Asymptotic Analysis for Optimal Investment with Two Risky Assets and Transaction Costs

Maxim Bichuch, Steven E. Shreve

Department of Mathematical Sciences Carnegie Mellon University

6th World Congress of the Bachelier Finance Society June 22-26, 2010

Maxim Bichuch, **Steven E. Shreve (CMU) [An Optimal Portfolio of Correlated Futures with Small Transaction Cost](#page-16-0) June 25, 2010 1 / 17**

History

- Merton, J. Econ, 1971
	- Optimal consumption and investment problem in continuous time.
- Magill & Constantinides, JET, 1976
	- Proportional transaction costs in Merton's model.
- Davis & Norman, Mathematics of Operations Research, 1990
	- Rigorous treatment of Magill & Constatinides model
	- Existence and uniqueness of solution to the HJB equation
	- Shape of the optimal policy.
- Shreve & Soner, Annals of Applied Probability, 1994
	- Viscosity solution analysis of Magill & Constantinides model
	- **Smoothness of the value function.**
- Whalley & Wilmott, Mathematical Finance 1997
	- Pricing an option
	- Asymptotic expansion of the value function in powers of $\lambda^{\frac{1}{3}}.$

 Ω

イロト イ母ト イヨト イヨ

History (cont)

- Janeček & Shreve, Finance and Stochastics, 2004
	- **Model with one stock**
	- Viscosity solution approach to compute the loss in asymptotic expansion of the value function.
- Atkinson & Ingpochai J. of Comp Fin. 2007
	- Multiple assets
	- Loss in asymptotic expansion of the value function
	- Asymptotically correlated assets.

Model Definition

- **•** Buyer of a Futures contract receives changes in futures price.
- Change in futures price of futures contract of type *i*

$$
dF_i(t) = \mu_i dt + \sigma_i dB_i(t),
$$

where $\langle B_1, B_2 \rangle_t = \rho t$.

Number of futures contracts of type *i* held at time *t*

$$
Y_i(t) = y_i + L_i(t) - M_i(t).
$$

Change in cash held at time *t*

$$
dX(t) = \sum_{i=1}^{2} Y_i(t) dF_i(t) - \sum_{i=1}^{2} \lambda (dL_i(t) + dM_i(t))
$$

+ $X(t)(r - c(t))dt$.

• Initial endowment

$$
X(0-) = x. \ \ Y_i(0-) = y_i.
$$

nar

Model Definition

•
$$
S_v = \{ (y_1, y_2, x) : x - \lambda |y_1| - \lambda |y_2| > 0 \}
$$
.

- The strategy (c, L_i, M_i) is admissible for (y_1, y_2, x) , if $(Y_1(t), Y_2(t), X(t)) \in \overline{S}_V$ for all $t > 0$. $U(c) \triangleq \frac{c^p}{p}$ $\frac{p}{p}$, $c \ge 0$, $0 < p < 1$.
- Max the expected integral of the discounted utility of consumption

$$
v(y_1, y_2, x) = \sup_{\text{Admissible} \atop \text{strategies}} E\left[\int_0^\infty e^{-\beta t} U(X(t)c(t))dt\right].
$$

Properties of the value function

$$
\bullet \ \mathsf{v}\Big|_{\partial \mathcal{S}_\mathsf{v}}=0.
$$

- *v* is homogeneous of degree p: $\forall \alpha > 0: \; v(\alpha y_1, \alpha y_2, \alpha x) = \alpha^p v(y_1, y_2, x).$
- Reduction of variables

$$
u(z_1, z_2) \triangleq v(z_1, z_2, 1),
$$

$$
v(y_1, y_2, x) = x^p v\left(\frac{y_1}{x}, \frac{y_1}{x}, 1\right) = x^p u(z_1, z_2), z_1 = \frac{y_1}{x}.
$$

Merton's Model results

$\lambda = 0$

Optimal investment proportion: θ*ⁱ* = µ*i*σ*j*−ρµ*j*σ*ⁱ* $\frac{\mu_1 \sigma_1}{(1-p)\sigma_i^2 \sigma_j(1-\rho^2)},$

$$
A = \frac{\beta - rp}{1 - p} - \frac{p}{1 - p} \sum_{i=1}^{2} \mu_i \theta_i + \frac{p}{2} \left(\sigma_1^2 \theta_1^2 + \sigma_1^2 \theta_1^2 + 2 \rho \sigma_1 \sigma_2 \theta_1 \theta_2 \right).
$$

Standing Assumption

 $A > 0$.

 $\lambda = 0$

$$
u(z_1, z_2) = \frac{1}{\rho} A^{\rho - 1},
$$

Optimal consumption proportion *c*(*t*) = *A*.

 QQQ

イロメイ 倒 メイをメイをメーを

HJB equation ($\lambda > 0$)

$$
\widetilde{U}(\widetilde{c})\triangleq \sup_{c>0}\left\{U(c)-c\widetilde{c}\right\}=\frac{1-p}{p}\widetilde{c}^{-\frac{p}{1-p}}.
$$

HJB equation

$$
\min \left[\mathcal{D}(u) - \widetilde{U}(\rho u - z_1 u_1 - z_2 u_2), \mathcal{B}_1(u), \mathcal{S}_1(u), \mathcal{B}_2(u), \mathcal{S}_2(u) \right] = 0.
$$

- What is $\mathcal{D}(u)$?
	- Second order diffusion operator.
	- Diffusion in radial direction only.
- What are $B_1(u)$, $S_1(u)$, $B_2(u)$, $S_2(u)$?
	- First order differential operators.
	- Their characteristics correspond to pure trades.

のので

Division of solvency region

Maxim Bichuch, **Steven E. Shreve (CMU) [An Optimal Portfolio of Correlated Futures with Small Transaction Cost](#page-0-0) June 25, 2010 9 / 17**

Theorem

Assume $0 < p < 1$, $A > 0$, $\lambda > 0$ *and* $\rho = 0$. *Fix* (*z*₁, *z*₂) $\in S_u$, *then the value function is*

$$
u(z_1, z_2) = \frac{A^{p-1}}{p} - \gamma_2 \lambda^{\frac{2}{3}} + O(\lambda),
$$

where

$$
\gamma_2 = A^{p-2} \sum_{i=1}^2 \sqrt[3]{\frac{9}{32}(1-p)\sigma_i^2 \theta_i^4 (\sigma_1^2 \theta_1^2 + \sigma_2^2 \theta_2^2)^2}.
$$

4 0 5

Maxim Bichuch, **Steven E. Shreve (CMU) [An Optimal Portfolio of Correlated Futures with Small Transaction Cost](#page-0-0) June 25, 2010 10 / 17**

Construction of viscosity sub- and super-solutions, when $\rho = 0$

Lemma

Assume $0 < p < 1$, $A > 0$, $\lambda > 0$ *and* $\rho = 0$. *Then there exist* NT^{\pm} *regions, such that if inside we define:*

$$
w^{\pm}(z_1, z_2) = \frac{A^{p-1}}{p} - \gamma_2 \lambda^{\frac{2}{3}} \pm M\lambda
$$

$$
- \sum_{i=1}^2 \frac{A^{p-1}}{\nu_i} \left(\frac{3}{2} (z_i - \theta_i)^2 \lambda^{\frac{2}{3}} - \frac{1}{\nu_i^2} (z_i - \theta_i)^4 + \frac{3}{2} B (z_i - \theta_i)^2 \lambda^{\frac{4}{3}} \right),
$$

and define w[±] *in the rest of the solvency region* S*^u using characteristics. Then w*[±] *is a super/sub-solution of the HJB equation with zero boundary condition.*

What goes wrong?

If one assumes that the value function *u* has a power expansion and is $C^2(\mathcal{S}_u)$, then the system of equations obtained by equating the derivatives across the boundary of the NT region is inconsistent.

nar

An auxiliary model, when $ρ > 0$

Consider a new set of futures contracts:

$$
\tilde{F}_1(t) = F_1(t), \quad \tilde{F}_2(t) = F_2(t) - \rho \frac{\sigma_2}{\sigma_1} F_1(t).
$$

To write them in the original form $\tilde{F}_i(t) = \tilde{\mu}_i t + \tilde{\sigma}_i \tilde{B}_i(t),$ define:

$$
\tilde{B}_1(t) = B_1(t), \quad \tilde{B}_2(t) = \frac{1}{\sqrt{1-\rho^2}} \left(B_2(t) - \rho B_1(t) \right).
$$

$$
\tilde{\sigma}_1 = \sigma_1, \quad \tilde{\sigma}_2 = \sigma_2 \sqrt{1 - \rho^2},
$$
\n
$$
\tilde{\mu}_1 = \mu_1, \quad \tilde{\mu}_2 = \mu_2 - \rho \frac{\sigma_2}{\sigma_1} \mu_1,
$$
\n
$$
\tilde{\lambda}_1 = \lambda, \quad \tilde{\lambda}_2 = \left(1 - \rho \frac{\sigma_2}{\sigma_1}\right) \lambda.
$$

Construction of an upper bound, when $0 < \rho < \frac{\sigma_1}{\sigma_2}$

Lemma

Assume $0 < p < 1$, $A > 0$, $\lambda > 0$ *and* $0 < \rho < \frac{\sigma_1}{\sigma_2}$. Let \tilde{v} be the value *function associated with the problem with the new set of futures contracts. Then for any* $(y_1, y_2, x) \in S_y$ *we have that* $v(y_1, y_2, x) \le \tilde{v}(\tilde{y}_1, \tilde{y}_2, x),$ where $\tilde{y}_2 = y_2, \ \tilde{y}_1 = y_1 + \rho \frac{\sigma_2}{\sigma_1}$ $\frac{\sigma_2}{\sigma_1}$ y₂.

Similarly define:
$$
\tilde{S}_u = \left\{ (\tilde{z}_1, \tilde{z}_2) : 1 - \tilde{\lambda}_1 |\tilde{z}_1| - \tilde{\lambda}_2 |\tilde{z}_2| > 0 \right\},
$$

$$
\tilde{u}(\tilde{z}_1,\tilde{z}_2)=\tilde{v}(\tilde{z}_1,\tilde{z}_2,1),\;(\tilde{z}_1,\tilde{z}_1)\in\tilde{\mathcal{S}}_u.
$$

Corollary

Under the above assumptions, a viscosity super-solution for \tilde{u} *is an upper bound for u.*

 Ω

COLLECT \leftarrow \overline{m} \rightarrow

- Auxiliary model not identical to the original model.
- **•** Subsolution.
- Construct on subset of *NT*⁻ region and then extend.
- Uses the fact that diffusion is in the radial direction.

Main Theorem 2, when $0 < \rho < \frac{\sigma_1}{\sigma_2}$

Theorem

Assume $0 < p < 1$, $A > 0$, $\lambda > 0$, $\mu_1 > \mu_2$, $\theta_1, \theta_2 > 0$ *and* $0 < \rho < \frac{\sigma_1}{\sigma_2}$. *Fix* $(z_1, z_2) \in S_u$, then the value function is

$$
u(z_1, z_2) = \frac{A^{p-1}}{p} - \tilde{\gamma}_2 \lambda^{\frac{2}{3}} + O(\lambda),
$$

where

$$
\tilde{\gamma}_2=A^{p-2}\sum_{i=1}^2\sqrt[3]{\frac{9}{32}\left(\frac{\tilde{\lambda}_i}{\lambda}\right)^2(1-p)\tilde{\sigma}_i^2\tilde{\theta}_i^4\left(\tilde{\sigma}_1^2\tilde{\theta}_1^2+\tilde{\sigma}_2^2\tilde{\theta}_2^2\right)^2}.
$$

4 00 10

Maxim Bichuch, **Steven E. Shreve (CMU) [An Optimal Portfolio of Correlated Futures with Small Transaction Cost](#page-0-0) June 25, 2010 16 / 17**

ik Bis

Thank you!

Maxim Bichuch

mbichuch@princeton.edu

Maxim Bichuch, **Steven E. Shreve (CMU) [An Optimal Portfolio of Correlated Futures with Small Transaction Cost](#page-0-0) June 25, 2010 17 / 17**

Ε

つくへ

ヨメ メヨ