Arbitrage for investment-production model in discrete time with proportional transaction costs 6th Bachelier Congress 2010 - 6.25.10

Bruno Bouchard ¹ Adrien Nguyen Huu ²

¹Université Dauphine, CEREMADE and CREST-ENSAE Paris, France

²Université Dauphine, CEREMADE and FiME- EDF R&D Paris, France Motivation and proportional transaction costs models Model and notations No Arbitrage of the 2nd kind No Arbitrage of the 1st

Content

Motivation and proportional transaction costs models

Model and notations

No Arbitrage of the 2nd kind

No Arbitrage of the 1^{st} kind

Motivation and proportional transaction costs models Model and notations No Arbitrage of the 2nd kind No Arbitrage of the 1st

Content

Motivation and proportional transaction costs models

Model and notations

No Arbitrage of the 2nd kind

No Arbitrage of the 1^{st} kind

A practical problem on Electricity market

Two challenges on Electricit markets :

- On an Electricity Spot&Future market, a producer can hedge an option within the market or by selling the produced good ⇒ A production-investment model.
- Illiquidity and transport difficulties (of production ressources)
 ⇒ Transaction Costs.

<u>Framework</u> : Situation where a producer can invest on a market with proportional transaction costs, or produce some assets *with a non-linear production function*.

<u>Other example</u> : Coal extractor hedging his production with future contracts.

Introduction to models with transaction costs

Let π := (π_t)_{t≤0} ⊂ L⁰(M^d, F) be the exchange price from one unit of *i* to one unit of *j*, such that

(i)
$$\pi_t^{ii} = 1$$
 (conservation of portfolio)
(ii) $\pi_t^{ij} > 0$ (prices are positives)
(iii) $\pi_t^{ij} \pi_t^{jk} \ge \pi_t^{ik}$ (direct transferts are better)

- If S is a (fictitious) price of d assets, then $\frac{1}{\pi^{ji}} \leq \frac{S^j}{S^i} \leq \pi^{ij}$.
- For a transaction cost λ_t^{ij} : $\pi^{ij} = \frac{S^j}{S^i}(1 + \lambda_t^{ij})$.
- π is also called the *bid-asked process* (e.g. Campi & Schachermayer (2006))

The geometrical formulation

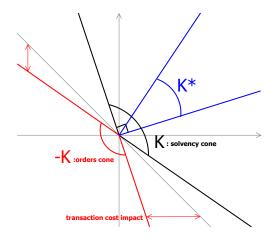
- Each exchange order (from i to j) is of the form λ(e_j − π^{ij}e_i), λ ∈ ℝ₊.
- One can throw some asset i ≤ d, throwing order is of the form λ(-e_i), λ ∈ ℝ₊.
- Linear combinations of orders put evolutions of the portfolio in

$$-\mathcal{K}(\omega) := \operatorname{conv}\{e_j - \pi^{ij}(\omega)e_i, -e_i \ ; \ i,j \leq d\}.$$

• A solvable position V is such that an admissible order $\xi \in -K$ can clear the position

$$V + \xi = 0 \quad \Rightarrow \quad V \in K \; .$$

A comprehensive geometrical interpretation



Motivation and proportional transaction costs models Model and notations No Arbitrage of the 2nd kind No Arbitrage of the 1st

Content

Motivation and proportional transaction costs models

Model and notations

No Arbitrage of the 2nd kind

No Arbitrage of the 1^{st} kind

Notations and the linear model

- $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{F} = (\mathcal{F}_t)_{t \in \mathbb{T}}$ and $\mathbb{T} := \{0, 1, \cdots, T\}$.
- $K = (K_t)_{t \in \mathbb{T}}$. K_t a \mathbb{F}_t -measurable random convex cone in \mathbb{R}^d .
- $(K_t^*)_{t\in\mathbb{T}}$: $K_t^* = \{y \in \mathbb{R}^d : x'y \ge 0 \ \forall x \in K_t\}.$
- $(R_t)_{t\in\mathbb{T}}$ a sequence of random maps from \mathbb{R}^d_+ to \mathbb{R}^d .
- A portfolio process is defined by

$$V_t^{\xi,\beta} = \sum_{s=0}^t (\xi_s - \beta_s + R_s(\beta_{s-1})\mathbf{1}_{s\geq 1})$$

with $(\xi, eta) \in \mathcal{A}_0 := -\mathcal{K} imes \mathbb{R}^d_+$ for all $0 \le s \le T$ and

$$\boldsymbol{A}_t^{\boldsymbol{K},\boldsymbol{R}}(\boldsymbol{\mathcal{T}}) := \left\{ \sum_{s=t}^{\boldsymbol{\mathcal{T}}} (\xi_s - \beta_s + R_s(\beta_{s-1}) \mathbf{1}_{s \geq 1}), (\xi,\beta) \in \mathcal{A}_0 \right\} \text{ for } t \leq \boldsymbol{\mathcal{T}}.$$

A first no-arbitrage condition for the model

In Bouchard & Pham (2005), a similar model is studied. In their model, there is no arbitrage $(\mathbf{NA}^r(K, R))$ if

- we slightly decrease the transaction costs;
- we slightly increase the production efficiency.
- \Rightarrow No arbitrage is possible even by a production strategy. <u>Problem</u> : the condition is
 - unrealistic : production is not market-constrainted;
 - unflexible : no dual condition for $NA^{r}(K, R)$.

Objective :

- We want to allow reasonable production arbitrages.
- We want a simple dual condition.

Motivation and proportional transaction costs models Model and notations No Arbitrage of the 2nd kind No Arbitrage of the 1st

Content

Motivation and proportional transaction costs models

Model and notations

No Arbitrage of the 2nd kind

No Arbitrage of the 1st kind

The asymptotic production function and the **NMA2** condition

Define $(L_t)_{t\in\mathbb{T}}\in L^0(\mathbb{M}^d,\mathbb{F})$ and suppose the following assumption

(**RL**) :
$$\lim_{\eta\to\infty} \eta^{-1} R_t(\eta\beta) = L_t\beta$$
.

Then define a linear model with attainable wealthes in

$$A_t^{K,L}(T) := \left\{ \sum_{s=t}^T \xi_s - \beta_s + L_s \beta_{s-1} \mathbf{1}_{s \ge t+1}, \quad (\xi,\beta) \in \mathcal{A}_0 \right\}$$

Definition (NMA2)

There is no marginal arbitrage arbitrage of the second kind for high production regimes if there exists $(c, L) \in L^{\infty}(\mathbb{R}^d \times \mathbb{M}^d, \mathbb{F})$ s.t.

1.
$$\forall \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_{t-1}), \ c_t + L_t\beta - R_t(\beta) \in L^0(K_t, \mathcal{F}_t)$$
,

2. There is no-arbitrage in the linear model, $\mathbf{NA2}^{L}$ holds.

The No Arbitrage condition of the second kind for a linear model

Definition (**NA2**^{*L*})

There is no arbitrage of the second kind for L if for $(\zeta, \beta) \in L^0(\mathbb{R}^d \times \mathbb{R}^d_+, \mathcal{F}_t), t \leq T$ (i) $\zeta - \beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \zeta \in K_t,$ (ii) $-\beta + L_{t+1}\beta \in L^0(K_{t+1}, \mathcal{F}_{t+1}) \Rightarrow \beta = 0,$

<u>Interpretation</u> : a "one-step" condition saying (i) only solvable positions at t lead to solvable positions at t + 1 and (ii) the net production function L - I is risky. Extention of **NGV** : for $L \equiv 0$, (i) \Leftrightarrow **NGV**.

The genuine No-Arbitrage condition, for $R \equiv 0$

Definition (NGV)

There is no sure gain value if for $\zeta \in L^0(\mathbb{R}^d, \mathcal{F}_t)$,

$$\zeta + A_t^{K,L}(T) \cap L^0(K_T,\mathcal{F}_T) \neq \emptyset \quad \Rightarrow \quad \zeta \in K_t.$$

Definition (PCE)

Prices are consistently extendable if for any $X \in L^1(\operatorname{int} K_t^*, \mathcal{F}_t)$, there exists $Z \in \mathcal{M}_t^T(\operatorname{int} K^*)$ (a martingale evolving in $\operatorname{int} K^*$) such that $Z_t = X$.

Theorem (Rasonyi (2009))

Under efficient friction $(\pi^{ij}\pi^{jk} > \pi^{ik})$, **NGV** \Leftrightarrow **PCE**.

Extendable strictly consistent prices

- *M*^T_t(int*K**) is the set of martingales *Z* = (*Z_s*)_{t≤s≤T} evolving in the interior of *K**.
- $\mathcal{L}_t^T(\operatorname{int}\mathbb{R}^d_-)$ is the set of processes Z such that for $t \leq s < T$ $\mathbb{E}\left[Z'_{s+1}(L_{s+1}-I)|\mathcal{F}_s\right] \in \operatorname{int}\mathbb{R}^d_-.$

Definition (**PCE**^L)

Prices are consistently extendable for L if for any $X \in L^1(\operatorname{int} \mathcal{K}_t^*, \mathcal{F}_t)$, there exits $Z \in \mathcal{M}_t^T(\operatorname{int} \mathcal{K}^*) \cap \mathcal{L}_t^T(\operatorname{int} \mathbb{R}_-^d)$ such that $Z_t = X$.

Theorem (Fundamental Theorem of Asset Pricing) if $\operatorname{int} \mathcal{K}^* \neq \emptyset$, $\operatorname{NA2}^L \Leftrightarrow \operatorname{PCE}^L$.

Fatou-closure

$$(\mathsf{USC}): \limsup_{\beta \to \beta_0} R_t(\beta) - R_t(\beta_0) \in -K_t \text{ for all } \beta_0 \in \mathbb{R}^d_+.$$

Theorem

- $\mathbf{NA2}^L \Rightarrow A_t^{K,L}(T)$ is Fatou-closed.
- NMA2 + (USC) $\Rightarrow A_t^R(T)$ is Fatou-closed.

We introduce the set of wealth processes "bounded from below" :

$$A^R_{0b}(\mathcal{T}) := \left\{ V \in A^R_0(\mathcal{T}) ext{ s.t. } V + \kappa \in \mathcal{K}_{\mathcal{T}} ext{ for some } \kappa \in \mathbb{R}^d
ight\}$$

and the support function

$$\alpha^{R}(Z) := \sup \left\{ \mathbb{E}\left[Z_{T}^{\prime}V \right], \ V \in A_{0b}^{R}(T) \right\}, \ Z \in \mathcal{M}_{0}^{T}(K^{*}).$$

Super Replication Theorem

(Ra):
$$\alpha R_t(\beta_1) + (1-\alpha)R_t(\beta_2) - R_t(\alpha\beta_1 + (1-\alpha)\beta_2) \in -K_t$$

(Rb): $R_t(\beta) \in L^{\infty}(\mathbb{R}^d, \mathcal{F})$ for $\beta \in L^{\infty}(\mathbb{R}^d_+, \mathcal{F})$.

Proposition

Assume that NMA2, (USC) and (Ra), (Rb) hold. Let $V \in L^0(\mathbb{R}^d, \mathcal{F})$ be such that $V + \kappa \in L^0(K_T, \mathcal{F})$ for some $\kappa \in \mathbb{R}^d$. Then, the following are equivalent : (i) $V \in A_0^R(T)$ (ii) $\mathbb{E}[Z'_T V] \leq \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T(\operatorname{int} K^*)$. If (RL) holds, then (ii) can be replaced by (ii') $\mathbb{E}[Z'_T V] \leq \alpha^R(Z)$ for all $Z \in \mathcal{M}_0^T(\operatorname{int} K^*) \cap \mathcal{L}_0^T(\operatorname{int} \mathbb{R}^d_-)$.

Portfolio optimization

Take $U \neq \mathbb{P} - a.s.$ upper continuous, concave, random map from \mathbb{R}^d to $] - \infty, 1]$, with $U(V) = -\infty$ on $\{V \notin K_T\}$. For $x_0 \in R^d$, we assume that

$$\mathcal{U}(x_0) := \left\{ V \in A_0^R(T) : \mathbb{E}\left[|U(x_0 + V)| \right] < \infty \right\} \neq \emptyset.$$

Proposition (Utility maximization)

Assume that NMA2, (USC) and (Ra),(Rb) hold. Assume further that $U(x_0) \neq \emptyset$. Then, there exists $V(x_0) \in A_0^R(T)$ such that

$$\mathbb{E}\left[U(x_0+V(x_0))\right] = \sup_{V\in\mathcal{U}(x_0)}\mathbb{E}\left[U(x_0+V)\right] \ .$$

Motivation and proportional transaction costs models Model and notations No Arbitrage of the 2nd kind No Arbitrage of the 1st I

Content

Motivation and proportional transaction costs models

Model and notations

No Arbitrage of the 2nd kind

No Arbitrage of the 1^{st} kind

Robust no-arbitrage

- **NMA**^rholds if there exists $(c, L) \in L^{\infty}(\mathbb{R}^d \times \mathbb{M}^d, \mathbb{F})$ s.t.
 - 1. $\forall \beta \in L^0(\mathbb{R}^d_+, \mathcal{F}_t), \ c_{t+1} + L_{t+1}\beta R_{t+1}(\beta) \in L^0(K_{t+1}, \mathcal{F}_{t+1})$,
 - 2. $NA^r(K, L)$ holds.
- $\mathbf{NA}^{r}(K, L)$ holds if (K, L) is dominated by some (\tilde{K}, \tilde{L}) and

$$A_t^{\tilde{K},\tilde{L}}(T)\cap L^0(\mathbb{R}^d_+,\mathcal{F}_T)=\{0\}$$

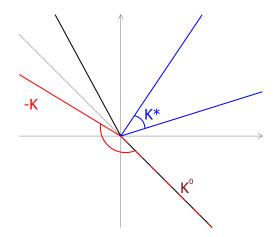
- (K, L) is dominated by (\tilde{K}, \tilde{L}) if for all t

1.
$$K_t \setminus K_t^0 \subset \operatorname{ri}(\tilde{K}_t)$$
 and $K_t \subset \tilde{K}_t$.

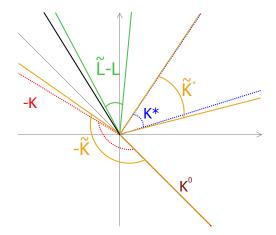
2.
$$(\tilde{L}-L)\mathbb{R}^d_+ \subset \operatorname{ri}(K_t)$$

Here, $K_t^0 = K_t \cap -K_t$. ri (K_t) stands for the relative interior of K_t .

A geometrical interpretation of $NA^{r}(K, L)$



A geometrical interpretation of $NA^{r}(K, L)$



Applications

Theorem (FTAP) $\mathbf{NA}^{r}(K, L) \Leftrightarrow \mathcal{M}_{0}^{T}(\mathrm{int}K^{*}) \cap \mathcal{L}_{0}^{T}(\mathrm{int}\mathbb{R}_{-}^{d}) \neq \emptyset$

Theorem

- $\mathbf{NA}^{r}(K,L) \Rightarrow A_{0}^{L}(T)$ is Fatou-closed.
- **NMA**^r + (**USC**) $\Rightarrow A_0^R(T)$ is Fatou-closed.

Corollaries :

- 1. Super-hedging Theorem.
- 2. Existence in the Utility maximization problem.

<u>A similar case</u> : Bouchard & Pham (2005), the authors proved in a constraint case the super-hedging theorem, and existence of a solution in utility maximization and optimal consumption problems.

Conclusion

- Theoretical point of view :
 - Extention of NA2 property for linear production-investment models.
 - Authorized "industrial" arbitrages for a limited regime of production for non-linear models.
 - Fatou-closure and applications to portfolio optimization.
- <u>Practical</u> point of view :
 - Portfolio optimization for an electricity producer knowing his production function *R*.
 - A setting for the formation of the competitive price of electricity.

THANK YOU FOR YOUR ATTENTION!

Theoretical interest and result

The **NGV** condition of Rasonyi (2009) :

- Extention to investment-production model.
- Fatou-closure : superhedging and utility maximization.

The $NA^{r}(K, R)$ condition of Bouchard & Pham (2005) :

• Modification to obtain a duality result.

Yet another No Arbitrage condition for markets with propotional transaction costs *in discrete time*...

Inspiration

- B. Bouchard and H. Pham. Optimal consumption in discrete time financial models with industrial investment opportunities and non-linear returns. 2005.
- Y. Kabanov and M. Kijima. A consumption-investment problem with production possibilities. 2006.
- M. Rásonyi. Arbitrage under transaction costs revisited. 2009.
- Y. Kabanov, M. Rásonyi and C. Stricker. On the closedness of sums of convex cones in L⁰ and the robust no-arbitrage property. 2003.

<u>Submited</u> : No marginal arbitrage of the second kind for high production regimes in discrete time production-investment models with proportional transaction costs.