The Numeraire Portfolio Under Proportional Transaction Costs

Jörn Sass, sass@mathematik.uni-kl.de Department of Mathematics, University of Kaiserslautern

joint work with

Manfred Schäl, IAM, University of Bonn

Toronto, June 25, 2010

- \triangleright Numeraire portfolio and growth optimality without transaction costs
- \triangleright Growth optimality under transaction costs
- \triangleright Discrete time model with transaction costs
- \blacktriangleright A "simple" example
- ▶ Price systems under transaction costs
- ▶ Numeraire portfolio under transaction costs
- \blacktriangleright Extensions and some background

 \triangleright Discrete time, arbitrage-free model with bond B and stock prices S

$$
B_n\equiv 1,\quad S_n>0,\quad n=0,\ldots N,
$$

whose evolution is given w.r.t. the physical measure P. As Filtration we use $\mathcal{F}_n = \sigma(S_0, S_1, \ldots, S_n)$, \mathcal{F}_0 trivial.

 \triangleright Discrete time, arbitrage-free model with bond B and stock prices S

$$
B_n\equiv 1,\quad S_n>0,\quad n=0,\ldots N,
$$

whose evolution is given w.r.t. the physical measure P. As Filtration we use $\mathcal{F}_n = \sigma(S_0, S_1, \ldots, S_n)$, \mathcal{F}_0 trivial.

► An equivalent martingale measure (EMM) Q satisfies $Q \sim P$ and $E_{\Omega}[S_{n+1} | \mathcal{F}_n] = S_n$, $n = 0, ..., N - 1$.

 \triangleright Discrete time, arbitrage-free model with bond B and stock prices S

$$
B_n\equiv 1,\quad S_n>0,\quad n=0,\ldots N,
$$

whose evolution is given w.r.t. the physical measure P. As Filtration we use $\mathcal{F}_n = \sigma(S_0, S_1, \ldots, S_n)$, \mathcal{F}_0 trivial.

- ► An equivalent martingale measure (EMM) Q satisfies $Q \sim P$ and $E_{\mathcal{O}}[S_{n+1} | \mathcal{F}_n] = S_n$, $n = 0, \ldots, N - 1$.
- \blacktriangleright Fundamental theorems of asset pricing
	- \triangleright No arbitrage opportunities exist if and only if there is at least one EMM Q.
	- In this case: Market is complete if and only if Q is unique.

 \triangleright Discrete time, arbitrage-free model with bond B and stock prices S

$$
B_n\equiv 1,\quad S_n>0,\quad n=0,\ldots N,
$$

whose evolution is given w.r.t. the physical measure P . As Filtration we use $\mathcal{F}_n = \sigma(S_0, S_1, \ldots, S_n)$, \mathcal{F}_0 trivial.

- ► An equivalent martingale measure (EMM) Q satisfies $Q \sim P$ and $E_{\mathcal{O}}[S_{n+1} | \mathcal{F}_n] = S_n$, $n = 0, \ldots, N - 1$.
- \blacktriangleright Fundamental theorems of asset pricing
	- \triangleright No arbitrage opportunities exist if and only if there is at least one EMM Q.
	- In this case: Market is complete if and only if Q is unique.
- \triangleright For any EMM Q an arbitrage free price for a claim C is

$$
\mathrm{pr}_{Q}(C) := \mathrm{E}_{Q}[C] = \mathrm{E}[Z_{N}^{Q} C], \quad Z_{N}^{Q} := \frac{dQ}{dP}.
$$

► For a self-financing trading strategy φ we can compute wealth X_n^{φ} , $n = 0, \ldots, N$. We would like to find φ such that

$$
\mathrm{pr}(C) := \mathrm{E}[Z_N^Q C] = \mathrm{E}\left[\frac{C}{X_N^{\varphi}}\right].
$$

► For a self-financing trading strategy φ we can compute wealth X_n^{φ} , $n = 0, \ldots, N$. We would like to find φ such that

$$
\mathrm{pr}(C) := \mathrm{E}[Z_N^Q C] = \mathrm{E}\left[\frac{C}{X_N^{\varphi}}\right].
$$

► This can be done, if we can find a trading strategy φ^* for $X_0^* = x_0 = 1$ such that $X_n^* > 0$ and we have martingales

 $1/X_n^*$, S_n/X_n^* , $n = 0, ..., N$.

 φ^* is then called the numeraire portfolio (cf. Long (1990)).

► For a self-financing trading strategy φ we can compute wealth X_n^{φ} , $n = 0, \ldots, N$. We would like to find φ such that

$$
\mathrm{pr}(C) := \mathrm{E}[Z_N^Q C] = \mathrm{E}\left[\frac{C}{X_N^{\varphi}}\right].
$$

► This can be done, if we can find a trading strategy φ^* for $X_0^* = x_0 = 1$ such that $X_n^* > 0$ and we have martingales

 $1/X_n^*$, S_n/X_n^* , $n = 0, ..., N$.

 φ^* is then called the numeraire portfolio (cf. Long (1990)).

Ansatz: Choose φ^* growth optimal, $E[\log X_N^*] = \max_{\alpha} E[\log(X_N^{\varphi})].$ This works in a **complete market**, since $X_N^* = x_0/Z_N^Q$ is maximizing $E[log(X_N)] - y(E_Q[X_N] - x_0) = E[log(X_N) - yZ_N^Q X_N] + y x_0.$

► For a self-financing trading strategy φ we can compute wealth X_n^{φ} , $n = 0, \ldots, N$. We would like to find φ such that

$$
\mathrm{pr}(C) := \mathrm{E}[Z_N^Q C] = \mathrm{E}\left[\frac{C}{X_N^{\varphi}}\right].
$$

► This can be done, if we can find a trading strategy φ^* for $X_0^* = x_0 = 1$ such that $X_n^* > 0$ and we have martingales

 $1/X_n^*$, S_n/X_n^* , $n = 0, ..., N$.

 φ^* is then called the numeraire portfolio (cf. Long (1990)).

Ansatz: Choose φ^* growth optimal, $E[\log X_N^*] = \max_{\alpha} E[\log(X_N^{\varphi})].$ This works in a **complete market**, since $X_N^* = x_0/Z_N^Q$ is maximizing

 $E[log(X_N)] - y(E_Q[X_N] - x_0) = E[log(X_N) - yZ_N^Q X_N] + y x_0.$

In an **incomplete market** this might not work, since for $V(z) = \sup\{\log(x) - x z : x > 0\} = \log(1/z) - 1$

$$
X_N^* = \frac{x_0}{Z_N^*}, \quad \mathbb{E}[V(Z_N^*)] = \inf \{ \mathbb{E}[V(Z)] \, : \, Z \, \mathsf{EMM} \}
$$

▶ We assume $S_{n+1} = S_n(1 + R_{n+1})$ with returns R_n i.i.d. like R_n , $\underline{R} \leq R \leq \overline{R}, \quad -1 < \underline{R} < 0 < \overline{R}, \quad \mathrm{E}[(R-\underline{R})^{-1}] = \mathrm{E}[(\overline{R}-R)^{-1}] = \infty.$

- ► We assume $S_{n+1} = S_n(1 + R_{n+1})$ with returns R_n i.i.d. like R_n $\underline{R} \leq R \leq \overline{R}, \quad -1 < \underline{R} < 0 < \overline{R}, \quad \mathrm{E}[(R-\underline{R})^{-1}] = \mathrm{E}[(\overline{R}-R)^{-1}] = \infty.$
- $\blacktriangleright \pi_n, X_n$ risky fraction and wealth before the transaction, $\overline{\pi}_n,\overline{X}_n$ risky fraction and wealth after the transaction.

- ► We assume $S_{n+1} = S_n(1 + R_{n+1})$ with returns R_n i.i.d. like R, $\underline{R} \leq R \leq \overline{R}, \quad -1 < \underline{R} < 0 < \overline{R}, \quad \mathrm{E}[(R-\underline{R})^{-1}] = \mathrm{E}[(\overline{R}-R)^{-1}] = \infty.$
- $\blacktriangleright \pi_n, X_n$ risky fraction and wealth before the transaction, $\overline{\pi}_n,\overline{X}_n$ risky fraction and wealth after the transaction.
- ► For traded amount Δ_n and proportional costs $\lambda, \mu \in [0,1)$ we get

stock account bond account

where

$$
\begin{aligned}\n\overline{\pi}_n \overline{X}_n &= \pi_n X_n + \Delta_n, \\
(1 - \overline{\pi}_n) \overline{X}_n &= (1 - \pi_n) X_n - \beta(\Delta_n) \Delta_n, \\
\beta(\Delta) &= \left\{ \begin{array}{ll} 1 + \lambda & \Delta > 0 \quad \text{buy}, \\ 1 - \mu & \Delta < 0 \quad \text{sell}.\end{array} \right.\n\end{aligned}
$$

- ► We assume $S_{n+1} = S_n(1 + R_{n+1})$ with returns R_n i.i.d. like R, $\underline{R} \leq R \leq \overline{R}, \quad -1 < \underline{R} < 0 < \overline{R}, \quad \mathrm{E}[(R-\underline{R})^{-1}] = \mathrm{E}[(\overline{R}-R)^{-1}] = \infty.$
- $\blacktriangleright \pi_n, X_n$ risky fraction and wealth before the transaction, $\overline{\pi}_n,\overline{X}_n$ risky fraction and wealth after the transaction.
- ► For traded amount Δ_n and proportional costs $\lambda, \mu \in [0,1)$ we get

 \triangleright At N we liquidate our portfolio and may have liquidation costs L, i.e.

$$
\overline{\pi}_N=0, \quad \overline{X}_N=(1-\pi_N)X_N+L(\pi_N)\pi_NX_N.
$$

E.g. $L(\pi) = \beta(-\pi)$ or $L(\pi) = 1$, in general

$$
L(\pi)=\left\{\begin{array}{ll} 1-\mu_N & \pi>0 \quad \text{sell},\\ 1+\lambda_N & \pi<0 \quad \text{buy}. \end{array}\right.
$$

Growth optimality under transaction costs

Admissibility of a trading strategy $\varphi = (\Delta_n)_{n=0,\dots,N-1}$ is defined by

$$
X_N^{\varphi} > 0, \quad 1 - \pi_N^{\varphi} + L(\pi_N^{\varphi}) \pi_N^{\varphi} > 0.
$$

Theorem: An optimal admissible policy φ^* exists, i.e.

$$
\mathrm{E}[\log(\overline{X}_N^*)] = \sup_{\varphi \text{adm.}} \mathrm{E}[\log(\overline{X}_N^{\varphi})].
$$

The optimal policy is characterized by risky fractions $a_n < b_n$ s.t.

$$
\overline{\pi}_n^* = \begin{cases}\n a_n, & \text{if } \pi_n^* < a_n \\
 \pi_n^*, & \text{if } \pi_n^* \in [a_n, b_n] \\
 b_n, & \text{if } \pi_n^* > b_n\n \end{cases}\n \quad \text{no-trading region},
$$

References: Kamin 75, Constantinides 79,

► Look at $Y_n = \pi_n X_n$, $Z_n = (1 - \pi_n) X_n$ and value function

$$
V_n(y, z) = \sup_{\varphi} \mathbb{E}[\log(\overline{Y}_N + \overline{Z}_N) | Y_n = y, Z_n = z]
$$

for those $\varphi = (\Delta_n)_{n=0,\dots,N-1}$ for which (Y_n, Z_n) in solvency region. Note that $V_0(0, x_0) = \mathrm{E}[\log(\overline{X}_N^*)]$.

► Look at $Y_n = \pi_n X_n$, $Z_n = (1 - \pi_n) X_n$ and value function

$$
V_n(y, z) = \sup_{\varphi} \mathbb{E}[\log(\overline{Y}_N + \overline{Z}_N) | Y_n = y, Z_n = z]
$$

for those $\varphi = (\Delta_n)_{n=0,...,N-1}$ for which (Y_n, Z_n) in solvency region. Note that $V_0(0, x_0) = \mathrm{E}[\log(\overline{X}_N^*)]$.

 \triangleright Show by backward induction that

- V_n is concave, increasing, and $V_n(\alpha y, \alpha z) = \log(\alpha) + V_n(y, z)$.
- \triangleright The maximum on the sell- and buy-lines is attained.
- \blacktriangleright The optimality equation holds:

$$
V_n(y,z)=\max_{\Delta}E[V_{n+1}((y+\Delta)R_{n+1},z-\beta(\Delta))].
$$

► Look at $Y_n = \pi_n X_n$, $Z_n = (1 - \pi_n) X_n$ and value function

$$
V_n(y, z) = \sup_{\varphi} \mathbb{E}[\log(\overline{Y}_N + \overline{Z}_N) | Y_n = y, Z_n = z]
$$

for those $\varphi = (\Delta_n)_{n=0,\dots,N-1}$ for which (Y_n, Z_n) in solvency region. Note that $V_0(0, x_0) = \mathrm{E}[\log(\overline{X}_N^*)]$.

 \triangleright Show by backward induction that

- V_n is concave, increasing, and $V_n(\alpha y, \alpha z) = \log(\alpha) + V_n(y, z)$.
- \triangleright The maximum on the sell- and buy-lines is attained.
- \blacktriangleright The optimality equation holds:

$$
V_n(y,z)=\max_{\Delta} \mathrm{E}[V_{n+1}((y+\Delta)R_{n+1},z-\beta(\Delta))].
$$

► Unique maximizers Δ^* exist. They define the optimal strategy φ^* and can be represented in terms of $\pi_n = Y_n/X_n$.

► Look at $Y_n = \pi_n X_n$, $Z_n = (1 - \pi_n) X_n$ and value function

$$
V_n(y, z) = \sup_{\varphi} \mathbb{E}[\log(\overline{Y}_N + \overline{Z}_N) | Y_n = y, Z_n = z]
$$

for those $\varphi = (\Delta_n)_{n=0,...,N-1}$ for which (Y_n, Z_n) in solvency region. Note that $V_0(0, x_0) = \mathrm{E}[\log(\overline{X}_N^*)]$.

 \triangleright Show by backward induction that

- V_n is concave, increasing, and $V_n(\alpha y, \alpha z) = \log(\alpha) + V_n(y, z)$.
- \triangleright The maximum on the sell- and buy-lines is attained.
- \blacktriangleright The optimality equation holds:

$$
V_n(y,z)=\max_{\Delta} \mathrm{E}[V_{n+1}((y+\Delta)R_{n+1},z-\beta(\Delta))].
$$

- ► Unique maximizers Δ^* exist. They define the optimal strategy φ^* and can be represented in terms of $\pi_n = Y_n/X_n$.
- \triangleright Main problems: One-sided derivatives for first order conditions might not be continuous at 0. Since short selling and borrowing are allowed, existence of an optimizer can be delicate.

Properties of the boundaries of the trading regions

In continuous time for terminal trading time $T = 1$ and without short selling/borrowing we get (Kunisch/S. 07)

Properties of the boundaries of the trading regions

In continuous time for terminal trading time $T = 1$ and without short selling/borrowing we get (Kunisch/S. 07)

Properties of the boundaries of the trading regions

In continuous time for terminal trading time $T = 1$ and without short selling/borrowing we get (Kunisch/S. 07)

In our model we can prove

► Suppose $\lambda_N = \lambda$, $\mu_N = \mu$. If $(\mathrm{E}R)^N > \frac{1+\lambda}{1-\mu_N}$, then for $n_0 = \inf\{n : (ER)^{N-n} \leq \frac{1+\lambda}{1-\mu_N}\}$ we have $a_n = 0$ for all $n \geq n_0$. Suppose $\lambda_N = 0$, $\mu_N = 0$. Then $0 \in (a_n, b_n)$ as long as $(ER)^{N-n} \in (1 - \mu, 1 + \lambda)$.

A simple example without transaction costs

 \triangleright Without transaction costs, the price of a hedgable claim is given by the initial value of a replicating portfolio, if the latter exists.

A simple example without transaction costs

- \triangleright Without transaction costs, the price of a hedgable claim is given by the initial value of a replicating portfolio, if the latter exists.
- In a complete one-period binomial model with two states $u = up$, $d =$ down any claim can be hedged. E.g.

Remember, $B_0 = B_1 = 1$.

A simple example without transaction costs

- \triangleright Without transaction costs, the price of a hedgable claim is given by the initial value of a replicating portfolio, if the latter exists.
- In a complete one-period binomial model with two states $u = up$, $d =$ down any claim can be hedged. E.g.

Remember, $B_0 = B_1 = 1$.

 \blacktriangleright The replicating strategy (buy 4/5 stocks, sell 2 bonds) leads to price 2/5.

Transaction costs and bid/ask prices

Possible prices S in 2-period CRR

Transaction costs and bid/ask prices

Possible prices S in 2-period CRR Bid, ask prices $(1 + \lambda)$ S, $(1 - \mu)$ S

Transaction costs and bid/ask prices

Possible prices S in 2-period CRR Bid, ask prices $(1 + \lambda)$ S, $(1 - \mu)$ S

Possible pathes in 8-period CRR One path in 8-period CRR

A "simple" example with transaction costs

▶ Roux and Zastawniak (2006) show that a price system based on replication may lead to arbitrage, using the following example:

$$
S_1^{\text{ask}}(u) = 6
$$

\n
$$
S_0^{\text{ask}} = 5
$$

\n
$$
S_0^{\text{bid}} = 1
$$

\n
$$
S_1^{\text{ask}}(d) = 3
$$

\n
$$
S_1^{\text{ask}}(d) = 2
$$

\n
$$
S_1^{\text{ask}}(d) = 2
$$

\n
$$
S_1^{\text{disk}}(d) = 2
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{c}}(d) = 2
$$

\n
$$
S_2^{\text{
$$

This corresponds to prices and costs

$$
S_0 = 3
$$
 $S_u = 5, S_d = 5/2$
 $\lambda = \mu = 2/3$ $\lambda_1 = \mu_1 = 1/5$.

A "simple" example with transaction costs

▶ Roux and Zastawniak (2006) show that a price system based on replication may lead to arbitrage, using the following example:

$$
S_1^{\text{ask}}(u) = 6
$$

\n
$$
S_0^{\text{ask}} = 5
$$

\n
$$
S_0^{\text{bid}} = 1
$$

\n
$$
S_1^{\text{ask}}(d) = 3
$$

\n
$$
S_1^{\text{ask}}(d) = 3
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d), C^S(d)) = (0, 0)
$$

This corresponds to prices and costs

$$
S_0 = 3
$$
 $S_u = 5, S_d = 5/2$
 $\lambda = \mu = 2/3$ $\lambda_1 = \mu_1 = 1/5$.

 \triangleright A replicating strategy (buy 1 stock, sell 2 bonds) leads to price 3.

A "simple" example with transaction costs

▶ Roux and Zastawniak (2006) show that a price system based on replication may lead to arbitrage, using the following example:

$$
S_1^{\text{ask}}(u) = 6
$$

\n
$$
S_0^{\text{ask}} = 5
$$

\n
$$
S_0^{\text{bid}} = 1
$$

\n
$$
S_1^{\text{ask}}(d) = 3
$$

\n
$$
S_1^{\text{disk}}(d) = 3
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{bid}}(d) = 2
$$

\n
$$
S_1^{\text{c}}(d), C^S(d)) = (0, 0)
$$

This corresponds to prices and costs

$$
S_0 = 3
$$
 $S_u = 5, S_d = 5/2$
 $\lambda = \mu = 2/3$ $\lambda_1 = \mu_1 = 1/5$.

- \triangleright A replicating strategy (buy 1 stock, sell 2 bonds) leads to price 3.
- \triangleright A simple superhedging strategy costs 2 (buy 2 bonds).

Option pricing by hedging under t.c.

- \blacktriangleright Pricing by (super)replication
	- \blacktriangleright Leland 85
	- ► Merton 90
	- ▶ Bensaid/Lesne/Pagès 92
	- ► Boyle/Vorst 95
	- ► Stettner 97
	- \blacktriangleright Roux/Tokarz/Zastawniak 08

Option pricing by hedging under t.c.

- \blacktriangleright Pricing by (super)replication
	- \blacktriangleright Leland 85
	- Merton 90
	- \blacktriangleright Bensaid/Lesne/Pagès 92
	- ► Boyle/Vorst 95
	- ► Stettner 97
	- \blacktriangleright Roux/Tokarz/Zastawniak 08
- \triangleright Continuous time limit
	- ► Soner/Shreve/Cvitanič 95
	- ▶ Bouchard/Kabanov/Touzi 00

Option pricing by hedging under t.c.

- \blacktriangleright Pricing by (super)replication
	- ► Leland 85
	- Merton 90
	- ▶ Bensaid/Lesne/Pagès 92
	- ► Boyle/Vorst 95
	- ► Stettner 97
	- \blacktriangleright Roux/Tokarz/Zastawniak 08
- \triangleright Continuous time limit
	- ► Soner/Shreve/Cvitanič 95
	- ▶ Bouchard/Kabanov/Touzi 00
- \triangleright Consistent price systems
	- \blacktriangleright Kusuoka 95
	- \blacktriangleright Jouini/Kallal 95
	- ► Kabanov 99
	- ► Koehl/Pham/Touzi 01
	- ► Schachermayer 04
	- ► Guasoni/Rásonyi/Schachermayer 07

EMM under transaction costs for one period

 \triangleright For one period the gain following a self-financing trading strategy is

 $G^{\varphi} = \varphi(S_1 - S_0), \quad \varphi \quad$ (number of stocks bought at 0).

For an EMM Q we have $\mathrm{E}_{Q}[G^{\varphi}]=0$. Thus $G^{\varphi} \geq 0$ implies $P(G^{\varphi} > 0) = 0$ for any φ (no arbitrage).

EMM under transaction costs for one period

▶ For one period the gain following a self-financing trading strategy is $G^{\varphi} = \varphi(S_1 - S_0), \quad \varphi \quad$ (number of stocks bought at 0).

For an EMM Q we have $\mathrm{E}_{Q}[G^{\varphi}]=0$. Thus $G^{\varphi} \geq 0$ implies $P(G^{\varphi} > 0) = 0$ for any φ (no arbitrage).

► Under t.c. we need instead of an EMM a pair $(\rho = (\rho_0, \rho_1), Q)$ s.t.

 $1 - \mu < \rho_0, \rho_1 \leq 1 + \lambda$, $E_{\mathcal{Q}}[\rho_1 S_1] = \rho_0 S_0$.

EMM under transaction costs for one period

 \triangleright For one period the gain following a self-financing trading strategy is $G^{\varphi} = \varphi(S_1 - S_0), \quad \varphi \quad$ (number of stocks bought at 0).

For an EMM Q we have $\mathrm{E}_{Q}[G^{\varphi}]=0$. Thus $G^{\varphi} \geq 0$ implies $P(G^{\varphi} > 0) = 0$ for any φ (no arbitrage).

► Under t.c. we need instead of an EMM a pair $(\rho = (\rho_0, \rho_1), Q)$ s.t.

 $1 - \mu \leq \rho_0, \rho_1 \leq 1 + \lambda$, $E_{\Omega}[\rho_1 S_1] = \rho_0 S_0$.

► With liquidation at 1, we have for $\varphi \geq 0$ gain

$$
G^{\varphi} = \varphi ((1 - \mu)S_1 - (1 + \lambda)S_0)
$$

and thus

$$
\mathrm{E}_Q[G^\varphi] \leq \varphi \, \mathrm{E}_Q[\rho_1 \mathcal{S}_1 - \rho_0 \mathcal{S}_0] = 0.
$$

Similar for $\varphi < 0$

 $\mathrm{E}_{\mathcal{Q}}[G^{\varphi}] = \mathrm{E}_{\mathcal{Q}}[\varphi((1+\lambda)S_1-(1-\mu)S_0)] = |\varphi| \,\mathrm{E}_{\mathcal{Q}}[(1-\mu)S_0-(1+\lambda)S_1] \leq 0.$ Thus $E_Q[G^{\varphi}] \leq 0$ for any φ and $G^{\varphi} \geq 0$ implies $P(G^{\varphi} > 0) = 0$.

Towards EMMs / consistent price systems under t.c.

Possible paths in 8-period CRR One path in 8-period CRR

Towards EMMs / consistent price systems under t.c.

Possible paths in 8-period CRR One path in 8-period CRR

One path in 8-period CRR

Towards EMMs / consistent price systems under t.c.

Possible paths in 8-period CRR One path in 8-period CRR

One path in 8-period CRR Path of ajusted price process

- \blacktriangleright Q is an EMM for factor $(\rho_n)_{n=0,...,N}$, if
	- (1) $Q \sim P$. (2) ρ_n F_n-measurable, $1 - \mu \leq \rho_n \leq 1 + \lambda$, $1 - \mu_N \leq \rho_N \leq 1 + \lambda_N$.
	- (3) $(\rho_n S_n)_{n=0,...,N}$ martingale under Q.

- \triangleright Q is an EMM for factor $(\rho_n)_{n=0,\dots,N}$, if
	- (1) Q $\sim P$.
	- (2) $\rho_n \mathcal{F}_n$ -measurable, $1 \mu \leq \rho_n \leq 1 + \lambda$, $1 \mu_N \leq \rho_N \leq 1 + \lambda_N$.
	- (3) $(\rho_n S_n)_{n=0,...,N}$ martingale under Q.
- \blacktriangleright A consistent price system for claims $C=(C^B,C^S)$ can then be defined by

$$
\mathrm{pr}(\mathcal{C}) = \mathrm{E}_{Q}[\mathcal{C}^B + \rho_N \mathcal{C}^S]
$$

This is a one-to-one relationship: Kusuoka 95, Jouini/Kallal 95, . . .

- \triangleright Q is an EMM for factor $(\rho_n)_{n=0,\dots,N}$, if
	- (1) Q $\sim P$.
	- (2) $\rho_n \mathcal{F}_n$ -measurable, $1 \mu \leq \rho_n \leq 1 + \lambda$, $1 \mu_N \leq \rho_N \leq 1 + \lambda_N$.
	- (3) $(\rho_n S_n)_{n=0,...,N}$ martingale under Q.
- \blacktriangleright A consistent price system for claims $C=(C^B,C^S)$ can then be defined by

$$
\mathrm{pr}(\mathcal{C}) = \mathrm{E}_{\mathcal{Q}}[\mathcal{C}^B + \rho_N \mathcal{C}^S]
$$

This is a one-to-one relationship: Kusuoka 95, Jouini/Kallal 95, . . .

 \blacktriangleright We want

$$
\mathrm{pr}(C) = \mathrm{E}\left[\frac{C^B + \rho_N C^S}{H_N}\right].
$$

- \triangleright Q is an EMM for factor $(\rho_n)_{n=0,...,N}$, if
	- (1) Q $\sim P$.
	- (2) $\rho_n \mathcal{F}_n$ -measurable, $1 \mu \leq \rho_n \leq 1 + \lambda$, $1 \mu_N \leq \rho_N \leq 1 + \lambda_N$.
	- (3) $(\rho_n S_n)_{n=0,...,N}$ martingale under Q.
- \blacktriangleright A consistent price system for claims $C=(C^B,C^S)$ can then be defined by

$$
\mathrm{pr}(\mathcal{C}) = \mathrm{E}_{Q}[\mathcal{C}^B + \rho_N \mathcal{C}^S]
$$

This is a one-to-one relationship: Kusuoka 95, Jouini/Kallal 95, . . .

 \blacktriangleright We want

$$
\mathrm{pr}(C) = \mathrm{E}\left[\frac{C^B + \rho_N C^S}{H_N}\right].
$$

► Ansatz: Choose $\rho_N = L(\pi_N^*)$ and $H_N = \overline{X}_N^*$ (growth optimal), i.e.

$$
H_N = X_N^*(1 - \pi_N^* + \rho_N \pi_N^*).
$$

Choosing $\rho_N=L(\pi_N^*)$ and $H_N=\overline{X}_N^*=X_N^*(1-\pi_N^*+\rho_N\,\pi_N^*)$, we need to define ρ_n and H_n such that

► (N1) $H_n^{-1} \rho_n S_n$ is a P-martingale.

• (N2)
$$
H_n^{-1}
$$
 is a P-martingale.

- \blacktriangleright (N3) $1 \mu \leq \rho_n \leq 1 + \lambda$.
- (N4) $E[H_N^{-1}] = 1.$

Choosing $\rho_N=L(\pi_N^*)$ and $H_N=\overline{X}_N^*=X_N^*(1-\pi_N^*+\rho_N\,\pi_N^*)$, we need to define ρ_n and H_n such that

► (N1) $H_n^{-1} \rho_n S_n$ is a P-martingale.

• (N2)
$$
H_n^{-1}
$$
 is a P-martingale.

- \blacktriangleright (N3) $1 \mu \leq \rho_n \leq 1 + \lambda$.
- (N4) $E[H_N^{-1}] = 1.$

To get (N1) We define $H_n = X_n^*(1 - \pi_n + \rho_n \pi_n)$, where

$$
\rho_n := \frac{\mathrm{E}[\rho_{n+1}^{mod}(1 + R_{n+1})H_{n+1}^{-1}|\mathcal{F}_n]}{\mathrm{E}[H_{n+1}^{-1}|\mathcal{F}_n]}.
$$

Choosing $\rho_N=L(\pi_N^*)$ and $H_N=\overline{X}_N^*=X_N^*(1-\pi_N^*+\rho_N\,\pi_N^*)$, we need to define ρ_n and H_n such that

► (N1) $H_n^{-1} \rho_n S_n$ is a P-martingale.

• (N2)
$$
H_n^{-1}
$$
 is a P-martingale.

- \blacktriangleright (N3) $1 \mu \leq \rho_n \leq 1 + \lambda$.
- (N4) $E[H_N^{-1}] = 1.$

To get (N1) We define $H_n = X_n^*(1 - \pi_n + \rho_n \pi_n)$, where

$$
\rho_n := \frac{\mathrm{E}[\rho_{n+1}^{mod}(1 + R_{n+1})H_{n+1}^{-1}|\mathcal{F}_n]}{\mathrm{E}[H_{n+1}^{-1}|\mathcal{F}_n]}.
$$

Theorem: (N2) and (N3) hold.

Corollary: E.g. for $x_0 = 1$, $\pi_0 = 0$ we have $H_0 = 1$. Thus (N4) holds.

Choosing $\rho_N=L(\pi_N^*)$ and $H_N=\overline{X}_N^*=X_N^*(1-\pi_N^*+\rho_N\,\pi_N^*)$, we need to define ρ_n and H_n such that

► (N1) $H_n^{-1} \rho_n S_n$ is a P-martingale.

• (N2)
$$
H_n^{-1}
$$
 is a P-martingale.

- \blacktriangleright (N3) $1 \mu \leq \rho_n \leq 1 + \lambda$.
- (N4) $E[H_N^{-1}] = 1.$

To get (N1) We define $H_n = X_n^*(1 - \pi_n + \rho_n \pi_n)$, where

$$
\rho_n := \frac{\mathrm{E}[\rho_{n+1}^{mod}(1 + R_{n+1})H_{n+1}^{-1}|\mathcal{F}_n]}{\mathrm{E}[H_{n+1}^{-1}|\mathcal{F}_n]}.
$$

Theorem: (N2) and (N3) hold.

Corollary: E.g. for $x_0 = 1$, $\pi_0 = 0$ we have $H_0 = 1$. Thus (N4) holds.

Interpretation: ρ_n is a liquidation factor adjusted to the fact that one behaves optimally in n, \ldots, N and liquidates at N according to L. Relation to shadow prices: Cvitanič/Karatzas 96, Kallsen/Muhle-Karbe 08

Some extensions

- \blacktriangleright Time dependent λ_n , μ_n .
- \blacktriangleright Previsible interest rates.
- \triangleright Not identically distributed R_n .
	- ► Okay for $L \equiv 1$.
	- ► Otherwise more conditions needed to guarantee $\rho_n \in [1 \mu, 1 + \lambda]$.
- ► Using power utility $U_{\alpha}(x) = \alpha^{-1} x^{\alpha}$ instead of $U(x) = \log(x)$ works similar, yielding price systems

$$
\mathrm{pr}_{\alpha}(C) = \mathrm{E}_{\widetilde{\mathsf{Q}}^{\alpha}}\left[\frac{C^B + \rho_N^{\alpha} C^S}{H_N^{\alpha}}\right],
$$

where

$$
\frac{d\widetilde{Q}^{\alpha}}{dP}=\frac{U'(H_N^{\alpha})H_N^{\alpha}}{\mathrm{E}[U'((H_N^{\alpha})H_N^{\alpha})]}.
$$

 $(Q^{\alpha},H_{N}^{\alpha})$ is called numeraire pair.

Summing up: Numeraire portfolio under t.c.

To price contingent claims $\mathcal{C} = (\mathcal{C}^{\mathcal{B}}, \mathcal{C}^{\mathcal{S}})$ under prop. t.c. we proceed by

- ightharpoonly choosing a liquidation factor $L = L(\pi)$,
- ► finding π_n^* , X_n^* for growth optimal φ^* by solving sup $\text{E}[\log(\overline{X}_N^{\varphi})]$, φ adm.
- \blacktriangleright setting $\rho_N = L(\pi_N^*)$ and defining the adjusted value process

$$
H_N := \overline{X}_N^* = X_N^*(1 - \pi_N^* + \rho_N \pi_N^*), \quad H_n^{-1} := \mathrm{E}[H_N^{-1} | \mathcal{F}_n],
$$

getting the adjustment factor from $H_n = X_n^*(1 - \pi_n^* + \rho_n \pi_n^*)$,

► starting with $H_0 = 1$ (e.g. $x_0 = 1$, $\pi_0 = 0$), define Q by $\frac{dQ}{dP} = H_N^{-1}$.

Then, Q is an EMM for factor ρ and thus

$$
\mathrm{pr}: C = (C^B, C^S) \mapsto \mathrm{E}\left[\frac{C^B + \rho_N C^S}{H_N}\right]
$$

is a consistent price system.