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A practical problem on Electricity market

Two challenges on Electricit markets :

• On an Electricity Spot&Future market, a producer can hedge

an option within the market or by selling the produced good

⇒ A production-investment model.

• Illiquidity and transport difficulties (of production ressources)

⇒ Transaction Costs.

Framework : Situation where a producer can invest on a market

with proportional transaction costs, or produce some assets with a

non-linear production function.

Other example : Coal extractor hedging his production with future

contracts.
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Introduction to models with transaction costs

• Let π := (πt)t≤0 ⊂ L0(Md ,F) be the exchange price from one

unit of i to one unit of j , such that

(i) πii
t = 1 (conservation of portfolio)

(ii) πij
t > 0 (prices are positives)

(iii) πij
t π

jk
t ≥ πik

t (direct transferts are better)

• If S is a (fictitious) price of d assets, then 1
πji ≤ S j

S i ≤ πij .

• For a transaction cost λijt : πij = S j

S i (1 + λijt ).

• π is also called the bid-asked process (e.g. Campi &

Schachermayer (2006))
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The geometrical formulation

• Each exchange order (from i to j) is of the form λ(ej − πijei ),

λ ∈ R+.

• One can throw some asset i ≤ d , throwing order is of the

form λ(−ei ), λ ∈ R+.

• Linear combinations of orders put evolutions of the portfolio in

−K (ω) := conv{ej − πij(ω)ei ,−ei ; i , j ≤ d}.

• A solvable position V is such that an admissible order ξ ∈ −K

can clear the position

V + ξ = 0 ⇒ V ∈ K .
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A comprehensive geometrical interpretation

-K
K

K*

transaction cost impact

:orders cone

: solvency cone
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Notations and the linear model

• (Ω,F ,P) with F = (Ft)t∈T and T := {0, 1, · · · ,T}.

• K = (Kt)t∈T. Kt a Ft-measurable random convex cone in Rd .

• (K ∗t )t∈T : K ∗t = {y ∈ Rd : x ′y ≥ 0 ∀x ∈ Kt}.

• (Rt)t∈T a sequence of random maps from Rd
+ to Rd .

• A portfolio process is defined by

V ξ,β
t =

t∑
s=0

(ξs − βs + Rs(βs−1)1s≥1)

with (ξ, β) ∈ A0 := −K × Rd
+ for all 0 ≤ s ≤ T and

AK ,R
t (T ) :=

{
T∑
s=t

(ξs − βs + Rs(βs−1)1s≥1), (ξ, β) ∈ A0

}
for t ≤ T .
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A first no-arbitrage condition for the model

In Bouchard & Pham (2005), a similar model is studied. In their

model, there is no arbitrage (NAr (K ,R)) if

• we slightly decrease the transaction costs ;

• we slightly increase the production efficiency.

⇒ No arbitrage is possible even by a production strategy.

Problem : the condition is

• unrealistic : production is not market-constrainted ;

• unflexible : no dual condition for NAr (K ,R).

Objective :

• We want to allow reasonable production arbitrages.

• We want a simple dual condition.
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The asymptotic production function and the

NMA2 condition

Define (Lt)t∈T ∈ L0(Md ,F) and suppose the following assumption

(RL) : limη→∞ η
−1Rt(ηβ) = Ltβ.

Then define a linear model with attainable wealthes in

AK ,L
t (T ) :=

{
T∑
s=t

ξs − βs + Lsβs−11s≥t+1, (ξ, β) ∈ A0

}

Definition (NMA2 )

There is no marginal arbitrage arbitrage of the second kind for high

production regimes if there exists (c , L) ∈ L∞(Rd ×Md ,F) s.t.

1. ∀β ∈ L0(Rd
+,Ft−1), ct + Ltβ − Rt(β) ∈ L0(Kt ,Ft) ,

2. There is no-arbitrage in the linear model, NA2L holds.
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The No Arbitrage condition of the second kind for a linear

model

Definition (NA2L)

There is no arbitrage of the second kind for L if for

(ζ, β) ∈ L0(Rd × Rd
+,Ft), t ≤ T

(i) ζ − β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ ζ ∈ Kt ,

(ii) −β + Lt+1β ∈ L0(Kt+1,Ft+1)⇒ β = 0,

Interpretation : a ”one-step” condition saying (i) only solvable

positions at t lead to solvable positions at t + 1 and (ii) the net

production function L− I is risky.

Extention of NGV : for L ≡ 0, (i) ⇔ NGV.
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The genuine No-Arbitrage condition, for R ≡ 0

Definition (NGV)

There is no sure gain value if for ζ ∈ L0(Rd ,Ft),

ζ + AK ,L
t (T ) ∩ L0(KT ,FT ) 6= ∅ ⇒ ζ ∈ Kt .

Definition (PCE)

Prices are consistently extendable if for any X ∈ L1(intK ∗t ,Ft),

there exists Z ∈MT
t (intK ∗) (a martingale evolving in intK ∗) such

that Zt = X .

Theorem (Rasonyi (2009))

Under efficient friction (πijπjk > πik), NGV⇔ PCE .
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Extendable strictly consistent prices

• MT
t (intK ∗) is the set of martingales Z = (Zs)t≤s≤T evolving

in the interior of K ∗.

• LTt (intRd
−) is the set of processes Z such that for t ≤ s < T

E
[
Z ′s+1(Ls+1 − I )|Fs

]
∈ intRd

−.

Definition (PCEL)

Prices are consistently extendable for L if for any

X ∈ L1(intK ∗t ,Ft), there exits Z ∈MT
t (intK ∗) ∩ LTt (intRd

−) such

that Zt = X .

Theorem (Fundamental Theorem of Asset Pricing)

if intK ∗ 6= ∅, NA2L ⇔ PCEL.
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Fatou-closure

(USC) : lim supβ→β0
Rt(β)− Rt(β0) ∈ −Kt for all β0 ∈ Rd

+.

Theorem

• NA2L ⇒ AK ,L
t (T ) is Fatou-closed.

• NMA2 + (USC)⇒ AR
t (T ) is Fatou-closed.

We introduce the set of wealth processes ”bounded from below” :

AR
0b(T ) :=

{
V ∈ AR

0 (T ) s.t. V + κ ∈ KT for some κ ∈ Rd
}

and the support function

αR(Z ) := sup
{
E
[
Z ′TV

]
, V ∈ AR

0b(T )
}
, Z ∈MT

0 (K ∗) .
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Super Replication Theorem

(Ra) : αRt(β1) + (1− α)Rt(β2)− Rt(αβ1 + (1− α)β2) ∈ −Kt

(Rb) : Rt(β) ∈ L∞(Rd ,F) for β ∈ L∞(Rd
+,F).

Proposition

Assume that NMA2 , (USC) and (Ra), (Rb) hold. Let

V ∈ L0(Rd ,F) be such that V + κ ∈ L0(KT ,F) for some κ ∈ Rd .

Then, the following are equivalent :

(i) V ∈ AR
0 (T )

(ii) E [Z ′TV ] ≤ αR(Z ) for all Z ∈MT
0 (intK ∗).

If (RL) holds, then (ii) can be replaced by

(ii’) E [Z ′TV ] ≤ αR(Z ) for all Z ∈MT
0 (intK ∗) ∩ LT0 (intRd

−).
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Portfolio optimization

Take U a P− a.s. upper continuous, concave, random map from

Rd to ]−∞, 1], with U(V ) = −∞ on {V /∈ KT}. For x0 ∈ Rd , we

assume that

U(x0) :=
{

V ∈ AR
0 (T ) : E [|U(x0 + V )|] <∞

}
6= ∅.

Proposition (Utility maximization)

Assume that NMA2 , (USC) and (Ra),(Rb) hold. Assume further

that U(x0) 6= ∅. Then, there exists V (x0) ∈ AR
0 (T ) such that

E [U(x0 + V (x0))] = sup
V∈U(x0)

E [U(x0 + V )] .
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Robust no-arbitrage

- NMArholds if there exists (c, L) ∈ L∞(Rd ×Md ,F) s.t.

1. ∀β ∈ L0(Rd
+,Ft), ct+1 + Lt+1β −Rt+1(β) ∈ L0(Kt+1,Ft+1) ,

2. NAr (K , L) holds.

- NAr (K , L) holds if (K , L) is dominated by some (K̃ , L̃) and

AK̃ ,L̃
t (T ) ∩ L0(Rd

+,FT ) = {0}

- (K , L) is dominated by (K̃ , L̃) if for all t

1. Kt\K 0
t ⊂ ri(K̃t) and Kt ⊂ K̃t .

2. (L̃− L)Rd
+ ⊂ ri(Kt)

Here, K 0
t = Kt ∩ −Kt . ri(Kt) stands for the relative interior of Kt .
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A geometrical interpretation of NAr (K , L)

-K
K*

K
0
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A geometrical interpretation of NAr (K , L)

-K
K*

L
~

K
0

-K
~

K*
~

-L
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Applications

Theorem (FTAP)

NAr (K , L)⇔MT
0 (intK ∗) ∩ LT0 (intRd

−) 6= ∅

Theorem

• NAr (K , L)⇒ AL
0(T ) is Fatou-closed.

• NMAr + (USC)⇒ AR
0 (T ) is Fatou-closed.

Corollaries :

1. Super-hedging Theorem.

2. Existence in the Utility maximization problem.

A similar case : Bouchard & Pham (2005), the authors proved in a

constraint case the super-hedging theorem, and existence of a

solution in utility maximization and optimal consumption problems.



Motivation and proportional transaction costs models Model and notations No Arbitrage of the 2nd kind No Arbitrage of the 1st kind

Conclusion

- Theoretical point of view :

• Extention of NA2 property for linear production-investment

models.

• Authorized ”industrial” arbitrages for a limited regime of

production for non-linear models.

• Fatou-closure and applications to portfolio optimization.

- Practical point of view :

• Portfolio optimization for an electricity producer knowing his

production function R.

• A setting for the formation of the competitive price of

electricity.

THANK YOU FOR YOUR ATTENTION !
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Theoretical interest and result

The NGV condition of Rasonyi (2009) :

• Extention to investment-production model.

• Fatou-closure : superhedging and utility maximization.

The NAr (K ,R) condition of Bouchard & Pham (2005) :

• Modification to obtain a duality result.

Yet another No Arbitrage condition for markets with propotional

transaction costs in discrete time...
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