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Solving polynomial system

P(x) = (p1(x), . . . , pn(x)) = 0, x ∈ Cn

1. Linear Homotopy (Begins in 1979)

2. Nonlinear Homotopy
(Polyhedral Homotopy)

(1995, The state of the art)



1. Linear Homotopy

{
x2 + y2 = 5
x − y = 1

solutions: (x, y) =

{
(2, 1)

(−1, −2){
x2 = 1
y = 1

solutions: (x, y) =

{
(1, 1)

(−1, 1)

(1 − t)
(

x2 − 1
y − 1

)
+ t
(

x2 + y2 − 5
x − y − 1

)
=

(
0
0

)

t = 1
4

{
x2 + 1

4 y2 − 2 = 0
1
4 x + 1

2 y − 1 = 0
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di := deg pi.

(1 − t)

α1xd1
1 − β1

...
αnxdn

n − βn

 + t

p1(x1, . . . , xn)
...

pn(x1, . . . , xn)

 =

0
...
0


Form the homotopy:

(1 − t)
(

a1x2 − b1
a2y1 − b2

)
+ t
(

x2 + y2 − 5
x − y − 1

)
=

(
0
0

)

Theorem
For almost all (α1, . . . ,αn,β1, . . . ,βn) the above homotopy “works”.
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The Problem

The starting system 
α1xd1

1 − β1 = 0
...

αnxdn
n − βn = 0

has
(total degree) d := d1 × d2 × · · · × dn

solutions.

This number can be much larger than the number of solution of
the end system.
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Cheater’s Homotopy

1. Li, Sauer & Yorke (1989)
2. Morgan & Sommese (1989)

p1 = x3
1x2

2 + c1x3
1x2 + x2

2 + c2x1 + c3 = 0,

p2 = c4x4
1x2

2 − x2
1x2 + x2 + c5 = 0.

c = (c1, . . . , c5)
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p1(c, x) = x3
1x2
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1x2 + x2

2 + c2x1 + c3 = 0,

p2(c, x) = c4x4
1x2

2 − x2
1x2 + x2 + c5 = 0.

1. Pick c∗ = (c∗1 , . . . , c∗5) at random.
2. Solve

p1(c∗, x) = 0,
p2(c∗, x) = 0.

Say by choosing

q1(x) = a1x5
1 − b1

q2(x) = a2x6
2 − b2

−→
might have a

big waste.


3. For any other c = (c1, . . . , c5), the homotopy

H(x, t)=(1 − t)γ
(

p1(c∗, x)

p2(c∗, x)

)
+ t
(

p1(c, x)

p2(c, x)

)
=0

works.
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2. Nonlinear homotopy

(Polyhedral homotopy, Huber & Sturmfels 1995)

3x1x2 + 4x1 − x2 + 5 = 0,

6x1x2
2 − 2x2

1x2 + 7 = 0.

c11x1x2 + c12x1 + c13x2 + c14 = 0,

c21x1x2
2 + c22x2

1x2 + c23 = 0.

The system is in general position unless the set of coefficients
{cij} satisfies certain polynomial system.

Let C∗ = C\{0}.
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Lemma:

The number of isolated zeros of P(x) in (C∗)n is a fixed number
when P(x) is in general position.

Bernshtein Theorem:

This number = the mixed volume of the system
↓
<→ when P(x) is not in general position

Li and Wang (1997): The BKK bound in Cn.
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c21x1x2
2 + c22x2

1x2 + c23 = 0.

To solve P(x) = 0,
(1) solve Q(x) = 0;
(2) consider

H(x, t) = (1 − t)γQ(x) + tP(x) = 0.

(The Cheater’s homotopy)
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Binomial Equation

Equation of 2 terms: can be solved easily, no matter the degree.

3x100 + 2x93 = 0 axm + bxn = 0

3x100 = −2x93 axm = −bxn

x100−93 = −2/3 xm−n = −b/a

x7 = −2/3

Recall that H(x, t) is given by

c1x5t1.3 + c2x4t0.8 + c3x3t1.9 + c4xt1.2 + c5t1.1

↓ ↓ ↓ ↓ ↓
(5, 1.3) (4, 0.8) (3, 1.9) (1, 1.2) (0, 1.1)

‖ ‖ ‖ ‖ ‖
5̂ 4̂ 3̂ 1̂ 0̂
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〈1̂, α̂〉 = 1.275 〈0̂, α̂〉 = 1.1
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Solution: Use change of variables with α = 0.075

x = ytα

Note that

at t = 1 x = y

Then

H(x, t) = c1x5t1.3 + c2x4t0.8 + c3x3t1.9 + c4xt1.2 + c5t1.1

= c1y5t5α+1.3 + · · ·
= c1y5t1.675 + c2y4t1.1 + c3y3t2.125 + c4y1t1.275 + c5t1.1

= t1.1(c1y5t1.675−1.1 + c2y4 + c3y3t2.125−1.1 + c4y1t1.275−1.1 + c5)

= t1.1[c2y4 + c5 + (terms with positive powers of t)]

Hα(y, t) = t−1.1H(ytα, t)

= c2y4 + c5 + (terms with positive powers of t)

Hα(y, 0) = c2y4 + c5
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How to find α
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〈3̂, α̂〉 = 2.125 〈3̂, α̂〉 = 0.4

〈1̂, α̂〉 = 1.275 〈1̂, α̂〉 = 0.7

〈0̂, α̂〉 = 1.1 〈0̂, α̂〉 = 1.1

I.e., want to find α so that the minimun is attained exactly
twice
“mixed cell computation” (it can be done)
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General Construction (to solve P(x) = 0)

To solve a system of polynomial equations P(x) = 0

p1(x1, . . . , xn) =
∑
a∈S1

c1,axa1
1 . . . xan

n =
∑
a∈S1

c1,axa = 0

...

pn(x1, . . . , xn) =
∑
a∈Sn

cn,axa1
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ωi : Si → R, i = 1, . . . , n

Ŝi = {â = (a,ωi(a)) | a ∈ Si}
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c=(c,    (c))

b=(b,    (b))
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Si

i

ωd=(d,    (d))i



Problem: Look for hyperplane with normal
α̂ = (α, 1) which supports each Ŝi at exactly 2 points

α = (α,1)



Looking for α ∈ Rn, and pairs

{a11, a12} ⊂ S1,
...

{an1, an2} ⊂ Sn

such that

〈α̂, â11〉 = 〈α̂, â12〉 < 〈α̂, â〉, ∀a ∈ S1\{a11, a12},
...

〈α̂, ân1〉 = 〈α̂, ân2〉 < 〈α̂, â〉, ∀a ∈ Sn\{an1, an2}.

where α̂ = (α, 1), â = (a,ω(a))

The Mixed Volume computation.



Change of variable

x = ytα

↓
x ≡ y when t = 1
↓

H(x, t) = c1x5t1.3 + . . .

= c1(ytα)5t1.3 + . . .

= c1y5t5α+1.3 + . . .

= c1y5t〈(5,1.3),(α,1)〉 + . . .

= c1y5t〈5̂,α̂〉 + · · ·

Change of variables

x1 = y1tα1

...
xn = yntαn

 x = ytα

Then

x ≡ y when t = 1

A typical term in hi looks like

c∗xatw = c∗yat〈α̂,â〉
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Change of variable

x = ytα

↓
x ≡ y when t = 1
↓

H(x, t) = c1x5t1.3 + . . .

= c1(ytα)5t1.3 + . . .

= c1y5t5α+1.3 + . . .

= c1y5t〈(5,1.3),(α,1)〉 + . . .

= c1y5t〈5̂,α̂〉 + · · ·

Change of variables

x1 = y1tα1

...
xn = yntαn

 x = ytα

Then

x ≡ y when t = 1

A typical term in hi looks like

c∗xatw = c∗yat〈α̂,â〉
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Then

H(x, t) = H(ytα, t) =



∑
a∈S1

c∗1,ayat〈α̂,â〉 = t−β1
∑
a∈S1

c∗1,ayat〈α̂,â〉−β1

...∑
a∈Sn

c∗n,ayat〈α̂,â〉 = t−βn
∑
a∈S1

c∗1,ayat〈α̂,â〉−βn

where

β1 = min
j=1,...,m1

〈α̂, â1
j 〉 . . . βn = min

j=1,...,mn
〈α̂, ân

j 〉

and they are each attained exactly twice.
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∑
a∈S1

c∗1,ayat〈α̂,â〉−β1
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Define

Hα(y, t) =



∑
a∈S1

c∗1,ayat〈α̂,â〉−β1

...∑
a∈S1

c∗1,ayat〈α̂,â〉−βn

=


= c∗1,a1ya1

+ c∗1,b1yb1
+ “terms with positive power of t”

...

= c∗n,anyan
+ c∗1,bnybn

+ “terms with positive power of t”
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a binomial system,

which can be solved efficiently.

So the polyhedral homotopy can start
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Theorem
For almost all choices of the (complex) coefficients, constant terms,
and the (rational) powers of t, the polyhedral homotopy “works”.
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eco-n Total degree = 2 · 3n−2

(x1 + x1x2 + · · ·+ xn−2xn−1)xn − 1 = 0
(x2 + x1x3 + · · ·+ xn−3xn−1)xn − 2 = 0

...
xn−1xn − (n − 1) = 0

x1 + x2 + · · ·+ xn−1 + 1 = 0

noon-n Total degree = 3n

x1(x2
2 + x2

3 + · · ·+ x2
n − 1.1) + 1 = 0

x2(x2
1 + x2

3 + · · ·+ x2
n − 1.1) + 1 = 0

...
xn(x2

1 + x2
2 + · · ·+ x2

n−1 − 1.1) + 1 = 0



cyclic-n Total degree = n !

x1 + x2 + · · ·+ xn = 0
x1x2 + x2x3 + · · ·+ xn−1xn + xnx1 = 0

x1x2x3 + x2x3x4 + · · ·+ xn−1xnx1 + xnx1x2 = 0
...

x1x2 · · · xn − 1 = 0

katsura-n Total degree = 2n

2xn+1 + 2xn + · · ·+ 2x2 + x1 − 1 = 0
2x2

n+1 + 2x2
n + · · ·+ 2x2

2 + x2
1 − x1 = 0

2xnxn+1 + 2xn−1xn + · · ·+ 2x2x3 + 2x1x2 − x2 = 0
2xn−1xn+1 + 2xn−2xn + · · ·+ 2x1x3 + x2

2 − x3 = 0
...

2x2xn+1 + 2x1xn + 2x2xn−1 + · · ·+ 2xn/2x(n+2)/2 − xn = 0
2x2xn+1 + 2x1xn + 2x2xn−1 + · · ·+ x2

(n+1)/2 − xn = 0



reimer-n Total degree = (n + 1) !

2x2
1 − 2x2

2 + · · ·+ (−1)n+12x2
n − 1 = 0

2x3
1 − 2x3

2 + · · ·+ (−1)n+12x3
n − 1 = 0

...
2xn+1

1 − 2xn+1
2 + · · ·+ (−1)n+12xn+1

n − 1 = 0

Dell PC with a Pentium 4 CPU of 2.2GHz, 1GB of memory



Polynomial Mix Vol = HOM4PS HOM4PS-2.0 Speed-up
system # of paths cpu time cpu time ratio
eco-16 16,384 2h55m12s 6m35s 26.6
eco-17 32,768 - 22m23s -

noon-10 59,029 3h20m45s 5m12s 38.6
noon-11 177,125 - 23m27s -
noon-12 531,417 - 1h28m00s -
noon-13 1,594,297 - 7h02m10s -

katsura-13 8,192 3h40m54s 4m56s 44.8
katsura-14 16,384 - 25m15s -
katsura-15 32,768 - 1h50m26s -

cyclic-9 11,016 8m37s 44s 11.8
cyclic-10 35,940 58m02s 2m47s 20.9
cyclic-11 184,756 - 19m40s -
cyclic-12 500,352 - 1h36m40s -
reimer-7 40,320 7m47s 2m49s 2.8
reimer-8 362,880 1h44m18s 36m43s 2.8
reimer-9 3,628,800 - 8h47m42s -



Polynomial Total degree PHoM HOM4PS-2.0 Speed
system cpu time cpu time up
eco-14 1,062,882 9h57m15s 52.9s 677.4
eco-15 3,188,646 - 2m25s -
eco-17 28,697,814 - 22m23s -

noon-9 19,683 5h01m06s 1m15s 240.9
noon-10 59,049 - 5m12s -
noon-13 1,594,323 - 7h02m10s -

katsura-11 2,048 1h21m13s 28s 174.0
katsura-12 4,096 4h00m09s 1m42s 141.3
katsura-13 8,192 - 4m56s -
katsura-15 32,768 - 1h50m26s -

cyclic-8 40,320 32m32s 6.8s 287.0
cyclic-9 362,880 - 44s -

cyclic-12 479,001,600 - 1h36m40s -
reimer-6 5,040 1h14m50s 12.1s 371.0
reimer-7 40,320 - 2m49s -
reimer-9 3,628,800 - 8h47m42s -



CPU time Speed-upSystem Total degree
PHCpack HOM4PS-2.0 ratio

noon-9 19,683 33m28s 22.2s 90.5
noon-10 59,049 2h33m27s 1m27s 105.8
noon-11 177,147 - 5m32s -
noon-13 1,594,323 - 3h7m10s -

katsura-14 16,384 2h49m00s 2m52s 59.0
katsura-15 32,768 8h22m45s 7m03s 71.3
katsura-16 65,536 - 16m25s -
katsura-20 1,048,576 - 8h58m00s -

reimer-6 5,040 15m08s 9.6s 94.5
reimer-7 40,320 3h45m43s 1m58s 114.7
reimer-8 362,880 - 30m43s -
reimer-9 3,628,800 - 7h52m40s -



CPU time Speed-upSystem Total degree
PHCpack HOM4PS-2.0 ratio

eco-14 1,062,882 1h26m04s 52.9s 97.6
eco-15 3,188,646 3h55m23s 2m25s 97.4
eco-17 28,697,814 - 22m23s -
eco-18 86,093,442 - 1h51m30s -

cyclic-9 362,880 3h50m48s 44s 314.7
cyclic-10 3,628,800 11h00m23s 2m47s 237.2
cyclic-11 39,916,800 - 19m40s -
cyclic-12 479,001,600 - 1h36m40s -

Use Polyhedral Homotopy



Maximum solvable sizeSystem
PHoM PHCpack HOM4PS-2.0

eco - 14 (1,062,882) 15 (3,188,646) 18 (86,093,442)
noon - 9 (19,683) 10 (59,049) 13 (1,594,323)

katsura - 12 (2,048) 15 (32,768) 20 (1,048,576)
cyclic - 8 (40,320) 10 (3,628,800) 12 (479,001,600)

reimer - 6 (5,040) 7 (40,320) 9 (3,628,800)



Numerical results of HOM4PS-2.0para

All the computations were carried out on a cluster 8 AMD dual
2.2 GHz cpus (1 master and 7 workers). Again, we only list
those benchmark systems that can be solved within 12 hours
cpu time.

I Master-worker type of environment is used.
I Use MPI (message passing interface) to communicate

between the master processor and worker processors
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System CPU time Total degree Mixed Vol. Curve
(# of paths) Jumping

eco-17 2m11s 28,697,814 32,768 -
eco-18 6m30s 86,093,442 65,536 x -
eco-19 26m26s 258,280,326 131,072 -
eco-20 1h29m29s 774,840,978 262,144 -
eco-21 10h08m55s 2,324,522,934 524,288 1

cyclic-11 3m34s 39,916,800 184,756 -
cyclic-12 14m07s 479,001,600 500,352 x -
cyclic-13 1h39m10s 6,227,020,800 2,704,156 -
cyclic-14 7h32m42s 87,178,291,200 8,795,976 4

Solving systems by the polyhedral-linear homotopy with 1
master and 7 workers



System CPU time Total degree # curve # of isolated
(=# of paths) jumping solutions

noon-12 2m23s 531,417+24 - 531,417
noon-13 7m48s 1,594,297+26 x - 1,594,297
noon-14 38m12s 4,782,941+28 - 4,782,941
noon-15 4h14m33s 14,348,877+30 - 14,348,877

katsura-18 9m46s 262,144 - 262,144
katsura-19 23m36s 524,288 2 524,288
katsura-20 55m10s 1,048,576 x 4 1,048,576
katsura-21 2h08m42s 2,097,152 8 2,097,152
katsura-22 4h52m01s 4,194,304 20 4,194,304
katsura-23 11h17m40s 8,388,608 52 8,388,608

reimer-8 2m36s 362,880 - 14,400
reimer-9 28m04s 3,628,800 x 8 86,400

reimer-10 8h40m46s 39,916,800 20 518,400

Solving systems by the classical linear homotopy with 1 master
and 7 workers



# of Total time to Time to find Time to Time to
wks solve system mixed cells trace curve check solutions

k cpu(s) ratio cpu(s) ratio cpu(s) ratio cpu(s) ratio
eco 1 445.32 1.00 120.02 1.00 325.00 1.00 0.30 1.00
-16 2 223.49 1.99 60.66 1.98 162.58 2.00 0.25 1.20

3 150.69 2.96 40.94 2.93 109.53 2.97 0.22 1.36
5 91.31 4.88 25.22 4.76 65.89 4.93 0.20 1.59
7 68.70 6.48 19.99 6.00 48.58 6.69 0.13 2.31

cyc 1 1475.39 1.00 38.15 1.00 1436.49 1.00 0.75 1.00
-11 2 734.96 2.00 19.10 2.00 715.41 2.00 0.45 1.67

3 494.19 2.99 12.94 2.95 480.86 2.99 0.39 1.92
5 295.90 4.99 8.05 4.74 287.47 5.00 0.38 1.97
7 212.87 6.93 6.47 6.00 206.06 6.97 0.34 2.21

The scalability of solving systems by the polyhedral homotopy



System # of Total time to Time to Time to
workers solve system trace curve check solutions

k cpu(s) ratio cpu(s) ratio cpu(s) ratio
noon 1 1003.32 1.00 980.72 1.00 22.50 1.00
-12 2 501.75 2.00 490.33 2.00 11.42 1.97

3 335.18 2.99 326.68 3.00 8.50 2.65
5 201.27 4.98 195.30 5.00 5.97 3.77
7 143.22 7.00 138.88 7.00 4.34 5.18

reimer 1 1088.95 1.00 1087.74 1.00 1.21 1.00
-8 2 545.08 2.00 543.96 2.00 1.12 1.08

3 363.89 2.99 362.81 3.00 1.08 1.12
5 218.69 4.98 217.97 4.99 0.72 1.68
7 156.54 6.96 155.86 6.98 0.68 1.78

katsura 1 1964.22 1.00 1963.12 1.00 1.10 1.00
-17 2 982.38 2.00 981.35 2.00 1.03 1.07

3 654.17 3.00 653.22 3.00 0.95 1.16
5 394.02 4.99 393.18 4.99 0.84 1.31
7 280.56 7.00 279.85 7.00 0.71 1.55

The scalability of solving systems by the classical linear homotopy



Thank You!


	Introduction
	Linear Homotopy

