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Preliminaries

One of the outstanding problems in Celestial Mechanics is the detection
and computation of capture and escape boundaries.

They are related to the existence of some invariant objects at in-
finity which have invariant manifolds.

But these invariant objects are not hyperbolic. They are only parabolic
in the sense of Dynamical Systems.

It is well known that this fact was partially analysed by Moser and
McGehee. The manifolds exists and they are analytic except, per-
haps, at infinity. Related results are due to C.Robinson.

Standing question: Which is the regularity class of these manifolds?
How can we compute them with rigorous error control, so that they can
be used to obtain capture and escape boundaries?

I shall use the same problem analysed in the past. The well known Sitnikov
problem.
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The problem

To decide about escape/capture on a given problem of Celestial
Mechanics.

Related questions: transversality of invariant manifolds, measure
of the splitting, creation of chaotic zones, symbolic dynamics,
non-integrability.

We consider one of the simplest models: Sitnikov problem

z̈ = − z

(z2 + r(t)2/4)3/2
, r(t) = 1 − e cos(E), t = E − e sin(E).
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The problem (z, ż) for e = 0,
H = −1.5, −1.0, −0.5 and 0.



The problem has 1 d.o.f. for e = 0 and, hence, it is integrable
Historical notes: Chazy, Sitnikov, Alekseev, Moser, McGehee.

As a first order system

ż = v, v̇ = z(z2 + r(t)2/4)−3/2.

A new time, E, ′ = d/dE and Hamiltonian formulation:

H(z, θ, v, J) = (1 − e cos(θ))
[

1
2v

2 − (z2 + (1 − e cos(θ))2/4)−1/2
]

− J .

A suitable Poincaré section S: polar coordinates (|v|, t) when z = 0.

Better (APM) use (|v|(1−e cos(E))1/2, E) instead of (|v|, t).
Poincaré map: (|v|k, Ek) → (|v|k+1, Ek+1).

Symmetries: S1 : (z, v, t) ↔ (z,−v,−t), S2 : (z, v, t) ↔ (−z, v,−t),
S3 : (z, v, t) ↔ (−z,−v, t).

If the infinitesimal mass escapes to infinity, the massive bodies move
in S

1 (eventually, after regularisation of binary collisions using Levi-Civita
variables). One talks of a periodic orbit at infinity.



Invariant manifolds at infinity

Theorem (Moser): The problem has periodic orbits at both z
plus and minus infinity, with invariant manifolds (orbits going
to or coming from infinity parabolically). For e small enough
the manifolds intersect S in curves diffeomorphic to circles.
These curves have transversal intersection, implying the exis-
tence of heteroclinic orbits from +∞ to −∞ and vice versa.

Consequences: Non-integrability, embedding of the shift with in-
finitely many symbols, existence of oscillatory solutions, es-
cape/capture domains, etc.

The p.o. at ∞ is parabolic or, topologically, weakly hyperbolic. The
linearised map around the p.o. is the identity.



McGehee variables: z = 2/q2, ż = −p and eccentric anomaly

q′ = Ψq3p, p′ = Ψq4
(

1 + Ψ2q4
)−3/2

where Ψ =
1−e cos(E)

4 and ′ = d/dE.

If e = 0 the invariant manifolds are given as p = ±q(1 + q4/16)−1/4.

Let us denote as W
u,s
± the intersections of unstable/stable manifolds of ±∞

with S. Due to S3, Wu
± coincide and also W s

± coincide, but W s
+,Wu

− have
v > 0, while W s

−,Wu
+ have v < 0.

Due to S1, Wu
+ and W s

− are symmetric with respect to E = 0.

We look for a parametric representation of the manifolds of the p.o. as

p(E, e, q) =
∑

k≥1

bk(e, E)qk =
∑

k≥1

∑

j≥0

∑

i≥0

ci,j,ke
i sc(jE) qk,

where bk(e, E) are trigonometric polynomials in E with polynomial coeffi-
cients in e, ci,j,k are rational coefficients, sc denotes sin or cos functions



McGehee proved: The invariant manifolds are analytic except,
perhaps, at q = 0.

It can be reduced to obtain invariant manifolds of fixed parabolic points
of discrete maps (thing about the intersection of the manifolds with E = 0).

In this context Baldomà-Haro proved: Generically, 1D invariant man-
ifolds of fixed parabolic points are of some Gevrey class

Recall: a formal power series
∑

n≥0 anξn is of Gevrey class s if
∑

n≥0 an(n!)−sξn is analytic around the origin.

Problem: To decide about the regularity class of p(E, e, q) and to
obtain an explicit representation.

Solution: First we look for a representation, asking for invariance:

Ψq4
(

1 + Ψ2q4
)−3/2

=
∑

k≥1

dbk
dE

(e, E)qk+

∑

k≥1

bk(e, E)Ψkqk+2
∑

m≥1

bm(e, E)qm.



Recurrence:
(

−3/2
m

)(

1−e cos(E)

4

)2m+1

=b′n(e, E) +
1−e cos E

4

n−3
∑

k=1

kbk(e, E)bn−2−k(e, E),

where m = n/4 − 1, defined only for n multiple of 4.

Solving the recurrence: For Wu
+ be have b1 = 1. Then we start to

compute iteratively. But b′n(e, E) = known function allows to compute
only the periodic part b̃n of bn = b̃n + b̄n. The constant part b̄n is
computed previous to the solution of b′n+3(e, E) = known function, to have
a zero average function when we integrate.

An easy induction gives the following result on the format of the solution:

Lemma The coefficients bk(e, E) satisfy

• For k odd (resp. even) bk is even (resp. odd) in E. It contains harmonics
from 0 to (k − 1)/2, all of them cosinus (resp. from 1 to (k − 2)/2, all of
them sinus).

• The coefficients of the j−th harmonic in bk contain, at most, powers of e
with exponents from j to (k − 1)/2 for k odd (resp. from j to (k − 2)/2
for k even). The step in the exponents of e is 2.



1 0 0 1 1 12 1 5 75 215 15 4 4 3627 222

5 0 0 -1 26 12 3 5 -25 217 15 1 5 2301 219

5 0 2 -3 27 12 5 5 -3 217 15 3 5 -11791 221 ∗ 3

8 1 1 3 26 13 0 0 -15 219 15 5 5 -1131 221 ∗ 5

8 2 2 -9 29 13 0 2 -351 220 15 0 6 2291 220

8 1 3 -9 29 13 0 4 -213 219 15 2 6 -4199 221

8 3 3 1 29 13 0 6 -121 221 15 4 6 221 221

9 0 0 5 213 14 1 1 -81 28 15 6 6 13 221

9 0 2 27 213 14 2 2 1215 213 16 1 1 105 217

9 0 4 9 213 14 1 3 1215 213 16 2 2 -735 220

11 1 1 27 28 14 3 3 -255 213 16 1 3 2205 220

11 0 2 27 29 14 2 4 -45 211 16 3 3 1225 220 ∗ 3

11 2 2 -189 212 14 4 4 225 216 16 2 4 -1225 220

11 1 3 -81 212 14 1 5 -135 213 16 4 4 -1225 223

11 3 3 33 212 14 3 5 135 215 16 3 5 1225 222

11 0 4 -81 213 14 5 5 -27 215 ∗ 5 16 5 5 147 222

11 2 4 9 210 15 1 1 -429 214 16 2 6 -3675 224

11 4 4 -9 214 15 0 2 -447 215 16 4 6 -735 224

12 1 1 -15 211 15 2 2 3783 218 16 6 6 -245 224 ∗ 3

12 2 2 75 214 15 1 3 -6669 218 16 1 7 -3675 224

12 1 3 -75 214 15 3 3 -1131 218 16 3 7 245 224

12 3 3 -25 214 15 0 4 -13203 220 16 5 7 49 224

12 2 4 75 215 15 2 4 5265 219 16 7 7 5 224

12 4 4 75 218

First ci,j,k = a/b. Columns: k, j, i, a, b (qk sc(jE)ei).



To have some insight, we look to the behaviour of the coefficients obtained
numerically for larger n.

Let us introduce a norm: ak =
∑

i,j |ci,j,k| for bk.
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Left: log(ak) vs k. Right: log(ak) − log(Γ((k + 1)/3)) + 0.095894k vs k.

One observes that the behaviour of ak depends on the value of k mod 6.
On the right plot, from top to bottom, the values of k mod 6 are 5,2,3,0,1,4,
respectively. A suitable fit helps to display results in a nice way.

It is essential to remark: b2 = b3 = b4 = 0. Also b6 = b7 = b10 = 0, but this
is not so relevant.



Main result: the Gevrey character of the manifolds

Guided by the behaviour suggested by the numerical results, we can
scale properly the recurrence and introduce Bn(e, E)

bn(e, E) = Γ((n + 1)/3)ρnBn(e, E)

where ρ = (3/4)1/3. This allows to obtain

Theorem: The manifolds W
u,s
± are exactly Gevrey-1/3 in q uniformly

for E ∈ S
1, e ∈ (0, 1]. Concretely, let an denote the norm of bn. Then

there exist constants c1, c2, 0 < c1 < c2 such that, for n ≥ 5 except for
n = 6, 7, 10 one has

c1ρ
n < an/Γ((n + 1)/3) < c2ρ

n.

Furthermore the coefficient B1,1,n of e sin(E) in Bn satisfies 0 < C1 <
|B1,1,n| < C2 for some constants C1, C2 and n ≥ 8, except for n = 9, 10, 13.



Sketch of the proof

Steps:

• Rewrite the recurrence in terms of Bn,

• Note that with this scaling, and dividing by a suitable Γ the term on
the left becomes negligible,

• Note that with this scaling, the terms coming from b1bn−3 are O(1)

and the effect of all the other terms in the sum is O(n−4/3),

• The essential part reduces to

B′
n = −(1 − e cos(E))Bn−3 + O(n−4/3),

where the O(n−4/3) is bounded by some An−4/3, A>0, indep. of n.

• This gives the purely periodic part B̃n of Bn. The average part
B̃n is obtained by requiring that (1 − e cos(E))Bn has zero average.

• The operator T Bn−3 → Bn, neglecting the O(n−4/3) and going
from 2π-periodic to 2π-periodic satisfies: T 4 has 2 eigenvectors with
eigenvalue 1. All other eigenvalues have |µ| < 1.



Effective expansions to high order and additional checks

Furthermore let An=
∑

i,j |Ci,j,n| be the norm of Bn=
∑

i,j Ci,j,neisc cos(jE).
Then

limn=6m+k,m→∞An = Lk, k = 0. . . . ,5

and
An=6m+k = Lk + δk,1n

−1/3 + δk,2n
−2/3 + . . ..
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Left: log(An) as a function of n. Right: An − L5 for n = 6m + 5, L5 ≈
0.139278497



Asymptotic character of the formal series

The formal series introduced is not convergent, but can be useful to
compute p for given q, e, E if we know its asymptotic character. The
main result in this direction is the following

Theorem: The formal expansion gives an asymptotic representation
of the invariant manifolds of p.o.∞. Concretely, the truncation of the
series at order n has an error which is bounded by the sum of the norms
of next three terms

C(an+1q
n+1 + an+2q

n+2 + an+3q
n+3),

where C is a constant which can be taken close to 1.



Optimal estimates

Given q the optimal order is nopt ≈ 4/q3. Using optimal order the

error bound is < N exp(−4/(3q3)), N < 1. Large q allows to start
numerical integration at small z: z = 2/q2 = 18 if q = 1/3.
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log10 anqn as a function of n for q = 1/3.



Intersections with z = 0 and splitting
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Manifolds of z = 0 for e = 0.1, 0.5, 0.9, 0.999.
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Manifolds with e = 1 − 10−k, k = 3, . . . , 8 with vertical variable divided by
δ =

√
1 − e. Right: Right (left) angle of splitting as a function of e (−e).

For e → 1 the right splitting behaves as 2 arctan(c/δ).



Tending to the limit case e = 1

When e → 1 we observe two interesting facts:

• Close to E = 0 and scaling the vertical variable by δ =
√

1 − e the
manifolds are essentially independent of e. They have the same shape.

• In the limit the manifolds have a radial jump from E → 0− to
E → 0+. This has a simple mechanical explanation and is related
to the approach to triple collision. Can also be explained using
the limit case of mass ratio tending to zero in the isosceles problem,
by analysing the invariant manifolds of the central configurations in the
triple collision manifold.

The first part is analysed by introducing E = δs, z = δ2u, v = w/δ, writing
the equations in the new variables, using a (large) compact set for u, s.
When δ → 0 there exists a limit equation.

The second part is analysed using the RTBP with the primaries in collinear
parabolic orbits. The relevant parameter is the time t0 of passage
through z = 0 assuming the primaries collide at t=0. If t0 > 0
or t0 < 0, suitable scalings give two different limit problems.



Escape/capture boundaries
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Left: Plot of the corrections for p with respect to the case e = 0
for e=0.1,0.2,. . . ,1.0 for q = 1/3 as a function of E. This is useful for
early detection of escape/capture.
Middle: Maximal and minimal values of the corrections for the
full range E ∈ [0, 2π] as a function of e.
Right: The same values scaled by e. Note that a linear behaviour
with respect to e (as would be the case using expansion in powers of e)
is only approximated for e << 1.



Some further global dynamical properties

Stability of the trivial solution

At z = 0 we have dξ/dE = (1−e cos(E))η, dη/dE = −8ξ/(1−e cos(E))2 a
Hill equation of Ince’s type. More general cases studied in Mart́ınez-Samà-S
for general homogeneous potentials and fully 3D.
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Left: Tr vs − log(1 − e). Right: a detail of open gaps below Tr + 2 = 0.

Proposition. All gaps at Tr = 2 are closed. All gaps at Tr = −2 are
open. Exists a limit behaviour. This implies infinitely many bifurcations of
periodic orbits.



The rotation number R at the fixed point (average angle turned by E
under one Poincaré iteration) decreases for e increasing. For fixed e
it increases with radius. At e = 0, R = 1/

√
8. It is of the form 1/m,m

odd if Tr=2, 2/m,m odd if Tr=-2.
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Invariant curves, away from the origin (left) and very close to the origin
(right) for e = 0.85586255 with Tr≈ −2 and R = 2/7.

The flower-like pattern appears with 7, 9, 11, . . . petals every time
Tr≈ −2.



A global view on the dynamics

Computation of rotation number, detection of islands, escape,
outermost invariant rotational curve, ... starting on E = π, 1000
values of e, 20000 values of v ∈ [0, 2).
Statistics: in islands 4.6%; in rotational invariant curves 48.9%; in con-
fined chaotic zones 0.2%; escape 46.3%
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Variables: (e, v(1 + e)1/2). Red: points in islands (some islands are identi-
fied).Blue: outermost invariant curve. White below blue: rotational invariant
curves. White on top of blue: escape.
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Left: Same as previous plot, but for e ∈ [0.999, 1). Middle: Location of
outermost invariant curve modified by adding a suitable function of e,
to enhance jumps. Right: p.o. of rotation number R = 2/1, showing
initial data (red) and Tr (blue).

On next page: Poincaré maps for e = 0.032, 0.540, 0.790, 0.910, close
to breakdown of rotational i.c. outside islands of periods 1, 3, 4, 5,
respectively.
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Conclusions

We can summarize what we have obtained and possible future work.

• It is feasible to compute W
u,s
± at high order, enough to have

accurate escape/capture boundaries.

• It is feasible to prove the Gevrey character of the series.

• It is feasible to obtain rigorous and useful error estimates and
optimal order

• The global dynamics of Sitnikov problem can be considered
as fully understood for all e, in a reasonable way.

• It confirms the relation between Gevrey functions, asymp-
totic expansions, exponentially small phenomena, etc.

• The method opens the way to other more relevant problems,
like 2DCR3BP, 3DCR3BP, 3DER3BP, general 3BP, etc.

• The approach can allow to produce sharp estimates on cele-
brated theorems by Takens (interpolation thm) and Neish-
tadt (averaging thm) when a close to the identity map is ap-
proximated by a flow.



Additional notes

I would like to present some elementary asymptotic considerations. Assume
some phenomenon is measured by a function ϕ depending on the small
parameter ε and can be represented by an asymptotic expansion

ϕ(ε) ∼
∑

m≥0

amεm, with

∣

∣

∣

∣

∣

∣

∑

m≤n

amεm − ϕ(ε)

∣

∣

∣

∣

∣

∣

< |an+1|εn+1.

If we assume |an| monotonically increasing, the best bound for the error
is obtained for |an+1|εn+1 minimum. Let b(ε) be the bound.

Some examples:

1) For an = (n!)γ (Gevrey classes) we obtain n ≃ ε−1/γ and b(ε) ≃
(2π)γ/2ε−1/2 exp(−γε−1/γ), a typical exponentially small behaviour.

2) If an = (nβ!)γ, β > 1, then n satisfies the equation γβ2nβ−1 log(n) ≃
| log(ε)| for ε→0 and b(ε)≃exp(K| log(ε)|β/(β−1)/ log(| log(ε)|)1/(β−1)),

where K = −(1 − β−1)((β − 1)/γβ2)1/(β−1), for ε → 0.



3) For an=(log n)n we obtain n≃exp(1/ε−1) and b(ε)≃exp(−ε exp(1/ε)).
This case shows really a quite sharp behaviour with respect to ε:

ε 0.4 0.2 0.15 0.12 0.1

b(ε) 7.6 · 10−3 1.3 · 10−13 6.5 · 10−52 1.5 · 10−217 4.0 · 10−956
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All of them C∞ flat functions but the behaviour is quite different.



The Hénon map near the 4:1 resonance

Hc :

(

x
y

)

7→
(

c(1 − x2) + 2x + y
−x

)

A 4:1 resonance appears for c = 1. We look at c = 1.015.
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The dynamics of H4
c can be interpolated by the flow of a Hamiltonian

H(x, y, δ), δ = (c − 1)1/4,

which shows a Gevrey character.


