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Outline of the Talk

Brief Review of Scalar-valued RKHS
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Function Extension: 2 algorithms

Application: Image Colorization

Learning Theory Estimates (if time permits)
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Positive Definite Kernels

X any nonempty set

K : X × X → R is a (real-valued) positive definite
kernel if it is symmetric and

N∑

i,j=1

aiajK(xi, xj) ≥ 0

for any finite set of points {xi}N
i=1 ∈ X and real

numbers {ai}N
i=1 ∈ R.

Complex-valued kernels are often encountered in
complex analysis.
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RKHS

Abstract theory due to Aronszajn (1950).

K a positive definite kernel on X × X. For each x ∈ X,
there is a function Kx : X → R, with Kx(t) = K(x, t).

HK = {
N∑

i=1

aiKxi
: N ∈ N}

with inner product

〈
∑

i

aiKxi
,
∑

j

bjKyj
〉K =

∑

i,j

aibjK(xi, yj)

HK = RKHS associated with K (unique).
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RKHS

Reproducing Property : for each f ∈ HK , for every
x ∈ X

f(x) = 〈f,Kx〉K
Assumption

κ = sup
x∈X

√
K(x, x) < ∞

Then
||f ||∞ ≤ κ||f ||K
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Examples: RKHS

For s > n/2, the Sobolev space Hs(Rn), with

‖f‖2
Hs(Rn) =

1

(2π)n

∫

Rn

∣∣∣(1 + |ξ|2)s/2f̂(ξ)
∣∣∣
2

dξ < ∞,

is an RKHS, with kernel

K(x, y) =
1

(2π)n
1̂

(1 + |ξ|2)s (x − y)
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Examples: RKHS

The Gaussian kernel K(x, y) = exp(− |x−y|2
σ2 ) on Rn

induces the space

HK = {||f ||2HK
=

1

(2π)n(σ
√

π)n

∫

Rn

e
σ2|ξ|2

4 |f̂(ξ)|2dξ < ∞}.

The Laplacian kernel K(x, y) = exp (−a|x − y|), a > 0,
on Rn induces the space

HK = {||f ||2HK
=

1

(2π)n
1

aC(n)

∫

Rn

(a2+|ξ|2)n+1

2 |f̂(ξ)|2dξ < ∞}

with C(n) = 2nπ
n−1

2 Γ(n+1
2 )
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Examples: RKHS

The Laplacian kernel has less smoothing effect than
the Gaussian kernel (may be useful if we do not want
very smooth functions)

Generalization of the Gaussian kernel:
K(x, y) = exp(− |x−y|p

σ2 ), where 0 ≤ p ≤ 2 (Schoenberg
1938).
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Vector-valued RKHS

Laurent Schwartz (1964): very general framework for
RKHS of functions with values in locally convex
topological spaces

Some recent works in machine learning related
literature: Pontil-Micchelli(2005), Caponnetto-De Vito
(2006), Reisert-Burkhardt (2007), Carmeli et al (2006).

Here we will focus on RKHS of functions with values in
a Hilbert space.
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Operator-valued kernels

D a nonempty set, W a real Hilbert space with the
inner product 〈·, ·〉W , L(W ) the Banach space of
bounded linear operators on W.

A function K : D × D → L(W) is said to be an
operator-valued positive definite kernel if for each
pair (x, y) ∈ D × D, K(x, y) ∈ L(W) is a self-adjoint
operator and

N∑

i,j=1

〈wi,K(xi, xj)wj〉W ≥ 0

for every finite set of points {xi}N
i=1 in D and {wi}N

i=1 in
W, where N ∈ N.
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Vector-valued RKHS

WD = vector space of all functions f : D → W.

For each x ∈ D and w ∈ W, we form a function
Kxw = K(., x)w ∈ WD defined by

(Kxw)(y) = K(y, x)w for all y ∈ D.

Consider the set
H0 = span{Kxw | x ∈ D, w ∈ W} ⊂ WD. For
f =

∑N
i=1 Kxi

wi, g =
∑N

i=1 Kyi
zi ∈ H0, we define

〈 f, g 〉HK
=

N∑

i,j=1

〈wi,K(xi, yj)zj〉W .
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Vector-valued RKHS

Taking the closure of H0 gives the Hilbert space HK .

The reproducing property is

〈f(x), w〉W = 〈f,Kxw〉HK
for all f ∈ HK .

For each x ∈ D and f ∈ HK :

||f(x)||W ≤
√

||K(x, x)|| ||f ||HK
.
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Vector-valued RKHS

Simple example: let k(x, y) be a real-valued positive
definite kernel and B a positive definite matrix. Then

K(x, y) = Bk(x, y)

is a matrix-valued kernel, which induces a
vector-valued RKHS
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Function Extension

D ⊂ Ω are closed sets in a complete separable metric
space

f : D → W,

Goal: extend f : D → W to F : Ω → W, such that F is
close to f on the smaller set D, and reasonably
well-behaved on the larger set Ω.
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Extension Operator

Assume we have a kernel K : Ω × Ω → W.

Assume that K(x, x) is compact for each x, and that
supx∈Ω ||K(x, x)|| < ∞.

For f : D → W, define LK : L2
µ(D;W) → HK(Ω), with

LKf(x) =

∫

D
K(x, y)f(y)dµ(y),

for every x ∈ Ω. This defines an extension operator.
The adjoint operator L∗

K : HK(Ω) → L2
µ(D;W) is the

restriction operator: L∗
KF = F |D

Vector-valued Reproducing Kernel Hilbert Spaces – p. 17/71



Function Extension

Find the extension function F : Ω → W by solving the
minimization problem

inf
F∈HK(Ω)

||f − L∗
KF ||2L2

µ(D;W) + γ||F ||2HK(Ω),

This problem has a unique solution

Fγ = (LKL∗
K + γI)−1LKf
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Function Extension: Spectral Algorithm

Scalar version: Coifman-Lafon (2005)

Considered as an operator L2
µ(D;W) → L2

µ(D;W), LK

is compact, positive, with orthonormal spectrum
(λk, φk)

∞
k=1.

Eigenfunction extension: for λk > 0, we extend
φk : D → W to Φk : Ω → W by

Φk(x) =
1

λk

∫

D
K(x, y)φk(y)dµ(y), for x ∈ Ω.

To be numerically reliable, one may want to consider
only λk > δ, for some given δ > 0.
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Function Extension: Spectral Algorithm

Compute the eigenvalues and eigenfunctions
{(λk, φk)} of LK : L2

µ(D;W) → L2
µ(D;W).

Compute the expansion coefficients ak’s of f in the
basis {φk}: f =

∑
k akφk

Compute Fδ =
∑

k,λk>δ
λk

λk+γakΦk, for some δ > 0

Alternatively, to take care of the case λk = 0, compute
directly

Fγ(x) =
∞∑

k=1

ak

λk + γ

∫

D
K(x, y)φk(y)dµ(y)

.
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Function Extension: Least square

Assume now that D = {xi}m
i=1, with wi = f(xi).

An algorithm with real kernel-based flavor:

Fγ = arg min
F∈HK(Ω)

1

m

m∑

i=1

||F (xi) − wi||2W + γ||F ||2HK(Ω).

This has a unique solution Fγ =
∑m

i=1 Kxi
ai, with

Fγ(x) =
∑m

i=1 K(x, xi)ai, where the vectors a′is ∈ W
satisfy the m linear equations

m∑

j=1

K(xi, xj)aj + mγai = wi.
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Compare two algorithms

Spectral: theoretically more general (D can be either
discrete or continuous)

If D is discrete and µ is the uniform distribution, then
Least square and Spectral are the same analytically.

Numerically, Least square is easier to implement and
should be expected to be more stable (involves solving
well-conditioned systems of linear equations, vs finding
eigenvalues/eigenfunctions of the Spectral method).

The basis functions in Least square are exact (based
on the given data points)

Here we will focus on the Least square method for
numerical work
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Image Colorization

Joint work with Sung Ha Kang (Georgia Tech) and Triet
Le (Yale)

Ω is the given grayscale image

D ⊂ Ω is the given region with colors (often very small).
The initial function here is f : D → R3 (red, green, blue)

Goal: extend the colors to all of Ω.

Some (among many) other works this on problem:
Levin-Lischinski-Weiss(2004), Sapiro(2005),
Qiu-Guan(2005), Fornasier (2006),
Buades-Coll-Lisani-Sbert(2007), Kang-March(2007),
etc
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Nonlocal kernel

Simplest scenario: all the colors are independent.

K(x, y) = diag(k1(x, y), k2(x, y), k3(x, y)) where each ki

is a scalar-valued kernel.

Here we will use scalar-valued kernels of the form

k(x, y) = exp(−|gr(x) − gr(y)|p
σ1

) exp(−|x − y|p
σ2

)

where gr(x) is the patch of radius r centered at x, of
size (2r + 1) × (2r + 1), with g denoting the gray level.

Extend the color function using least square RKHS
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Chromaticity and Brightness Model

For sharper resulting images, we consider the CB model of
color.

f(x) = B(x)C(x), where B(x) is the brightness, and
C(x) = (r(x), g(x), b(x)) ∈ S2.

Assumption : we are given the brightness B(x) on all
of Ω, but C(x) only on D.

Need: to extend C(x) to all of Ω.

Problem : the set of S2-valued functions is not a vector
space
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Stereographic Projection

Solution for the S2-valued Chromaticity function:
Stereographic projection

Since the colors are all nonnegative and for symmetry,
we need a symmetric stereographic projection that
projects from the first quadrant

Projection point: (− 1√
3
,− 1√

3
,− 1√

3
)

Projection plane: X + Y + Z = 0
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Stereographic Projection

Forward projection from S2 onto X + Y + Z = 0:
X = 3x−(x+y+z)

√

3(x+y+z+
√

3)
, Y = 3y−(x+y+z)

√

3(x+y+z+
√

3)
, Z = 3z−(x+y+z)

√

3(x+y+z+
√

3)
,

Inverse projection from X + Y + Z = 0 onto S2:

x = 2
√

3X+1−(X2+Y 2+Z2)
√

3(1+X2+Y 2+Z2)
, y = 2

√

3Y +1−(X2+Y 2+Z2)
√

3(1+X2+Y 2+Z2)
,

z = 2
√

3Z+1−(X2+Y 2+Z2)
√

3(1+X2+Y 2+Z2)
.
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Image Colorization Algorithm

Given: Brightness B(x) on all of Ω and Chromaticity on
small subset D ⊂ Ω

Project C(x) : D → S2 to C(x) : D → R2

Extend C(x) to Ω :→ R2 using the least square
algorithm in the RKHS induced by the nonlocal kernel
above (kernel constructed using B(x))

Project the results back onto S2 to get the extended
Chromaticity function from Ω → S2

Multiply the resulting Chromaticity with the given
Brightness to obtain the final answer.
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Colorization Algorithm - Complexity

Involves solving 2 systems of linear equations, each of
size m × m, where m = |D|
Evaluation step involves computing kernel matrix of
size m × M , where M = |Ω|
Main computation time is in computing the kernel

Explicit and unique solution, no iteration required
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Numerical Examples
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Figure 1: p = 1, r = 1, σ1 = 0.5, σ2 = 1. About 0.5%

of color is given
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Numerical Examples
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Figure 2: p = 1, r = 1, σ1 = 0.5, σ2 = 1. About 1% of

color is given
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Numerical Examples
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Figure 3: p = 1, r = 1, σ1 = 0.5, σ2 = 1. About 1% of

color is given
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Numerical Examples
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Figure 4: p = 1, r = 2, σ1 = 0.5, σ2 = 2. About 0.96%

of color is given
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Numerical Examples - Cartoon

Figure 5: The colorization result with r = 0, p = 2,

σ1 = 0.001, and σ2 = 10.
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Numerical Examples

Figure 6: Chromaticity and Brightness model via

Stereographic Projection vs. RGB channel: p = 1,

r = 2, σ1 = 0.5, and σ2 = 10
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Numerical Examples

Figure 7: p = 2, r = 2, σ1 = 0.1, and σ2 = 10
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Numerical Examples
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Figure 8: p = 1, r = 0, σ1 = 0.05, σ2 = 10.
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Numerical Examples
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Figure 9: The colorization result with r = 10, p = 1.5

σ1 = 0.4, σ2 = 10. Less than 2% of color is given
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Conclusion - Main Part

Operator-valued positive definite kernels and their
induced vector-valued RKHS

Use of RKHS for the problem of function extension
(vector-valued)

An application in Image Colorization

Full preprint of paper is: Minh Ha Quang, Sung Ha
Kang, and Triet Le, Image and video colorization using
vector-valued reproducing kernel Hilbert spaces, available
on my website (or UCLA CAM reports)
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Some questions

Is stereographic projection optimal? More general
method?

How to incorporate geometry of the images (manifold
structure)?

Example: the eye
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Error Estimates - Learning Theory

Input space X ⊂ Rn closed (complete separable metric
space)

Output space Y ⊂ [−M,M ] (finite dimensional inner
product space)

Z = X × Y equipped with an unknown probability
measure ρ.

ρ(x, y) = ρX(x)ρ(y|x)

ρ determines a correspondence between X and Y .

Learning algorithms: find functions f : X → Y to
capture this correspondence.
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Least Square Regression

ερ(f) =
∫
X×Y (f(x) − y)2dρ is minimized by the

regression function

fρ(x) =
∫
Y ydρ(y|x)

Assumption : fρ ∈ L2
ρX

ερ(f) − ερ(fρ) = ||f − fρ||2L2
ρX

, f ∈ L2
ρX

We want a function fz that approximates fρ in the
|| ||L2

ρX
norm.
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Learning from Sample Data

ερ is not computable, since ρ is unknown.

Access to sample z = (xi, yi)
m
i=1 ∈ (X × Y )m, drawn IID

according to ρ, thus can construct functions fz based
on this sample data, to approximate fρ or sgn(fρ).

Vector-valued Reproducing Kernel Hilbert Spaces – p. 45/71



Learning Algorithms with Kernel

Construct a function

f
z,λ = arg min

HK

1

m

m∑

i=1

V (f(xi), yi) + λΩ(f)

where HK is a Reproducing Kernel Hilbert Spaces with
norm || ||K , λ > 0

Ω(f) is a regularization term characterizing the
smoothness/capacity of f

Typically Ω(f) = ||f ||2K .
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Examples

V (f(x), y) = max(0, 1 − f(x)y): Support Vector Machine

V (f(x), y) = (f(x) − y)2: Regularized Least Square

Vector-valued Reproducing Kernel Hilbert Spaces – p. 47/71



Regularized Least Square (RLS)

f
z,λ = arg min

HK

1

m

m∑

i=1

(f(xi) − yi)
2 + λ||f ||2K

is uniquely given by

f
z,λ =

m∑

i=1

aiK(xi, .)

where
(K[x] + mλI)a = y

with K[x] = m × m matrix having entries K[x]ij = K(xi, xj).
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Integral Operators induced by Kernels

Consider LK : L2
µ → L2

µ, µ a finite Borel measure, K

continuous, positive definite,

(LKf)(x) =
∫
X K(x, t)f(t)dµ(t)

LK is compact, positive, with eigenvalues {γk}∞k=0 and
eigenfunctions {φk}∞k=0

γk+1 ≤ γk and limk→∞ γk = 0
∑∞

k=0 γk ≤ κ2

where κ2 = maxx∈X K(x, x).

{φk}∞k=0 form an orthonormal basis in L2
µ
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Integral Operators

Mercer’s Theorem (1909): K continuous, positive
definite, µ a finite, strictly positive Borel measure on X

K(x, t) =

∞∑

k=1

γkφk(x)φk(t)

where the convergence is absolute for each pair (x, t)
and uniform on compact subsets.

HK = {f ∈ L2
µ(X) : ||f ||2K =

∞∑

k=0

|〈f, φk〉|2
γk

< ∞}
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Spectra and Convergence

Theorem 1 Suppose |y| ≤ M almost surely. Assume that
fρ ∈ HK . Then for any 0 < δ < 1, with probability at least
1 − δ,

ερ(fz,λ0
) − ερ(fρ) ≤ 144(log

4

δ
) [M + κ||fρ||K ]2

(
D(λ0)

m

)
,

where λ0 is the unique positive number satisfying

λ0 = 144(log
4

δ
)

(
M + κ||fρ||K

||fρ||K

)2
D(λ0)

m

D(λ) =
∞∑

k=1

γk

λ + γk
≤ κ2

λ
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Effective Dimensionality

D(λ0) ≤ min{dim(HK),

√
m

12
√

log 4
δ

}

For δ = 0.05 (so that we have a confidence level of
95%), we have

D(λ0) ≤ min{dim(HK), 0.0398
√

m},

For m = 1000 and m = 1000, 000, one has

D(λ0) ≤ min{dim(HK), 1.26}

D(λ0) ≤ min{dim(HK), 39.81}
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Effective Dimensionality

D(λ0) ≤ min{dim(HK),

√
m

12
√

log 4
δ

}

The order
√

m for the upper bound is tight.
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Convergence Analysis Framework

Sample Error/Approximation Error Decomposition

Inverse Problem Formulation

Law of Large Numbers for Vector-Valued Random
Variables
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Sample Error and Approximation Error

Theoretical version of f
z,λ:

fλ = arg min
HK

∫

Z
(f(x) − y)2 + λ||f ||2K

Error Decomposition

||f
z,λ − fρ||L2

ρX
≤ ||f

z,λ − fλ||L2
ρX

+ ||fλ − fρ||L2
ρX

For λ > 0 fixed

||f
z,λ − fλ||L2

ρX
→ 0 as m → ∞

As λ → 0

||fλ − fρ||L2
ρX

→ 0
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Inverse Problem Formulation

Solve an ill-posed operator equation

Af = F

f ∈ H1, F ∈ H2, H1, H2 Hilbert spaces, by
regularization.

Find f∗ that mimimizes

||Af − F ||22 + λ||f ||21

Normal Equation

f∗ = (A∗A + λI)−1A∗F
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Inverse Problem Formulation

f
z,λ = arg min ||Sxf − y||2Rm + mλ||f ||2

where Sx : f ∈ HK → (f(x1), . . . , f(xm)) ∈ Rm

S∗
x

: a ∈ R
m →

m∑

i=1

aiKxi
∈ HK

fλ = arg min
HK

||Jf − fρ||2L2
ρX

+ λ||f ||2K

where J : HK → L2
ρX

= inclusion operator and
J∗ = LK : L2

ρX
→ HK :

(LKf)(t) =

∫

Z
K(x, t)f(x)dρX(x)
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Inverse Problem Formulation

f
z,λ = (S∗

x
Sx + mλI)−1S∗

x
y = (

1

m
S∗

x
Sx + λI)−1 1

m
S∗

x
y

1

m
S∗

x
Sxf =

1

m

m∑

i=1

f(xi)Kxi
=

1

m

m∑

i=1

〈f,Kxi
〉KKxi

1

m
S∗

x
y =

1

m

m∑

i=1

yiKxi

fλ = (LK + λI)−1LKfρ

LKf =

∫

X
〈f,Kx〉KKxdρX(x)

LKfρ =

∫

Z
yKxdρ(x, y)
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Law of Large Numbers

Theorem 2 (Pinelis, 1994) Let H be a Hilbert space with
norm || || and ξ be a random variable on (Z, ρ) with values in
H. Assume that ||ξ|| ≤ M < ∞ almost surely for a fixed
constant M > 0. Let σ2(ξ) = E(||ξ||2). Let {zi}m

i=1 be
independently sampled according to ρ. Then for any
0 < δ < 1, with probability at least 1 − δ,

∥∥∥∥∥
1

m

m∑

i=1

ξ(zi) − Eξ

∥∥∥∥∥ ≤ 2M log 2
δ

m
+

√
2σ2(ξ) log 2

δ

m
.

Apply to estimate ||f
z,λ − fλ||L2

ρX
.
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Thank you

for listening!
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Feature Maps

Typical intuition of learning with kernels (for classification):

Kernels map data implicitly into (high dimensional)
feature spaces via feature maps , by Mercer’s
theorem

Nonlinearly separable data in input space become
linearly separable in feature space

Linear classifiers are constructed in feature space
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Feature Maps via Mercer’s Theorem

Standard feature map in learning literature Φ : X → ℓ2:

Φ(x) = (
√

γkφk(x))k

Φ depends on the measure µ

Φ is not unique : there is a different map for each
measure µ

Φ is difficult to compute in general
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Non-Mercer Feature Maps

A kernel K on X induces a mapping Φ : X → HK

Φ : x → Kx

By definition of 〈, 〉K

K(x, t) = 〈Kx,Kt〉K = 〈Φ(x),Φ(t)〉K

Φ: feature map , HK : feature space

Φ is explicit , not implicit

Φ depends only on K and the domain X
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Other Non-Mercer Feature Maps

The map Φ : x → Kx ∈ HK is universal, true for any
positive definite kernel K

Other maps, for specific kernels:
Polynomial kernel K(x, t) = 〈x, t〉2

Φ : (x1, x2) → (x2
1, x

2
2,
√

2x1x2) ∈ R
3

Gaussian kernel K(x, t) = e−
||x−t||2

σ2

Φ : x → e−
||x||2

σ2 (

√
(2/σ2)kCk

α

k!
xα)∞|α|=k,k=0 ∈ ℓ2

See also Steinwart et al (2005)
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Equivalence of Feature Maps

Invariance of geometry: if Φ1,Φ2 : X → H are two
feature maps, then for i = 1, 2

||Φi(x) − Φi(t)||2 = K(x, x) + K(t, t) − 2K(x, t)

Each choice of Φ : X → HΦ is equivalent to a
factorization of ΦK : x → Kx

x ∈ X
Φ

&&
LLLLLLLLLL

ΦK
// Kx ∈ HK

Φx ∈ HΦ

LΦ

77ppppppppppp
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Image of Mapped Data

Image of x2
1 + x2

2 ≤ 1 under Φ(x) = (x2
1, x

2
2,
√

2x1x2)
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Basic Semi-supervised Learning

Encounter when we have abundant unlabeled data,
but not much labeled data.

We wish to utilize the unlabeled data to gain some
knowledge of the geometry or underlying marginal
distribution of the input data.

Following material is research carried out by Niyogi,
Belkin, Sindhwani, and others.
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Basic Semi-supervised Learning

Labeled data: (xi, yi)
l
i=1.

Unlabeled data: (xi)
l+u
i=l+1.

If the input data xi’s actually lie on or close to a low
dimensional manifold (in a much higher dimensional
ambient space), then we should try to reflect this.

The new optimization problem is

f∗ = arg min
f∈HK

1

l

l∑

i=1

V (f(xi), yi) + λA||f ||2K + λI ||f ||2I .
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Graph Laplacian

A major concept from Spectral Graph Theory (see for
example Fan Chung’s book). From the input data
points xi, one can create a graph.

W is the weight matrix of the graph.

D is the diagonal matrix given by Dii =
∑l+u

j=1 Wij.

The graph Laplacian is L = D − W .

L has many applications in machine learning.

If f = [f(x1), . . . , f(xl+u)], then

fT Lf =
1

2

l+u∑

i,j=1

(f(xi) − f(xj))
2Wij .
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Laplacian RLS

f∗ = arg min
f∈HK

1

l

l∑

i=1

(f(xi) − yi)
2 + λA||f ||2K +

λI

(l + u)2
fT Lf .

The solution has the form

f∗(x) =
l+u∑

i=1

αiK(xi, x).

α = (JK[x] + λAlI +
λI l

(l + u)2
LK[x])−1y,

with J = diag(1, . . . , 1, 0, . . . , 0).
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