{i=1}^{l+u} \alpha_i K(x_i, x).
$$

$$
\alpha = (JK[\mathbf{x}] + \lambda_A lI + \frac{\lambda_I l}{(l+u)^2} LK[\mathbf{x}])^{-1} \mathbf{y},
$$

with $J=\,$ $= diag(1, \ldots, 1, 0, \ldots, 0).$