On the regularity of the infinity manifolds: the case of Sitnikov problem and some global aspects of the dynamics

Regina Martínez¹ & Carles Simó²

 (1) Dept. Matemàtiques, UAB

⁽²⁾ Dept. Matemàtica Aplicada i Anàlisi, UB

reginamb@mat.uab.cat, carles@maia.ub.es

Foundations of Computational Mathematics Visitor's Seminar

Fields Institute, Toronto

20091112

Preliminaries

One of the outstanding problems in Celestial Mechanics is the **detection** and computation of capture and escape boundaries.

They are related to the **existence of some invariant objects at in**finity which have invariant manifolds.

But these invariant objects **are not hyperbolic**. They are only **parabolic** in the sense of Dynamical Systems.

It is well known that this fact was **partially analysed by Moser and** McGehee. The manifolds exists and they are analytic except, perhaps, at infinity. Related results are due to **C.Robinson**.

Standing question: Which is the **regularity class** of these manifolds? How can we **compute them** with rigorous error control, so that they can be used to obtain **capture and escape boundaries**?

I shall use the same problem analysed in the past. The well known **Sitnikov** problem.

Contents

- The problem
- Invariant manifolds at infinity
- Main result: the Gevrey character of the manifolds
- Sketch of the proof
- Effective expansions to high order and additional checks
- Optimal estimates
- Intersections with $z = 0$ and splitting
- Tending to the limit case $e = 1$
- Escape/capture boundaries
- Some further global dynamical properties
- Conclusions

The problem

To decide about **escape/capture** on a given problem of Celestial Mechanics.

Related questions: transversality of invariant manifolds, measure of the splitting, creation of chaotic zones, symbolic dynamics, non-integrability.

We consider one of the simplest models: **Sitnikov problem**

$$
\ddot{z} = -\frac{z}{(z^2 + r(t)^2/4)^{3/2}}, \quad r(t) = 1 - e \cos(E), \quad t = E - e \sin(E).
$$

The problem has **1 d.o.f. for** $e = 0$ and, hence, it is **integrable** Historical notes: Chazy, Sitnikov, Alekseev, Moser, McGehee.

As a first order system

$$
\dot{z} = v, \quad \dot{v} = z(z^2 + r(t)^2/4)^{-3/2}.
$$

A new time, E , ${}' = d/dE$ and Hamiltonian formulation:

$$
H(z, \theta, v, J) = (1 - e \cos(\theta)) \left[\frac{1}{2}v^2 - (z^2 + (1 - e \cos(\theta))^2/4)^{-1/2} \right] - J.
$$

A suitable **Poincaré section S**: polar coordinates $(|v|, t)$ when $z = 0$. Better (APM) use $(|v|(1-e\cos(E))^{1/2}, E)$ instead of $(|v|, t)$.

Poincaré map: $(|v|_k, E_k) \rightarrow (|v|_{k+1}, E_{k+1}).$

Symmetries: S_1 : $(z, v, t) \leftrightarrow (z, -v, -t), S_2$: $(z, v, t) \leftrightarrow (-z, v, -t),$ S_3 : $(z, v, t) \leftrightarrow (-z, -v, t)$.

If the infinitesimal mass **escapes to infinity**, the massive bodies move in \mathbb{S}^1 (eventually, after regularisation of binary collisions using Levi-Civita variables). One talks of a **periodic orbit at infinity**.

Invariant manifolds at infinity

Theorem (Moser): The problem has periodic orbits at both z plus and minus infinity, with invariant manifolds (orbits going to or coming from infinity parabolically). For e small enough the manifolds intersect S in curves diffeomorphic to circles. These curves have transversal intersection, implying the existence of heteroclinic orbits from $+\infty$ to $-\infty$ and vice versa.

Consequences: Non-integrability, embedding of the shift with infinitely many symbols, existence of oscillatory solutions, escape/capture domains, etc.

The p.o. at ∞ is **parabolic** or, topologically, **weakly hyperbolic**. The linearised map around the p.o. is **the identity**.

McGehee variables: $z = 2/q^2$, $\dot{z} = -p$ and eccentric anomaly

$$
q' = \Psi q^3 p
$$
, $p' = \Psi q^4 \left(1 + \Psi^2 q^4 \right)^{-3/2}$

where $\Psi = \frac{1-e \cos(E)}{4}$ and $\prime = d/dE$.

If $e = 0$ the invariant manifolds are given as $p = \pm q(1 + q^4/16)^{-1/4}$.

Let us denote as W u, s $\pm \frac{u}{\pm}$ the intersections of unstable/stable manifolds of $\pm \infty$ with S. Due to S_3 , W^u_{\pm} coincide and also W^s_{\pm} coincide, but W^s_+ , W^u_{-} have $v > 0$, while W_-^s, W_+^u have $v < 0$.

Due to S_1 , W_+^u and W_-^s are symmetric with respect to $E=0$.

We look for a **parametric representation** of the manifolds of the p.o. as

$$
p(E, e, q) = \sum_{k \ge 1} b_k(e, E) q^k = \sum_{k \ge 1} \sum_{j \ge 0} \sum_{i \ge 0} c_{i,j,k} e^i \operatorname{sc}(jE) q^k,
$$

where $b_k(e, E)$ are trigonometric polynomials in E with polynomial coefficients in e , $c_{i,j,k}$ are rational coefficients, sc denotes sin or cos functions

McGehee proved: The invariant manifolds are analytic except, perhaps, at $q = 0$.

It can be reduced to obtain invariant manifolds of **fixed parabolic points** of discrete maps (thing about the intersection of the manifolds with $E = 0$).

In this context Baldomà-Haro proved: Generically, 1D invariant manifolds of fixed parabolic points are of some Gevrey class

Recall: a formal power series \sum $n \geq 0$ $a_n \xi^n$ is of Gevrey class s if \sum $n\geq 0$ $a_n(n!)^{-s} \xi^n$ is analytic around the origin.

Problem: To decide about the **regularity class** of $p(E, e, q)$ and to obtain an explicit representation.

Solution: First we look for a representation, asking for **invariance**:

$$
\Psi q^4 \left(1 + \Psi^2 q^4 \right)^{-3/2} = \sum_{k \ge 1} \frac{db_k}{dE} (e, E) q^k +
$$

$$
\sum_{k \ge 1} b_k (e, E) \Psi k q^{k+2} \sum_{m \ge 1} b_m (e, E) q^m.
$$

Recurrence:

$$
\binom{-3/2}{m}\!\!\left(\!\frac{1\!\!-\!\!e\cos(E)}{4}\!\right)^{\!2m+1}\!\!\!=\!b'_{\,n}(e,E)+\frac{1\!\!-\!\!e\cos E}{4}\!\sum_{k=1}^{n-3}kb_{k}(e,E)b_{n-2-k}(e,E),
$$

where $m = n/4 - 1$, defined only for n multiple of 4.

Solving the recurrence: For W^u_+ be have $b_1 = 1$. Then we start to compute iteratively. But b'_7 $m'_n(e,E) = \textbf{known function}$ allows to compute only the periodic part b_n of $b_n = b_n + \overline{b}_n$. The constant part \overline{b}_n is computed previous to the solution of $b'_{n+3}(e, E) =$ known function, to have a zero average function when we integrate.

An easy induction gives the following result on the format of the solution:

Lemma The coefficients $b_k(e, E)$ satisfy

- For k odd (resp. even) b_k is even (resp. odd) in E. It contains harmonics from 0 to $(k-1)/2$, all of them cosinus (resp. from 1 to $(k-2)/2$, all of them sinus).
- The coefficients of the j−th harmonic in b_k contain, at most, powers of e with exponents from j to $(k-1)/2$ for k odd (resp. from j to $(k-2)/2$ for k even). The step in the exponents of e is 2.

First $c_{i,j,k} = a/b$. Columns: $k, j, i, a, b \quad (q^k \operatorname{sc}(jE)e^i)$.

To have some insight, we look to the behaviour of the coefficients obtained numerically for **larger** n .

One observes that the behaviour of a_k depends on the value of k mod 6. On the right plot, from top to bottom, the values of k mod 6 are $5,2,3,0,1,4$, respectively. A suitable fit helps to display results in a nice way.

It is essential to remark: $b_2 = b_3 = b_4 = 0$. Also $b_6 = b_7 = b_{10} = 0$, but this is not so relevant.

Main result: the Gevrey character of the manifolds

Guided by the behaviour suggested by the numerical results, we can scale properly the recurrence and introduce $B_n(e, E)$

 $b_n(e, E) = \Gamma((n + 1)/3) \rho^n B_n(e, E)$

where $\rho = (3/4)^{1/3}$. This allows to obtain

Theorem: The manifolds W u, s $\mathcal{L}^{a,s}_{\pm}$ are **exactly Gevrey-1/3** in q uniformly for $E \in \mathbb{S}^1$, $e \in (0,1]$. Concretely, let a_n denote the norm of b_n . Then there exist constants $c_1, c_2, 0 < c_1 < c_2$ such that, for $n \geq 5$ except for $n = 6, 7, 10$ one has

 ${\bf c_{1}}\rho^{\bf n} <{\bf a_{n}}/\Gamma(({\bf n}+{\bf 1})/3)<{\bf c_{2}}\rho^{\bf n}.$

Furthermore the coefficient $B_{1,1,n}$ of $e \sin(E)$ in B_n satisfies $0 < C_1 <$ $|B_{1,1,n}| < C_2$ for some constants C_1, C_2 and $n \geq 8$, except for $n = 9, 10, 13$.

Sketch of the proof

Steps:

- Rewrite the recurrence in terms of B_n ,
- Note that with this scaling, and dividing by a suitable Γ the **term on** the left becomes negligible,
- Note that with this scaling, the **terms coming from** b_1b_{n-3} are $\mathcal{O}(1)$ and the effect of **all the other terms in the sum is** $\mathcal{O}(n^{-4/3})$,
- The essential part reduces to

$$
B'_n = -(1 - e \cos(E))B_{n-3} + \mathcal{O}(n^{-4/3}),
$$

where the $\mathcal{O}(n^{-4/3})$ is bounded by some $An^{-4/3}, A>0$, indep. of n.

- This gives the **purely periodic part** B_n of B_n . The **average part** \tilde{B}_n is obtained by requiring that $(1 - e \cos(E))B_n$ has zero average.
- The **operator** T $B_{n-3} \to B_n$, neglecting the $\mathcal{O}(n^{-4/3})$ and going from 2π -periodic to 2π -periodic satisfies: T^4 has 2 eigenvectors with eigenvalue 1. All other eigenvalues have $|\mu| < 1$.

Effective expansions to high order and additional checks

Furthermore let $A_n = \sum_{i,j} |C_{i,j,n}|$ be the norm of $B_n = \sum_{i,j} C_{i,j,n} e^{iS_{\text{SC}}}\cos(jE)$. Then

$$
lim_{n=6m+k,m\to\infty}A_n=L_k,\quad k=0,\ldots,5
$$

and

$$
A_{n=6m+k} = L_k + \delta_{k,1} n^{-1/3} + \delta_{k,2} n^{-2/3} + \dots
$$

Left: $log(A_n)$ as a function of *n*. Right: $A_n - L_5$ for $n = 6m + 5$, $L_5 \approx$ 0.139278497

Asymptotic character of the formal series

The **formal series** introduced is **not convergent**, but can be **useful** to compute p for given q, e, E if we know its **asymptotic character**. The main result in this direction is the following

Theorem: The formal expansion gives an **asymptotic representation** of the invariant manifolds of p.o. ∞ . Concretely, the **truncation of the** series at order n has an error which is bounded by the sum of the norms of next three terms

$$
C(a_{n+1}q^{n+1} + a_{n+2}q^{n+2} + a_{n+3}q^{n+3}),
$$

where C is a constant which can be taken close to 1.

Optimal estimates

Given q the **optimal order is** $n_{\text{opt}} \approx 4/q^3$. Using optimal order the error bound is $\langle N \exp(-4/(3q^3)), N \rangle 1$. Large q allows to start numerical integration at small z: $z = 2/q^2 = 18$ if $q = 1/3$.

 $\log_{10} a_n q^n$ as a function of *n* for $q = 1/3$.

Intersections with $z = 0$ and splitting

Manifolds of $z = 0$ for $e = 0.1, 0.5, 0.9, 0.999$.

Manifolds with $e = 1 - 10^{-k}$, $k = 3, ..., 8$ with vertical variable divided by $\delta =$ √ 1 − e. Right: Right (left) angle of splitting as a function of $e(-e)$. For $e \to 1$ the right splitting behaves as $2 \arctan(c/\delta)$.

Tending to the limit case $e = 1$

When $e \rightarrow 1$ we observe two interesting facts:

- Close to $E = 0$ and scaling the vertical variable by $\delta =$ √ $1 - e$ the manifolds are essentially independent of e . They have **the same shape**.
- In the limit the manifolds have a radial jump from $E \to 0$ to $E \rightarrow 0_+$. This has a **simple mechanical explanation** and is related to the **approach to triple collision**. Can also be explained using the limit case of mass ratio tending to zero in the **isosceles problem**, by analysing the invariant manifolds of the central configurations in the triple collision manifold.

The first part is analysed by introducing $E = \delta s$, $z = \delta^2 u$, $v = w/\delta$, writing the equations in the new variables, using a (large) compact set for u, s . When $\delta \to 0$ there exists a limit equation.

The second part is analysed using the RTBP with the **primaries in collinear parabolic orbits**. The relevant parameter is the **time** t_0 of **passage** through $z = 0$ assuming the primaries collide at $t=0$. If $t_0 > 0$ or $t_0 < 0$, suitable scalings give **two different limit problems**.

Escape/capture boundaries

Left: Plot of the **corrections for** p with respect to the case $e = 0$ for $e=0.1,0.2,\ldots,1.0$ for $q=1/3$ as a function of E. This is useful for early detection of escape/capture.

Middle: **Maximal and minimal values of the corrections** for the full range $E \in [0, 2\pi]$ as a **function of** e.

Right: The same values **scaled by** e . Note that a **linear behaviour** with respect to e (as would be the case using expansion in powers of e) is only approximated for $e \ll 1$.

Some further global dynamical properties Stability of the trivial solution

At $z = 0$ we have $d\xi/dE = (1 - e \cos(E))\eta$, $d\eta/dE = -8\xi/(1 - e \cos(E))^2$ a Hill equation of Ince's type. More general cases studied in Martínez-Samà-S for general homogeneous potentials and fully 3D.

Left: Tr vs $-\log(1-e)$. Right: a detail of open gaps below $Tr + 2 = 0$. **Proposition**. All gaps at $Tr = 2$ are closed. All gaps at $Tr = -2$ are open. Exists a limit behaviour. This implies infinitely many bifurcations of periodic orbits.

The **rotation number** R at the fixed point (average angle turned by E under one Poincaré iteration) decreases for e increasing. For fixed e it increases with radius. At $e=0, R=1/2$ $\frac{1}{2}$ 8. It is of the form $1/m, m$ odd if Tr=2, $2/m$, m odd if Tr=-2.

Invariant curves, away from the origin (left) and very close to the origin (right) for $e = 0.85586255$ with Tr ≈ -2 and $R = 2/7$.

The **flower-like** pattern appears with $7, 9, 11, \ldots$ petals every time Tr ≈ -2 .

A global view on the dynamics

Computation of rotation number, detection of islands, escape, outermost invariant rotational curve, ... starting on $E = \pi$, 1000 values of e, 20000 values of $v \in [0, 2)$. Statistics: in islands 4.6%; in rotational invariant curves 48.9%; in confined chaotic zones 0.2% ; escape 46.3%

Variables: $(e, v(1+e)^{1/2})$. Red: points in islands (some islands are identified).Blue: outermost invariant curve. White below blue: rotational invariant curves. White on top of blue: escape.

Left: Same as previous plot, but for $e \in [0.999, 1)$. Middle: Location of **outermost invariant curve** modified by adding a suitable function of e, to **enhance jumps**. Right: **p.o.** of rotation number $R = 2/1$, showing initial data (red) and Tr (blue).

On next page: **Poincaré maps** for $e = 0.032, 0.540, 0.790, 0.910,$ close to **breakdown of rotational i.c.** outside islands of periods $1, 3, 4, 5$, respectively.

Conclusions

We can summarize what we have obtained and possible future work.

- \bullet It is feasible to compute W u, s $\mathcal{L}^{u,s}_{\pm}$ at high order, enough to have accurate escape/capture boundaries.
- It is feasible to **prove the Gevrey character of the series**.
- It is feasible to obtain rigorous and useful error estimates and optimal order
- The global dynamics of Sitnikov problem can be considered as fully understood for all e, in a reasonable way.
- It confirms the relation between Gevrey functions, asymptotic expansions, exponentially small phenomena, etc.
- The method opens the way to other more relevant problems, like 2DCR3BP, 3DCR3BP, 3DER3BP, general 3BP, etc.
- The approach can allow to produce sharp estimates on celebrated theorems by Takens (interpolation thm) and Neishtadt (averaging thm) when a close to the identity map is approximated by a flow.

Additional notes

I would like to present some elementary asymptotic considerations. Assume some phenomenon is measured by a function φ depending on the **small parameter** ε and can be represented by an **asymptotic expansion**

$$
\varphi(\varepsilon) \sim \sum_{m \ge 0} a_m \varepsilon^m
$$
, with $\left| \sum_{m \le n} a_m \varepsilon^m - \varphi(\varepsilon) \right| < |a_{n+1}| \varepsilon^{n+1}$.

If we assume $|a_n|$ monotonically increasing, the **best bound** for the error is obtained for $|a_{n+1}|\varepsilon^{n+1}$ minimum. Let $b(\varepsilon)$ be the bound.

Some examples:

1) For $a_n = (n!)^{\gamma}$ (Gevrey classes) we obtain $n \simeq \varepsilon^{-1/\gamma}$ and $b(\varepsilon) \simeq$ $(2\pi)^{\gamma/2} \varepsilon^{-1/2} \exp(-\gamma \varepsilon^{-1/\gamma})$, a typical **exponentially small** behaviour. 2) If $a_n = (n^{\beta})^{\gamma}, \ \beta > 1$, then *n* satisfies the equation $\gamma \beta^2 n^{\beta - 1} \log(n) \simeq$ $|\log(\varepsilon)|$ for $\varepsilon \to 0$ and $b(\varepsilon) \simeq \exp(K |\log(\varepsilon)|^{\beta/(\beta-1)}/\log(|\log(\varepsilon)|)^{1/(\beta-1)}),$ where $K = -(1 - \beta^{-1})((\beta - 1)/\gamma \beta^2)^{1/(\beta - 1)}$, for $\varepsilon \to 0$.

All of them \mathcal{C}^{∞} flat functions but the behaviour is quite different.

The Hénon map near the 4:1 resonance

$$
H_c: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} c(1-x^2) + 2x + y \\ -x \end{pmatrix}
$$

A 4:1 resonance appears for $c = 1$. We look at $c = 1.015$.

The dynamics of H_c^4 can be interpolated by the flow of a Hamiltonian

$$
\mathcal{H}(x, y, \delta), \qquad \delta = (c-1)^{1/4},
$$

which shows a **Gevrey character**.