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1. Minimum Volume Enclosing Ellipsoids
Given m points X := {x1, x2, . . . , xm} ⊂ IRn which span IRn, the

Minimum Volume Enclosing Ellipsoid (MVEE) problem seeks an

ellipsoid E∗(X ) which is centered at the origin (wlog), covers all

the points, and has minimum volume.
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Data Analysis and Computational Geometry

Suppose we are given a �nite set S of points in IRn.

a) Detecting outliers:

choose points far from the center of a minimum volume enclosing

ellipsoid.

b) Testing the worth of a cluster T ⊆ S:
measure by the volume of E∗(T ).
c) Finding a small representative subset T ⊆ S:
use a core set (small subset with same minimum-volume ellipsoid)

of E∗(S).
In all cases, desirable linear invariance properties.

Su�cient condition for moving bodies S and T in Rn not to hit:

E∗(S) ∩ E∗(T ) = ∅.
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2. Geometry

The set

ℰ(H, x̄) := {x ∈ IRn : (x− x̄)TH(x− x̄) ≤ n}

for x̄ ∈ IRn and H ≻ 0 is an ellipsoid in IRn with center x̄ and

shape de�ned by H.

We have

vol(ℰ(H, x̄)) = const(n)/
√

detH,

and minimizing the volume of ℰ(H, x̄) is equivalent to minimizing

− ln detH.
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3. MVEE Formulation

The MVEE problem can be formulated as follows:

minH f(H) := − ln detH
(P ) xTi Hxi ≤ n, i = 1, . . . ,m,

H ≻ 0.

Problem (P ) is convex, with linear inequality constraints.

This is also an SDP problem with added centering term.

Interior-point methods can be applied to the problem with barrier

function − ln det on Sn++.
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The LogDet Function

De�ne f on symmetric n× n matrices by

f(H) := − ln detH

if H is positive de�nite, +∞ otherwise.

Note: if f̂(x) := −
∑

lnxj , then f = f̂ ∘ �, with �(H) the vector

of eigenvalues of H: this is a spectral function as studied by A.

Lewis.

Df(H)[E] = −H−1 ∙ E := −Tr(H−1E),

D2f(H)[E,E] = H−1EH−1 ∙ E.

Hence f is convex.
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4. Minimum Area Enclosing Ellipsoidal Cylinders
Given m points {x1, x2, ..xm} ⊂ IRn which span IRn and k≤n, the
Minimum Area Enclosing Ellipsoidal Cylinder (MAEC) problem

seeks an ellipsoidal cylinder which is centered at the origin, covers

all the points and has minimum area intersection with

Π :=

{[
y
0

]
∈
[

IRk

IRn−k

]}
.
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5. Geometry

The set

C(E,HY Y ) := {[y; z] ∈ IRn : (y + Ez)THY Y (y + Ez) ≤ k}

for E ∈ IRk×(n−k) and HY Y ≻ 0 is a cylinder in IRn de�ned by

shape matrix HY Y and axis direction matrix E.

Note that C(E,HY Y ) ∩Π is an ellipsoid in IRk × {0} with

area(C(E,HY Y ) ∩Π) = const(k)/
√

detHY Y ,

and minimizing the area of C(E,HY Y ) ∩Π is equivalent to

minimizing

− ln detHY Y .
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6. MAEC Formulation

The MAEC problem can be formulated as follows:

minE,HY Y
f(HY Y ) := − ln detHY Y

(yi + Ezi)
THY Y (yi + Ezi) ≤ k, i = 1, . . . ,m,

(nonconvex!) or equivalently

minH f̄(H) := − ln detHY Y

(P̄ ) xTi Hxi ≤ k, i = 1, . . . ,m,
H ર 0,

where H =

(
HY Y HY Z

HT
Y Z HZZ

)
(we set E = H−1

Y YHY Z).
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7. Duality I: the D-optimal Design Problem

Let X := [x1, . . . , xm] ∈ IRn×m and U := Diag (u). Then the dual

to the MVEE problem (P ) can be written as

maxu g(u) := ln detXUXT

(D) eTu = 1,
u ≥ 0.

(D) is the statistical problem of �nding a D-optimal design

measure on the columns of X, which maximizes the determinant of

the Fisher information matrix when estimating all parameters

�1, . . . , �n in the linear model

ỹ ≈ xT �.
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Duality II: the Dk-optimal Design Problem

The dual to the MAEC problem (P̄ ) can be stated as

maxu,K ḡ(u,K) := ln detK

XUXT −K := XUXT −
(
K 0
0 0

)
ર 0

(D̄) eTu = 1,
u ≥ 0.

(D̄) is the statistical problem of �nding a Dk-optimal design

measure on the columns of X, which maximizes the determinant of

a Schur Complement in the Fisher information matrix.This is related

to estimating the �rst k parameters �1, . . . , �k in the linear model

ỹ ≈ xT �.
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8. Weak Duality

Consider the MVEE problem. Suppose H and u are feasible in (P )
and (D) respectively. Then

Tr(HXUXT ) =H ∙XUXT =
∑
i

uix
T
i Hxi ≤ n.

Hence we have

− ln detH − ln detXUXT = − ln detHXUXT

= −n ln(Πn
i=1�i(HXUXT ))1/n ≥ −n ln

(∑n
i=1 �i(HXUXT )

n

)
≥ −n ln

(n
n

)
≥ 0.
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A similar derivation holds for the MAEC problem. Suppose H, u
and K are feasible in (P̄ ) and (D̄) respectively. Then

0 ≤H ∙
(
XUXT −K

)
=
∑
i

uix
T
i Hxi −H ∙K ≤ k −HY Y ∙K.

Hence we have

− ln detHY Y − ln detK = − ln detHY YK

= −k ln(Πk
i=1�i(HY YK))1/k ≥ −k ln

(∑k
i=1 �i(HY YK)

k

)

≥ −k ln

(
k

k

)
≥ 0.

Michael J. Todd Linear Convergence of Modi�ed Frank-Wolfe Methods for Ellipsoid Optimization Problems



9. Optimality Conditions

For the MVEE problem, we have strong duality for feasible

solutions if

(i) ui > 0 only if xTi Hxi = n; and

(ii) H = H(u) := (XUXT )−1.

We say u is an �-approximate optimal solution if

(a) xTi H(u)xi ≤ (1 + �)n, i = 1, . . . ,m,

(b) ui > 0 implies xTi H(u)xi ≥ (1− �)n.
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For the MAEC problem, we have strong duality if

(i) H ∙ (XUXT −K) = 0;

(ii) ui > 0 only if xTi Hxi = (yi + Ezi)
THY Y (yi + Ezi) = k; and

(iii) HY Y = K−1.

For optimal u, condition (i) implies E(ZUZT ) = −(Y UZT ) and

K = Y UY T − E(ZUZT )ET . Assuming ZUZT is invertible,

E = E(u) and K = K(u) are uniquely de�ned and smooth in u.

We say u is an �-approximate optimal solution if

(a) (yi + Ezi)
TK−1(yi + Ezi) ≤ (1 + �)k, i = 1, . . . ,m; and

(b) ui > 0 implies (yi + Ezi)
TK−1(yi + Ezi) ≥ (1− �)k.
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10. A Frank-Wolfe-Type Algorithm
We will analyze a �rst-order method for (D). Note that

w(u) := ∇g(u) = (xTi (XUXT )−1xi)
m
i=1.

Suppose u is updated by

u+ := (1− �)u+ �ei.

Then rank-1 update formulae give

(XU+X
T )−1 =

1

(1− �)

(
(XUXT )−1 − �(XUXT )−1xix

T
i (XUXT )−1

1− � + �wi(u)

)
and

detXU+X
T = (1− �)n−1(1− � + �wi(u)) detXUXT ,

so that it is easy to update w after such an update, and it is easy

to perform a line search on � to maximize g(u+).
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This suggests that the Frank-Wolfe method (1956) might be

attractive to solve (D), and this was suggested by the statisticians

Fedorov (1972) and Wynn (1970). So we call this the

FW-algorithm. We want to analyze the FW-algorithm with Wolfe's

�away� steps (1970), which was also proposed for (D) by the

statistician Atwood (1973) (hence WA-method).

At every iteration, we solve

max
ū

g(u) + w(u)T (ū− u), eT ū = 1, ū ≥ 0,

i.e., �nd i that maximizes wi(u)− n, and ū = ei, and

min
ū
g(u) + w(u)T (ū− u), eT ū = 1, ū ≥ 0, ūk = 0 if uk = 0,

i.e., �nd j that maximizes n− wj(u) over j with uj > 0, and
ū = ej .
Then we either move towards ei or away from ej .
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Algorithms

If we only address the �rst half of the optimality conditions and

only consider positive � , this algorithm is due to the statisticians

Fedorov and Wynn and is a specialization of the Frank-Wolfe

algorithm for (D). It was analyzed by Khachiyan.

If we consider the complete optimality conditions and allow

negative � , this method was proposed by the statistician Atwood

and is Frank-Wolfe's method with Wolfe's away steps. It was

analyzed by Todd-Yildirim and Ahipasaoglu-Sun-Todd.

For the MAEC problem, similar but more complicated algorithms

result. A change in u as above leads to rank-one updates to

XUXT , E, and K. These methods were also proposed by Fedorov

and Atwood and were analyzed by Ahipasaoglu-Todd.
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An Iteration of the WA Algorithm

Stop if max{wi(u)− n, n− wj(u)} ≤ �n. Otherwise,
if wi(u)− n > n− wj(u), replace u by

u+ = (1− �)u+ �ei,

with � > 0 chosen optimally, i.e., move towards ei;
if n− wj(u) ≥ wi(u)− n, replace u with

u+ = (1− �)u+ �ej ,

with � < 0 chosen optimally so that u+ remains feasible, i.e., move

away from ej .
Then update w(u) and a Cholesky factorization of XUXT .
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Types of Iteration
We characterize steps as

increase-iterations: ui increases from a positive value;

add-iterations: ui increases from zero;

decrease-iterations: ui decreases to a positive value; and

drop-iterations: ui decreases to zero.

Note: #drop-iterations ≤ #positive components in initial u +
#add-iterations.

The FW-algorithm stops when it gets an �-primal feasible solution,

i.e.,

u feasible and (1 + �)−1(XUXT )−1 primal feasible, or

wi(u) ≤ (1 + �)n for all i.

The WA-algorithm stops with u satisfying the �-approximate

optimality conditions, i.e., u feasible;

wi(u) ≤ (1 + �)n for all i; and

wi(u) ≥ (1− �)n if ui > 0.
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11. Convergence Analysis

The FW-algorithm was analyzed by Khachiyan (1996): the number

of iterations required is

O(n� + n lnn+ n ln lnm).

With a di�erent initialization, Kumar-Yildirim (2005) achieved a

bound of

O(n� + n lnn).

The WA-method was analyzed by Todd-Yildirim (2005) with the

KY initialization, with the same complexity bound (actually twice,

because of the drop-iterations).

Each iteration requires O(nm) arithmetic operations (far fewer

than an interior-point method).
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The basis for the analyses consists of two lemmas:

Lemma
(Khachiyan) If u is �-primal feasible, g∗ − g(u) ≤ n�.

Lemma
(Khachiyan, Todd-Yildirim) Suppose � ≤ 1/2. Then

(a) If a feasible u is not �-primal feasible, an add- or

increase-iteration will improve g(u) by at least 2�2/7.

(b) If a feasible u does not satisfy the �-approximate optimality

conditions, a decrease-iteration will improve g(u) by at least 2�2/7.
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Asymptotic linear convergence

To improve this bound, we tighten the �rst lemma, and show

Proposition

For some constant M > 0, depending on the data, any u satisfying

the �-approximate optimality conditions for su�ciently small � has

g∗ − g(u) ≤M�2.

Putting the proposition and the second lemma together, we obtain

Theorem
For some Q > 0, the WA-algorithm requires at most

Q+ 56M ln(1/�) iterations to produce a feasible u that satis�es

the �-approximate optimality conditions.
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Proof
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Proposition

For some constant M > 0, depending on the data, any u satisfying

the �-approximate optimality conditions for su�ciently small � has

g∗ − g(u) ≤M�2.

The proof uses the perturbed problem

minH≻0 − ln detH
(P (z)) xTi Hxi ≤ n+ zi, i = 1, . . . ,m.

If u is as in the proposition, de�ne z := z(u, �) ∈ IRm by

zi :=

{
�n if ui = 0
wi(u)− n else.

Note that ∣zi∣ ≤ �n for each i, and uT z = 0.
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Analysis

Lemma
If u satis�es the �-approximate optimality conditions,

H(u) := (XUXT )−1 is optimal in (P (z(u, �))), and u is a vector

of Lagrange multipliers.

Let �(z) denote the optimal value of (P (z)). This is convex, and
any vector of Lagrange multipliers is a subgradient. So for any

vector u∗ of Lagrange multipliers for (P ) = (P (0)), u as above,

and z := z(u, �),

g(u) = f(H(u)) = �(z) ≥ �(0) + uT∗ (z − 0) = g∗ − (u− u∗)T z

since uT z = 0.
Now ∥z∥ = O(�), and results of Robinson (1982) show that, for

some u∗, ∥u− u∗∥ = O(�), and this proves the proposition.
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Convergence for the WA-Algorithm for the MAEC Problem

For the MAEC problem, assuming �min(ZUZT ) ≥ c > 0,
maxi{xTi (XUXT )−1xi} < C, we have:

∙ Oc,C(k(ln k + k ln lnm+ �−1)) iterations (AT).

∙ Each iteration takes O(nm) operations.

∙ Local linear convergence as for MVEE under a strong

second-order su�cient condition (AT).

∙ Away steps are necessary for rapid convergence.
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12. Computational Experience

MVEE problems:

Table: Means of Running Times and Numbers of Iterations Required by

the Algorithm to Obtain an �-Approximate Solution

Dimensions Averages

n m − log10 � iter time (sec.)

100 10000 10 800 2.0

200 10000 7 1894 7.5

500 10000 7 5038 142.5
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MAEC problems:

Table: Means of Running Times and Numbers of Iterations Required by

the Algorithm to Obtain an �-Approximate Solution

Dimensions Averages

k n m − log10 � iter time (sec.)

20 100 10000 7 3366 60.2

50 100 10000 7 2897 46.4

80 100 10000 7 1328 19.6

Michael J. Todd Linear Convergence of Modi�ed Frank-Wolfe Methods for Ellipsoid Optimization Problems



13. Conclusions

∙ First-order methods can be very e�ective and may be

necessary to handle very large instances.

∙ Computational complexity analysis, rate of convergence

analysis, and computational experiments complement one

another.

∙ There is much still to be understood!
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