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Stochastic Dynamic Utilities

We fix a non-atomic filtered probability space

(Ω,F , {Ft}t≥0,P)

and suppose that the filtration is right continuous.
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Stochastic Dynamic Utilities

Definition

A stochastic dynamic utility (SDU)

u : R×[0,∞) × Ω → R∪{−∞}

satisfies the following conditions: for any t ∈ [0,+∞) there exists At ∈ Ft

such that P(At) = 1 and
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satisfies the following conditions: for any t ∈ [0,+∞) there exists At ∈ Ft

such that P(At) = 1 and

(a) the effective domain, D(t) := {x ∈ R : u(x , t, ω) > −∞} and the
range R(t) := {u(x , t, ω) | x ∈ D(t)} do not depend on ω ∈ At ;
moreover 0 ∈ intD(t), E [u(0, t)] < +∞ and R(t) ⊆ R(s);
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increasing on D(t) and increasing, concave and upper semicontinuous
on R.
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Stochastic Dynamic Utilities

Definition

A stochastic dynamic utility (SDU)

u : R×[0,∞) × Ω → R∪{−∞}

satisfies the following conditions: for any t ∈ [0,+∞) there exists At ∈ Ft

such that P(At) = 1 and

(a) the effective domain, D(t) := {x ∈ R : u(x , t, ω) > −∞} and the
range R(t) := {u(x , t, ω) | x ∈ D(t)} do not depend on ω ∈ At ;
moreover 0 ∈ intD(t), E [u(0, t)] < +∞ and R(t) ⊆ R(s);

(b) for all ω ∈ At and t ∈ [0,+∞) the function x → u(x , t, ω) is strictly
increasing on D(t) and increasing, concave and upper semicontinuous
on R.

(c) ω → u(x , t, ·) is Ft−measurable for all (x , t) ∈ D(t)×[0,+∞)
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Stochastic Dynamic Utilities

Occasionally we may assume that

Decreasing in time

(d) For any fixed x ∈ D(t), u(x , t, ·) ≤ u(x , s, ·) for every s ≤ t.
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We introduce the following useful

Notation:

U(t) = {X ∈ L0(Ω,Ft ,P) | u(X , t) ∈ L1(Ω,F ,P)}.

Related literature:

Series of papers by Musiela and Zariphopoulou (2006,2008,...);
Henderson and Hobson (2007);

Berrier, Rogers and Theranchi (2007);
El Karoui and Mrad (2010);
Schweizer and Choulli (2010);
probably many other...
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Conditional Certainty Equivalent

Definition

Let u be a SDU and X be a random variable in U(t). For each s ∈ [0, t],
the backward Conditional Certainty Equivalent Cs,t(X ) of X is the random
variable in U(s) solution of the equation:

u(Cs,t(X ), s) = E [u(X , t)|Fs ] .

Thus the CCE defines the valuation operator

Cs,t : U(t) → U(s), Cs,t(X ) = u−1 (E [u(X , t)|Fs ] , s) .
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Conditional Certainty Equivalent

Definition

Let u be a SDU and X be a random variable in U(t). For each s ∈ [0, t],
the backward Conditional Certainty Equivalent Cs,t(X ) of X is the random
variable in U(s) solution of the equation:

u(Cs,t(X ), s) = E [u(X , t)|Fs ] .

Thus the CCE defines the valuation operator

Cs,t : U(t) → U(s), Cs,t(X ) = u−1 (E [u(X , t)|Fs ] , s) .

This definition is the natural generalization to the dynamic and stochastic
environment of the classical definition of the certainty equivalent, as given
in Pratt 1964.
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Equivalent definition of the CCE

Definition (Conditional Certainty Equivalent process)

Let u be a SDU and X be a random variable in U(t). The backward
conditional certainty equivalent of X is the only process {Ys}0≤s≤t such
that Yt ≡ X and the process {u(Ys , s)}0≤s≤t is a martingale.
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Equivalent definition of the CCE

Definition (Conditional Certainty Equivalent process)

Let u be a SDU and X be a random variable in U(t). The backward
conditional certainty equivalent of X is the only process {Ys}0≤s≤t such
that Yt ≡ X and the process {u(Ys , s)}0≤s≤t is a martingale.

This definition could be compared to the definition of non linear
evaluation based on g -expectation, as provided by Peng.

Even if u is concave the CCE is not a concave functional, but it is
conditionally quasiconcave
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Time Consistency

Proposition

Let u be a SDU, 0 ≤ s ≤ v ≤ t < ∞ and X ,Y ∈ U(t).

(i) Cs,t(X ) = Cs,v (Cv ,t(X )).

(ii) Ct,t(X ) = X .

(iii) If Cv ,t(X ) ≤ Cv ,t(Y ) then for all 0 ≤ s ≤ v we have:
Cs,t(X ) ≤ Cs,t(Y ). Therefore, X ≤ Y implies that for all 0 ≤ s ≤ t we
have: Cs,t(X ) ≤ Cs,t(Y ). The same holds if the inequalities are replaced
by equalities.
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Regularity and Quasiconcavity

Proposition

Let u be a SDU, 0 ≤ s ≤ v ≤ t < ∞ and X ,Y ∈ U(t).

(iv) Regularity: for every A ∈ Fs we have

Cs,t(X1A + Y 1AC ) = Cs,t(X )1A + Cs,t(Y )1AC

and then Cs,t(X )1A = Cs,t(X1A)1A.

(v) Quasiconcavity: the upper level set {X ∈ Ut | Cs,t(X ) ≥ Z} is
conditionally convex for every Z ∈ L0Fs

.
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Consequence of Jensen Inequality

Proposition

Let u be a SDU, 0 ≤ s ≤ v ≤ t < ∞ and X ,Y ∈ U(t).

(vi) Suppose u satisfies (d) and for every t ∈ [0,+∞), u(x , t) is integrable
for every x ∈ D(t). Then

Cs,t(X ) ≤ E [Cv ,t(X )|Fs ] and E [Cs,t(X )] ≤ E [Cv ,t(X )];

moreover Cs,t(X ) ≤ E [X |Fs ] and therefore E [Cs,t(X )] ≤ E [X ].
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Example (Exponential SDU)

Let us consider u : R×[0,∞)× Ω → R defined by

u(x , t, ω) = 1− e−αt(ω)x+At (ω)

where αt > 0 and At are stochastic processes.

Cs,t(X ) = −
1

αs

ln
{
E[e−αtX+At |Fs ]

}
+

As

αs

.

If αt(ω) ≡ α ∈ R and At ≡ 0 then

C0,t(X ) = −
1

α
ln
{
E[e−αX ]

}

Cs,t(X ) = −
1

α
ln
{
E[e−αX |Fs ]

}

i.e. C0,t(X ) = −ρu(X ) where ρu is the risk measure induced by the
exponential utility. By introducing a time dependence in the risk aversion
coefficient one looses the monetary property.
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Example (Exponential SDU)

Cash super-additive property:

Cs,t(X + c) ≥ Cs,t(X ) + c , c ∈ R+.

When the risk aversion coefficient is purely stochastic we have no chance
that Cs,t has any monetary or cash super-additive property.
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that Cs,t has any monetary or cash super-additive property.

Proposition

The functional Cs,t(X ) = − 1
αs

ln
{
E[e−αtX+At |Fs ]

}
+ As

αs
is decreasing and

concave.
If the process {αt}t≥0 is almost surely increasing then the (CCE) is cash
super-additive

The definition of CCE is not a priori directly linked to the existence of a
market, as for the theory of forward utilities (see Musiela Zariphopoulou)
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Selection of the right spaces

In literature the generalization of Orlicz spaces to the case of stochastic
(not time dependent) functions are known as Musielak − Orlicz spaces
(Musielak, Orlicz Spaces and Modular Spaces ).
Let u(x , t, ω) be a SDU satisfying (int) condition. The dynamic version

of Musielak-Orlicz space is given by:

Lût (Ft) =

{
X ∈ L0(Ft)

∣∣∃λ > 0 :

∫

Ω
û(λX (ω), t, ω)P(dω) < ∞

}

M ût (Ft) =

{
X ∈ L0(Ft)

∣∣
∫

Ω
û(λX (ω), t, ω)P(dω) < ∞∀λ > 0

}

where û(x , t, ω) = u(0, t, ω)− u(−|x |, t, ω).
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Selection of the right spaces

We endow these spaces with the Luxemburg norm

Nût (X ) = inf

{
c > 0

∣∣∣
∫

Ω
û

(
X (ω)

c
, t, ω

)
P(dω) ≤ 1

}
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We endow these spaces with the Luxemburg norm

Nût (X ) = inf

{
c > 0

∣∣∣
∫

Ω
û

(
X (ω)

c
, t, ω

)
P(dω) ≤ 1

}

and consider the following

Condition:
∫

Ω
û(x , t, ω)P(dω) < ∞ for every x ∈ D(t) (int)
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Selection of the right spaces

In general:

L∞(Ft)
Nût = M ût (Ft) ⊆ Lût (Ft)

and if the condition (∆2) is satisfied then

M ût (Ft) = Lût (Ft)
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Selection of the right spaces

In general:

L∞(Ft)
Nût = M ût (Ft) ⊆ Lût (Ft)

and if the condition (∆2) is satisfied then

M ût (Ft) = Lût (Ft)

Condition:

There exists K , x0 ∈ R and h ∈ L1 such that

Ψ(2x , ·) ≤ KΨ(x , ·) + h(·) for all x > x0, P− a.s. (∆2)
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Example (The CCE is well defined)

1) Consider an exponential dynamic utility:

u(x , t, ω) = 1− e−αt(ω)x+At (ω)

Assume that:
E [eαt |x |+At ] < ∞ ∀ x ∈ R and At belongs to L∞(Ft),
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E [eαt |x |+At ] < ∞ ∀ x ∈ R and At belongs to L∞(Ft),

Proposition

If X ∈ M ût then Cs,t(X ) ∈ M ûs i.e.

Cs,t : M ût −→ M ûs

X 7−→ − 1
αs

ln
{
E [e−αtX+At |Fs ]

}
+ As

αs
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Example (The CCE is well defined)

2)Consider a random power utility

u(x , t, ω) = −γt(ω)|x |
pt (ω)1(−∞,0)

where γt , pt are adapted stochastic processes satisfying γt > 0 and pt > 1.
In this case

Cs,t(X ) = −
1

γs

(
E [γt(X

−)pt |Fs ]
) 1

ps + K1GC

where K ∈ L0Fs
, K > 0 and G := {E [γt |X |pt1{X<0}|Fs ] > 0}. If in

particular K ∈ M ûs then

Cs,t : M
ût −→ M ûs .
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Example (The CCE is well defined)

3)Let V : R → R a concave, strictly increasing function and {αt}t≥0 an
adapted stochastic process such that for every t ≥ 0, αt > 0. Then
u(x , t, ω) = V (αt(ω)x) is a SDU and

Cs,t(X ) =
1

αs

V−1 (E [V (αtX ) | Fs ])

Proposition

Let Θt = {X ∈ Lût |E [u(−X−, t)] > −∞} ⊇ M ût . Then

Cs,t : Θt → Θs

Moreover if û(x , s) satisfies the (∆2) condition, then

Cs,t : M
ût → M ûs .
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A good domain for the CCE

A general evidence is that
M ût ⊆ U(t)

but
Lût * U(t)

Anyway we can define the Cs,t on the whole space Lût using an extended
version of the conditional expectation

E [u(X , t) | Fs ] := E [u(X , t)+ | Fs ]− lim
n

E [u(X , t)− ∧ n | Fs ]

provided that a technical assumption is satisfied.
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Assumption for the dual representation

a) Rockafellar 1968: there exists X ∗ ∈ (Lût )∗ s.t.

E [f ∗(X ∗, t)] < +∞,

where f ∗(x , t, ω) = supy∈R {xy + u(y , t, ω)}.
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Assumption for the dual representation

b) For every fixed t, ût belongs to one of these three possible classes:
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b) For every fixed t, ût belongs to one of these three possible classes:

1 ût(·, ω) is (int) and discontinuous, i.e. D(t) $ R. In this case,
Lût = L∞

2 ût(·, ω) is continuous, ût and (ût)
∗ are (int) and satisfy:

ût(x , ω)

x
→ +∞ , as x → ∞.

3 ût(·, ω) is continuous and

0 < ess inf
ω∈Ω

lim
x→∞

ût(x , ω)

x
≤ ess sup

ω∈Ω
lim
x→∞

ût(x , ω)

x
< +∞

It follows that Lût = L1.

Marco Maggis (University of Milan) CCE Bachelier Congress 2010 21 / 23



The dual representation of the CCE

Theorem

For every X ∈ Lût

Cs,t(X ) = inf
Q∈PFt

G (EQ[X |Fs ],Q)

where for every Y ∈ L0Fs

G (Y ,Q) = sup
ξ∈Lût

{Cs,t(ξ) | EQ[ξ|Fs ] =Q Y } .

and

PFt =

{
Q << P | Q probability and

dQ
dP

∈ (Lû
∗
t )

}

Moreover if X ∈ M ût then the essential infimum is actually a minimum.
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THANK YOU FOR YOUR

ATTENTION!!!

ANY QUESTION???
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