Conditional Certainty Equivalent

Marco Frittelli and Marco Maggis

University of Milan

Bachelier Finance Society World Congress, Hilton Hotel, Toronto, June 25, 2010

- ← ロ ▶ - ← 一印

 QQ

- ← ロ ▶ - ← 一印

B

 QQ

We fix a non-atomic filtered probability space

 $(\Omega, \mathcal{F}, \{ \mathcal{F}_t \}_{t>0}, \mathbb{P})$

and suppose that the filtration is right continuous.

 \equiv \cap α

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Definition

A stochastic dynamic utility (SDU)

$$
\textit{u}: \mathbb{R} \times [0, \infty) \times \Omega \rightarrow \mathbb{R} \cup \{-\infty\}
$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

B

(Fig.

 \rightarrow

4 ロ ▶ 4 何

 QQ

A stochastic dynamic utility (SDU)

$$
\iota: \mathbb{R} \times [0, \infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}
$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

(a) the effective domain, $\mathcal{D}(t) = \{x \in \mathbb{R} : u(x, t, \omega) > -\infty\}$ and the range $\mathcal{R}(t) := \{u(x,t,\omega)~|~x \in \mathcal{D}(t)\}$ do not depend on $\omega \in A_t$, moreover $0 \in int\mathcal{D}(t)$, $E[u(0,t)] < +\infty$ and $\mathcal{R}(t) \subset \mathcal{R}(s)$;

э

э. $\vert \cdot \vert$

∢ □ ▶ ⊣ [□]

 Ω

A stochastic dynamic utility (SDU)

$$
\iota: \mathbb{R} \times [0, \infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}
$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

(a) the effective domain, $\mathcal{D}(t) = \{x \in \mathbb{R} : u(x, t, \omega) > -\infty\}$ and the range $\mathcal{R}(t) := \{u(x,t,\omega)~|~x \in \mathcal{D}(t)\}$ do not depend on $\omega \in A_t$, moreover $0 \in int \mathcal{D}(t)$, $E[u(0, t)] < +\infty$ and $\mathcal{R}(t) \subset \mathcal{R}(s)$;

(b) for all $\omega \in A_t$ and $t \in [0, +\infty)$ the function $x \to u(x, t, \omega)$ is strictly increasing on $D(t)$ and increasing, concave and upper semicontinuous on R.

э

 Ω

イヨメ イヨメ

(□) (母)

A stochastic dynamic utility (SDU)

$$
\iota: \mathbb{R} \times [0, \infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}
$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

- (a) the effective domain, $\mathcal{D}(t) := \{x \in \mathbb{R} : u(x, t, \omega) > -\infty\}$ and the range $\mathcal{R}(t) := \{u(x,t,\omega)~|~x \in \mathcal{D}(t)\}$ do not depend on $\omega \in A_t$, moreover $0 \in int \mathcal{D}(t)$, $E[u(0, t)] < +\infty$ and $\mathcal{R}(t) \subset \mathcal{R}(s)$;
- (b) for all $\omega \in A_t$ and $t \in [0, +\infty)$ the function $x \to u(x, t, \omega)$ is strictly increasing on $D(t)$ and increasing, concave and upper semicontinuous on R.

(c)
$$
\omega \to u(x, t, \cdot)
$$
 is \mathcal{F}_t -measurable for all $(x, t) \in \mathcal{D}(t) \times [0, +\infty)$

B

 Ω

K 등 > X 등

(□) (母)

Occasionally we may assume that

Decreasing in time

(d) For any fixed $x \in \mathcal{D}(t)$, $u(x, t, \cdot) \leq u(x, s, \cdot)$ for every $s \leq t$.

- 30

 Ω

医毛囊 医牙骨下的

◂◻▸ ◂◚▸

Occasionally we may assume that

Decreasing in time

(d) For any fixed
$$
x \in \mathcal{D}(t)
$$
, $u(x, t, \cdot) \leq u(x, s, \cdot)$ for every $s \leq t$.

We introduce the following useful

Notation:

$$
\mathcal{U}(t)=\{X\in L^0(\Omega,\mathcal{F}_t,\mathbb{P})\,|\,u(X,t)\in L^1(\Omega,\mathcal{F},\mathbb{P})\}.
$$

 QQ

ミメスチ

4 **D** F

Occasionally we may assume that

Decreasing in time

(d) For any fixed
$$
x \in \mathcal{D}(t)
$$
, $u(x, t, \cdot) \leq u(x, s, \cdot)$ for every $s \leq t$.

We introduce the following useful

Notation:

$$
\mathcal{U}(t) = \{X \in L^0(\Omega, \mathcal{F}_t, \mathbb{P}) \mid u(X, t) \in L^1(\Omega, \mathcal{F}, \mathbb{P})\}.
$$

Related literature:

- Series of papers by Musiela and Zariphopoulou (2006,2008,...);
- Henderson and Hobson (2007);
- Berrier, Rogers and Theranchi (2007); \bullet
- El Karoui and Mrad (2010); \bullet
- Schweizer and Choulli (2010);
- probably many other...

 Ω

Let u be a SDU and X be a random variable in $\mathcal{U}(t)$. For each $s \in [0, t]$, the backward Conditional Certainty Equivalent $C_{s,t}(X)$ of X is the random variable in $U(s)$ solution of the equation:

$$
u(C_{s,t}(X),s)=E[u(X,t)|\mathcal{F}_s].
$$

Thus the CCE defines the valuation operator

$$
C_{s,t}: \mathcal{U}(t) \to \mathcal{U}(s), \ \ C_{s,t}(X) = u^{-1} \left(E\left[u(X,t)|\mathcal{F}_s\right], s \right).
$$

 Ω

Let u be a SDU and X be a random variable in $\mathcal{U}(t)$. For each $s \in [0, t]$, the backward Conditional Certainty Equivalent $C_{s,t}(X)$ of X is the random variable in $U(s)$ solution of the equation:

 $u(C_{s,t}(X), s) = E[u(X, t)|\mathcal{F}_s].$

Thus the CCE defines the valuation operator

$$
C_{s,t}: \mathcal{U}(t) \to \mathcal{U}(s), \ \ C_{s,t}(X) = u^{-1} \left(E\left[u(X,t)|\mathcal{F}_s\right], s \right).
$$

This definition is the natural generalization to the dynamic and stochastic environment of the classical definition of the certainty equivalent, as given in Pratt 1964.

 Ω

イロト イ母ト イヨト イヨト

Definition (Conditional Certainty Equivalent process)

Let u be a SDU and X be a random variable in $\mathcal{U}(t)$. The backward conditional certainty equivalent of X is the only process $\{Y_s\}_{0\leq s\leq t}$ such that $Y_t\equiv X$ and the process $\{u(Y_s,s)\}_{0\leq s\leq t}$ is a martingale.

 Ω

Definition (Conditional Certainty Equivalent process)

Let u be a SDU and X be a random variable in $\mathcal{U}(t)$. The backward conditional certainty equivalent of X is the only process $\{Y_s\}_{0\leq s\leq t}$ such that $Y_t\equiv X$ and the process $\{u(Y_s,s)\}_{0\leq s\leq t}$ is a martingale.

- This definition could be compared to the definition of non linear evaluation based on g -expectation, as provided by Peng.
- \bullet Even if u is concave the CCE is not a concave functional, but it is conditionally quasiconcave

 Ω

Proposition

Let u be a SDU, $0 \le s \le v \le t \le \infty$ and $X, Y \in \mathcal{U}(t)$.

(i) $C_{s,t}(X) = C_{s,t}(C_{v,t}(X)).$

(ii) $C_{t,t}(X) = X$.

(iii) If $C_{v,t}(X) \leq C_{v,t}(Y)$ then for all $0 \leq s \leq v$ we have: $C_{s,t}(X) \leq C_{s,t}(Y)$. Therefore, $X \leq Y$ implies that for all $0 \leq s \leq t$ we have: $C_{s,t}(X) \leq C_{s,t}(Y)$. The same holds if the inequalities are replaced by equalities.

 QQ

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \$

Proposition

Let u be a SDU, $0 \le s \le v \le t \le \infty$ and $X, Y \in \mathcal{U}(t)$.

(iv) Regularity: for every $A \in \mathcal{F}_s$ we have

$$
\mathcal{C}_{s,t}(X\mathbf{1}_A+Y\mathbf{1}_{A^C})=\mathcal{C}_{s,t}(X)\mathbf{1}_A+\mathcal{C}_{s,t}(Y)\mathbf{1}_{A^C}
$$

and then $C_{s,t}(X)\mathbf{1}_A = C_{s,t}(X\mathbf{1}_A)\mathbf{1}_A$.

(v) Quasiconcavity: the upper level set $\{X\in\mathcal{U}_t\mid\mathsf{C}_{\mathsf{s},t}(X)\geq Z\}$ is conditionally convex for every $Z\in L^0_{\mathcal{F}_s}.$

 QQ

K ロ > K @ > K 경 > K 경 > 시 경 +

Proposition

Let u be a SDU, $0 \le s \le v \le t < \infty$ and $X, Y \in \mathcal{U}(t)$.

(vi) Suppose u satisfies (d) and for every $t \in [0, +\infty)$, $u(x, t)$ is integrable for every $x \in \mathcal{D}(t)$. Then

 $C_{s,t}(X) \leq E\left[C_{v,t}(X)|\mathcal{F}_s\right]$ and $E\left[C_{s,t}(X)\right] \leq E\left[C_{v,t}(X)\right]$; moreover $C_{s,t}(X) \leq E[X|\mathcal{F}_s]$ and therefore $E\left[C_{s,t}(X)\right] \leq E[X].$

 QQ

イロト イ何 トイヨト イヨト ニヨー

Let us consider $u : \mathbb{R} \times [0, \infty) \times \Omega \to \mathbb{R}$ defined by

$$
u(x, t, \omega) = 1 - e^{-\alpha_t(\omega)x + A_t(\omega)}
$$

where $\alpha_t > 0$ and A_t are stochastic processes.

$$
C_{s,t}(X) = -\frac{1}{\alpha_s} \ln \left\{ \mathbb{E} \left[e^{-\alpha_t X + A_t} | \mathcal{F}_s \right] \right\} + \frac{A_s}{\alpha_s}.
$$

If $\alpha_t(\omega) \equiv \alpha \in \mathbb{R}$ and $A_t \equiv 0$ then

$$
C_{0,t}(X) = -\frac{1}{\alpha} \ln \left\{ \mathbb{E}[e^{-\alpha X}] \right\}
$$

$$
C_{s,t}(X) = -\frac{1}{\alpha} \ln \left\{ \mathbb{E}[e^{-\alpha X} | \mathcal{F}_s] \right\}
$$

i.e. $C_{0,t}(X) = -\rho_{tt}(X)$ where ρ_{tt} is the risk measure induced by the exponential utility. By introducing a time dependence in the risk aversion coefficient one looses the monetary property.

Cash super-additive property:

$$
C_{s,t}(X+c)\geq C_{s,t}(X)+c,\ c\in\mathbb{R}_+.
$$

When the risk aversion coefficient is purely stochastic we have no chance that $C_{s,t}$ has any monetary or cash super-additive property.

 QQ

ミメ イヨメ

∢ □ ▶ ⊣ *f*刊

Cash super-additive property:

$$
C_{s,t}(X+c)\geq C_{s,t}(X)+c,\ c\in\mathbb{R}_+.
$$

When the risk aversion coefficient is purely stochastic we have no chance that $C_{s,t}$ has any monetary or cash super-additive property.

Proposition

The functional $C_{s,t}(X) = -\frac{1}{\alpha_s} \ln \left\{ \mathbb{E}[e^{-\alpha_t X + A_t} | \mathcal{F}_s] \right\} + \frac{A_s}{\alpha_s}$ $\frac{A_s}{\alpha_s}$ is decreasing and concave. If the process $\{\alpha_t\}_{t>0}$ is almost surely increasing then the (CCE) is cash super-additive

Cash super-additive property:

$$
C_{s,t}(X+c)\geq C_{s,t}(X)+c,\ c\in\mathbb{R}_+.
$$

When the risk aversion coefficient is purely stochastic we have no chance that $C_{s,t}$ has any monetary or cash super-additive property.

Proposition

The functional $C_{s,t}(X) = -\frac{1}{\alpha_s} \ln \left\{ \mathbb{E}[e^{-\alpha_t X + A_t} | \mathcal{F}_s] \right\} + \frac{A_s}{\alpha_s}$ $\frac{A_s}{\alpha_s}$ is decreasing and concave. If the process $\{\alpha_t\}_{t>0}$ is almost surely increasing then the (CCE) is cash super-additive

The definition of CCE is not a priori directly linked to the existence of a market, as for the theory of forward utilities (see Musiela Zariphopoulou)

In literature the generalization of Orlicz spaces to the case of stochastic (not time dependent) functions are known as Musielak – Orlicz spaces (Musielak, Orlicz Spaces and Modular Spaces).

Let $u(x, t, \omega)$ be a SDU satisfying (int) condition. The **dynamic version** of Musielak-Orlicz space is given by:

$$
L^{\hat{u}_t}(\mathcal{F}_t) = \left\{ X \in L^0(\mathcal{F}_t) \, | \, \exists \, \lambda > 0 : \int_{\Omega} \hat{u}(\lambda X(\omega), t, \omega) \mathbb{P}(d\omega) < \infty \right\}
$$
\n
$$
M^{\hat{u}_t}(\mathcal{F}_t) = \left\{ X \in L^0(\mathcal{F}_t) \, | \, \int_{\Omega} \hat{u}(\lambda X(\omega), t, \omega) \mathbb{P}(d\omega) < \infty \, \forall \, \lambda > 0 \right\}
$$
\nwhere $\hat{u}(x, t, \omega) = u(0, t, \omega) - u(-|x|, t, \omega)$.

We endow these spaces with the Luxemburg norm

$$
\mathit{N}_{\hat{u}_t}(X)=\inf\left\{c>0\,\Big|\,\int_{\Omega}\hat{u}\left(\frac{X(\omega)}{c},t,\omega\right)\mathbb{P}(d\omega)\leq 1\right\}
$$

化重新 化重新

←ロ ▶ → 何 ▶

 \Rightarrow

 QQ

We endow these spaces with the Luxemburg norm

$$
\mathit{N}_{\hat{u}_t}(X)=\inf\left\{c>0~\Big|~\int_{\Omega}\hat{u}\left(\frac{X(\omega)}{c},t,\omega\right)\mathbb{P}(d\omega)\leq 1\right\}
$$

and consider the following

Condition:

$$
\int_{\Omega} \hat{u}(x,t,\omega) \mathbb{P}(d\omega) < \infty \quad \text{ for every } x \in \mathcal{D}(t) \qquad \qquad \text{(int)}
$$

 QQ

÷.

ミメス国

In general:

$$
\overline{\mathcal{L}^\infty({\mathcal F}_t)}^{{\mathcal N}_{\hat{u}_t}}=M^{\hat{u_t}}({\mathcal F}_t)\subseteq L^{\hat{u_t}}({\mathcal F}_t)
$$

and if the condition (Δ_2) is satisfied then

$$
M^{\hat{u_t}}(\mathcal{F}_t) = L^{\hat{u_t}}(\mathcal{F}_t)
$$

 $\mathcal{A} \cong \mathcal{B} \times \mathcal{A} \cong \mathcal{B}$

←ロ ▶ → 何 ▶

 \Rightarrow QQ In general:

$$
\overline{\mathcal{L}^\infty({\mathcal F}_t)}^{{\mathcal N}_{\hat{u}_t}}=M^{\hat{u_t}}({\mathcal F}_t)\subseteq L^{\hat{u_t}}({\mathcal F}_t)
$$

and if the condition (Δ_2) is satisfied then

$$
M^{\hat{u_t}}(\mathcal{F}_t) = L^{\hat{u_t}}(\mathcal{F}_t)
$$

Condition:

There exists $K, x_0 \in \mathbb{R}$ and $h \in L^1$ such that

 $\Psi(2x, \cdot) \leq K \Psi(x, \cdot) + h(\cdot)$ for all $x > x_0$, $\mathbb{P} - a.s.$ (Δ_2)

 Ω

- 30

イロト イ押 トイラト イラト

1) Consider an exponential dynamic utility:

$$
u(x, t, \omega) = 1 - e^{-\alpha_t(\omega)x + A_t(\omega)}
$$

Assume that:

 $E[e^{\alpha_t |x| + A_t}] < \infty \quad \forall x \in \mathbb{R}$ and A_t belongs to $L^{\infty}(\mathcal{F}_t)$,

 η a α

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$

1) Consider an exponential dynamic utility:

$$
u(x, t, \omega) = 1 - e^{-\alpha_t(\omega)x + A_t(\omega)}
$$

Assume that:

$$
E[e^{\alpha_t |x| + A_t}] < \infty \quad \forall \, x \in \mathbb{R} \text{ and } A_t \text{ belongs to } L^\infty(\mathcal{F}_t),
$$

Proposition

If $X \in M^{\widehat{u}_t}$ then $C_{s,t}(X) \in M^{\widehat{u}_s}$ i.e.

$$
C_{s,t}: M^{\hat{u}_t} \longrightarrow M^{\hat{u}_s} X \longrightarrow -\frac{1}{\alpha_s} \ln \left\{ E[e^{-\alpha_t X + A_t} | \mathcal{F}_s] \right\} + \frac{A_s}{\alpha_s}
$$

 \equiv

 QQ

イロト イ押 トイラト イラト

2)Consider a random power utility

$$
u(x, t, \omega) = -\gamma_t(\omega)|x|^{p_t(\omega)}\mathbf{1}_{(-\infty, 0)}
$$

where $\gamma_t, \pmb{ \rho}_t$ are adapted stochastic processes satisfying $\gamma_t>0$ and $\pmb{ \rho}_t>1$. In this case

$$
\mathcal{C}_{s,t}(X)=-\frac{1}{\gamma_s}\left(E[\gamma_t(X^-)^{p_t}|\mathcal{F}_s]\right)^{\frac{1}{p_s}}+K\mathbf{1}_{G^C}
$$

where $K\in\mathcal{L}^0_{\mathcal{F}_\mathbf{s}},\ K>0$ and $G:=\{E[\gamma_t|X|^{p_t}\mathbf{1}_{\{X<0\}}|\mathcal{F}_\mathbf{s}]>0\}.$ If in particular $\mathcal{K} \in \mathcal{M}^{\hat{u}_s}$ then

$$
C_{s,t}:M^{\widehat{u}_t}\longrightarrow M^{\widehat{u}_s}.
$$

 QQ

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \$

3)Let $V : \mathbb{R} \to \mathbb{R}$ a concave, strictly increasing function and $\{\alpha_t\}_{t>0}$ an adapted stochastic process such that for every $t > 0$, $\alpha_t > 0$. Then $u(x, t, \omega) = V(\alpha_t(\omega)x)$ is a SDU and

$$
C_{s,t}(X) = \frac{1}{\alpha_s} V^{-1} \left(E[V(\alpha_t X) | \mathcal{F}_s] \right)
$$

Proposition

Let
$$
\Theta_t = \{X \in L^{\hat{u}_t} | E[u(-X^-, t)] > -\infty\} \supseteq M^{\hat{u}_t}
$$
. Then

$$
C_{s,t} : \Theta_t \to \Theta_s
$$

Moreover if $\hat{u}(x,s)$ satisfies the (Δ_2) condition, then

$$
\mathcal{C}_{s,t}:M^{\widehat{u}_t}\to M^{\widehat{u}_s}.
$$

D.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

A general evidence is that

 $M^{\hat{u}_t} \subset \mathcal{U}(t)$

but

 $L^{\widehat{u}_t} \nsubseteq \mathcal{U}(t)$

Anyway we can define the $\mathcal{C}_{\mathbf{s},t}$ on the whole space $L^{\widehat{u}_t}$ using an extended version of the conditional expectation

$$
E[u(X,t) | \mathcal{F}_s] := E[u(X,t)^+ | \mathcal{F}_s] - \lim_n E[u(X,t)^- \wedge n | \mathcal{F}_s]
$$

provided that a technical assumption is satisfied.

 Ω

a) Rockafellar 1968: there exists $X^*\in (L^{\widehat{u}_t})^*$ s.t.

 $E[f^*(X^*, t)] < +\infty,$

where $f^*(x, t, \omega) = \sup_{y \in \mathbb{R}} \{ xy + u(y, t, \omega) \}.$

4 ロ ▶ 4 包

KERKER E MAG

b) For every fixed t, \hat{u}_t belongs to one of these three possible classes:

B

 Ω

e ville

← ロ ▶ → イ 冊

b) For every fixed t, \hat{u}_t belongs to one of these three possible classes: $\mathbf{0}$ $\widehat{u}_t(\cdot,\omega)$ is (int) and discontinuous, i.e. $\mathcal{D}(t) \subsetneq \mathbb{R}$. In this case, $L^{\hat{u}_t} = L^{\infty}$

∢ ロ ▶ - ィ 円 .

 Ω

b) For every fixed t, \hat{u}_t belongs to one of these three possible classes:

- $\mathbf{0}$ $\widehat{u}_t(\cdot,\omega)$ is (int) and discontinuous, i.e. $\mathcal{D}(t) \subsetneq \mathbb{R}$. In this case, $L^{\hat{u}_t} = L^{\infty}$
- ∂ $\widehat{u}_t(\cdot,\omega)$ is continuous, \widehat{u}_t and $(\widehat{u}_t)^*$ are (int) and satisfy:

$$
\frac{\widehat{u}_t(x,\omega)}{x}\to+\infty\,\,,\,\text{as}\,\,x\to\infty.
$$

◂◻▸ ◂◚▸

b) For every fixed t, \hat{u}_t belongs to one of these three possible classes:

- $\mathbf{0}$ $\widehat{u}_t(\cdot,\omega)$ is (int) and discontinuous, i.e. $\mathcal{D}(t) \subsetneq \mathbb{R}$. In this case, $L^{\hat{u}_t} = L^{\infty}$
- ∂ $\widehat{u}_t(\cdot,\omega)$ is continuous, \widehat{u}_t and $(\widehat{u}_t)^*$ are (int) and satisfy:

$$
\frac{\widehat{u}_t(x,\omega)}{x}\to+\infty\,\,,\,\text{as}\,\,x\to\infty.
$$

 $\mathbf{0} \hat{u}_t(\cdot, \omega)$ is continuous and

$$
0 < \textrm{ess} \displaystyle \inf_{\omega \in \Omega} \lim_{x \to \infty} \frac{\widehat{u}_t(x, \omega)}{x} \le \textrm{ess} \displaystyle \sup_{\omega \in \Omega} \lim_{x \to \infty} \frac{\widehat{u}_t(x, \omega)}{x} < +\infty
$$

It follows that $L^{\hat{u}_t} = L^1$.

 $A \equiv A + B$ $B = 0.00$

The dual representation of the CCE

Theorem

For every $X \in L^{\widehat{u}_t}$

$$
C_{s,t}(X) = \inf_{\mathbb{Q} \in \mathcal{P}_{\mathcal{F}_t}} G(E_{\mathbb{Q}}[X|\mathcal{F}_s], \mathbb{Q})
$$

where for every $Y \in L^0_{\mathcal{F}_s}$

$$
G(Y,\mathbb{Q})=\sup_{\xi\in L^{\widehat{u}_t}}\left\{ \mathcal{C}_{s,t}(\xi)\mid E_{\mathbb{Q}}[\xi|\mathcal{F}_s]=_{\mathbb{Q}}Y\right\}.
$$

and

$$
\mathcal{P}_{\mathcal{F}_t} = \left\{ \mathbb{Q} << \mathbb{P} \mid \mathbb{Q} \text{ probability and } \frac{d\mathbb{Q}}{d\mathbb{P}} \in (L^{\widehat{u}_t^*}) \right\}
$$

Moreover if $X \in M^{\hat{u}_t}$ then the essential infimum is actually a minimum.

 QQ

K ロ > K @ > K 경 > K 경 > 시 경 +

THANK YOU FOR YOUR ATTENTION!!! ANY QUESTION???