Pricing algorithm for swing options based on Fourier Cosine Expansions

Bowen Zhang^1 Cornelis W. Oosterlee 1,2

¹Delft University of Technology, Delft, the Netherlands. ²CWI. Center for Mathematics and Computer Science, Amsterdam, the Netherlands

Bachelier World Congress, Toronto, 2010

Outline

- \blacktriangleright Details of the swing option
	- \blacktriangleright Contract details
	- \blacktriangleright Pricing details
- \blacktriangleright Fourier Cosine algorithm for swing options
	- \triangleright Recovery time–the penalty time between two consecutive exercises–plays an important role.
- In Numerical results of option contracts varying in recovery time and upper bound of exercise.

[Contract details](#page-2-0) [Pricing details](#page-4-0)

swing options

- \triangleright Swing options give contract holders the right to modify amounts of future delivery of certain commodities, such as electricity or gas.
- \triangleright We deal with an American style swing options which can be exercised at any time before expiry and more than once, with the following restrictions
	- Recovery time between two consecutive exercises (τ) . With exercise amount D we have $\tau_D = C$ or $\tau_D = f(D)$
	- \triangleright Upper bound of exercise amount $|D|:$ $|D| < L$

[Contract details](#page-2-0) [Pricing details](#page-4-0)

Payoff of swing option

Payoff of a swing option with varying S and D reads

$$
g(S, T, D) = D \cdot (\max(S - K_a, 0) - \max(S - S_{max}, 0) + \max(K_d - S, 0) - \max(S_{min} - S, 0)),
$$

Figure: Example of a payoff of a swing option with $S_{min} = 20$, $K_d = 35$, $K_a = 45$, and $S_{max} = 80$, and S and D varying.

[Contract details](#page-2-0) [Pricing details](#page-4-0)

Pricing details

Recovery time $\tau_R(D)$ is assumed to be an increasing function of exercise amount D. The shortest recovery time is when we only exercise one amount of the swing option.

If $T - t < \tau_R(1)$, it is impossible to exercise more than once before expiry. If profitable to exercise, then exercise at $D_{max} = L$ amount. Therefore we are dealing with an American type option which reads at each step

$$
v(s,t) = max(g(s,t,L),c(s,t))
$$

[Contract details](#page-2-0) [Pricing details](#page-4-0)

Pricing details

If $T - t \geq \tau_R(1)$, there exists multiple exercise opportunities before expiry. Apart from the optimal exercise time we also need to find the optimal exercise amount at each time step:

$$
v(s,t) = \max_D(\max(g(s,t,D)+\phi_D^{'}(s,t),c(s,t)))
$$

Here $g(s, t, D)$ is the instantaneous profit obtained from the exercise of a swing option and $\phi_D^{'}$ is the continuation value from $t+\tau_R(D).$

[Algorithm for](#page-11-0) $t : T - t < \tau_R(1)$
Algorithm for $t : T - t \geq \tau_R(1)$

Option pricing based on Fourier Cosine expansions

Truncating the infinite integration range of the Risk-Neutral formula

$$
v(x, t_0) = e^{-r\Delta t} \int_a^b v(y, T) f(y|x) dy
$$

The conditional density function of the underlying is approximated as follows:

$$
f(y|x) \approx \frac{2}{b-a} \sum_{k=0}^{N-1} Re(\varphi(\frac{k\pi}{b-a};x) \exp(-i\frac{ak\pi}{b-a})) \cos(k\pi\frac{y-a}{b-a}),
$$

Replacing $f(y|x)$ by its approximation and interchanging integration and summation, we obtain the COS algorithm for option pricing

$$
v(x, t_0) = e^{-r\Delta t} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k
$$

where V_k is the Fourier Cosine coefficient of opt[ion](#page-5-0) [v](#page-7-0)[al](#page-5-0)[ue](#page-6-0) $v(y, T)$ $v(y, T)$ $v(y, T)$ $v(y, T)$ $v(y, T)$ $v(y, T)$ $v(y, T)$ [.](#page-6-0)

[Algorithm for](#page-7-0) $t : T - t < \tau_R(1)$ [Algorithm for](#page-11-0) t : $T - t \geq \tau_R(1)$

Pricing outline for $t : T - t < \tau_R(1)$

The swing option is equivalent to an American option, which is can be obtained from Bermudan option values with differnt numbers of exercise dates, i.e. a 4–point repeated Richardson extrapolation. Pricing algorithm

- Initialization: Compute $V_k(t_M)$ at $t_M = T$.
- ► Backward recursion: For $m = M 1, \dots, 1$, recover $V_k(t_m) = \frac{2}{b-a} \int_a^b v(x, t_m) \cos(k\pi \frac{x-a}{b-a}) dx$ from $V_k(t_{m+1})$, where $v(x,t_m) = max(g(x,t_m), c(x,t_m)).$

► Last step:
$$
v(x, t_0) = e^{-r(t_1 - t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)
$$

In our implementation we set $x = log(s)$.

[Algorithm for](#page-11-0) $t : T - t < \tau_R(1)$
Algorithm for $t : T - t \geq \tau_R(1)$

At expiry

At $t_M = T$ option value v equals the payoff g and we have for the Fourier cosine coefficients of the swing option value:

$$
V_k(t_{\mathcal{M}}) = G_k(a, \ln(K_d), L) + G_k(\ln(K_a), b, L),
$$

where

$$
G_k(x_1, x_2, L) = \frac{2}{b-a} \int_{x_1}^{x_2} g(x, t_M, L) \cos(k\pi \frac{x-a}{b-a}) dx
$$

is the Fourier cosine coefficient of the swing option payoff which has analytic solution.

4. 0. 3.

[Algorithm for](#page-7-0) $t : T - t < \tau_R(1)$ [Algorithm for](#page-11-0) t : $T - t \geq \tau_R(1)$

Backward Recursion

At each time step t_m , $m = M - 1, \dots, 1$

$$
V_k(t_m) = \frac{2}{b-a} \int_a^b v(x, t_m) \cos(k\pi \frac{x-a}{b-a}) dx
$$

where $v(x, t_m) = max(g(x, t_m), c(x, t_m))$. We identify the regions where $v = c$ and those where $v = g$ and split V_k accordingly. By Newton's method we find the early exercise points where $c = g$. For swing options there are two early exercise points, x_m^d and x_m^a . $V_k(t_m)$ can be split as

$$
V_k(t_m) = G_k(a, x_m^d, D) + C_k(x_m^d, x_m^a, t_m) + G_k(x_m^a, b, D),
$$

where C_k and G_k are the Fourier cosine coefficients of the continuation value and swing option payoff.

[Algorithm for](#page-7-0) $t : T - t < \tau_R(1)$ [Algorithm for](#page-11-0) t : $T - t \geq \tau_R(1)$

Calculation of G_k and C_k

At each time step t_m , $m = M - 1, \dots, 1$, we have

- \triangleright G_k has analytic solution with computation complexity $O(N)$.
- \triangleright C_k can be rewritten as a matrix-vector product representation:

$$
\mathbf{C}(x_1,x_2,t_m)=\frac{e^{-r\Delta t}}{\pi}\mathrm{Im}\left\{ (M_c+M_s)\mathbf{u} \right\},\,
$$

For Lévy processes the matrices M_s and M_c have a Toeplitz and Hankel structure, respectively and C_k can be calculated with the help of the Fast Fourier Transform, with computation complexity $O(N \log_2 N)$. For other processes, C_k is calculated with computation complexity of $O(N^2)$.

[Algorithm for](#page-11-0) $t : T - t < \tau_R(1)$
Algorithm for $t : T - t \geq \tau_R(1)$

Pricing algorithm for $t : T - t \geq \tau_R(1)$

In the interval $\{t : T - t > \tau_R(1)\}\$ the swing option can be exercised more than once before expiry and recovery time plays an important role. In this case we have

$$
v(x,t) = \max(\max_D g(x,t,D) + \phi_D^t(x,t), c(x,t))
$$

It is an American-style option with recovery time and multiple exercise opportunities.

- ► Due to recovery time, the payoff also includes $\phi_D^t(x, t)$, the continuation value from $t + \tau_R(D)$.
- \triangleright Due to multiple exercise opportunities, we take the maximum over the resulting payoff for all possible values of D , and the continuation value from the previous time step.

[Algorithm for](#page-7-0) $t : T - t \leq T R(1)$ [Algorithm for](#page-11-0) t : $T - t \geq \tau_R(1)$

Backward Recursion

With

- \blacktriangleright A_D , $D = 1, \dots, L$ is the regions in which exercising the swing option with D commodity units results in the highest profit $g(x, t_m, D) + \phi_D^{t_m}(x, t_m).$
- \blacktriangleright A_c is the region in which $c(x, t)$ is the maximum. In other words, with the commodity price in A_c , it is profitable not to exercise the swing option.

Then for $m = M - 1, \dots, 1$,

$$
V_{k}(t_{m}) = \frac{2}{b-a} \left(\int_{A_{c}} c(x, t_{m+1}) \cos(\frac{k\pi(x-a)}{b-a}) dx + \sum_{D=1}^{L} \int_{A_{D}} g(x, t_{m}, D) + \phi_{D}^{t_{m}}(x, t_{m}) \cos(\frac{k\pi(x-a)}{b-a}) dx \right)
$$

And $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $v(x, t_0) = e^{-r(t_1-t_0)} \sum_{k=0}^{N-1} Re(\phi(\frac{k\pi}{b-a}; x) e^{-ik\pi \frac{a}{b-a}}) V_k(t_1)$ $\alpha \cap$

[Algorithm for](#page-11-0) $t : T - t < \tau_R(1)$
Algorithm for $t : T - t \geq \tau_R(1)$

Calculation of V_k

At each time step t_m , $m = M - 1, \dots, 1$, $V_k(t_m)$ can be rewritten as:

$$
V_k(t_m) = \frac{2}{b-a} \left(\int_{A_c} c(x, t_{m+1}) \cos(\frac{k\pi(x-a)}{b-a}) dx \right. \\ + \sum_{D=1}^L \int_{A_D} g(x, t_m, D) \cos(\frac{k\pi(x-a)}{b-a}) dx \\ + \sum_{D=1}^L \int_{A_D} \phi_D^{t_m}(x, t_m) \cos(\frac{k\pi(x-a)}{b-a}) dx \right) \\ \triangleq V_c + V_g + V_\phi
$$

- A_D, $D = 1, \dots, L$, and A_c are determined by Newton's method.
- \triangleright V_c and V_g are calculated the same way as G_k and C_k .
- $\blacktriangleright \; V_{\phi}$ is calculated similarly as G_c , but from $V_k(t_m + \tau_R(D))$ instead of $V_k(t_{m+1})$ $V_k(t_{m+1})$ $V_k(t_{m+1})$ $V_k(t_{m+1})$. This implies we need to store int[er](#page-12-0)[me](#page-14-0)[di](#page-12-0)[at](#page-13-0)[e](#page-15-0) [v](#page-10-0)[al](#page-11-0)[u](#page-14-0)e[s](#page-5-0) [o](#page-6-0)[f](#page-14-0) V_k [.](#page-21-0)

[Algorithm for](#page-11-0) $t : T - t < \tau_R(1)$
Algorithm for $t : T - t \geq \tau_R(1)$

Constant recovery time

In this case additional profit is not connected to an extra penalty. We have either $D = L$ or $D = 0$. Two early-exercise points x_m^d and x_m^a are to be determined, so that

$$
c(x_m^d, t_m) = g(x_m^d, t_m, L) + \phi_L^{t_m}(x_m^d, t_m),
$$

and

$$
c(x_m^a, t_m) = g(x_m^a, t_m, L) + \phi_L^{t_m}(x_m^a, t_m),
$$

And $V_k(t_m)$ is split into three parts,

$$
V_k(t_m) = G_k(a, x_m^d, L) + C_k(x_m^d, x_m^a, t_m) + G_k(x_m^a, b, L).
$$

 \leftarrow \Box

[Constant Recovery time](#page-16-0) [Dynamic Recovery time](#page-18-0)

Numerical results

We discuss two types of recovery time functions:

- ► Constant recovery time: If $D \neq 0$, we set $\tau_R(D,t) = \frac{1}{4}$. In other words, the option holder needs to wait three months between two consecutive swing actions, independent of the time point of exercise or the size D.
- State-dependent recovery time: We assume $\tau_R(D,t) = \frac{D}{12}$ which implies that if the option holder exercises the swing option with D units, he/she has to wait D months before the option can be exercised again.

In our numerical examples presented here, the underlying follows the CGMY model (exponential Lévy process) with $Y = 1.5$.

Convergence over M and estimation of American option

Two approximation methods are compared:

- \triangleright Direct approximation: Bermudan-style options with $\mathcal{M} = \mathcal{N}/2$.
- \triangleright Richardson 4-point extrapolation technique.

Table: Convergence over M and comparison between two approximation methods for American-style swing option, with $t = T - 0.5$, $\tau_R(D) = 0.25$, $C = 1, G = 5, M = 5, Y = 1.5$

[Constant Recovery time](#page-16-0) [Dynamic Recovery time](#page-18-0)

American style swing option value

Swing option price with t. (D)=0.25. CGMY process 500 (S(t), t) (Option price) 0.8 n s en. 0.4 40 $_{20}$ $\mathbf{0}$ `۵. T-t (Time to expiry) S (Underlying price)

Figure: American-style swing option values under the CGMY processes with constant recovery time, $\tau_R(D) = 0.25$.

Jumps are observed at $T - t = 0.25$, $T - t = 0.5$ and $T - t = 0.75$, where the maximum number of remaining exercise possibilities is reduced by 1.

[Constant Recovery time](#page-16-0) [Dynamic Recovery time](#page-18-0)

Swing contracts with varying flexibility

(a) Varying upper bound L (b) Varying recovery time $\tau_R(D)$

Figure: CGMY process, $T - t = 1$; Left: Different values for L, and fixed $\tau_R(D,t) = \frac{1}{12}D$; Right: Different Recovery time, and fixed $L = 5$.

- \blacktriangleright Higher values of L give rise to higher option values.
- \blacktriangleright Longer recovery time gives lower option prices

[Constant Recovery time](#page-16-0) [Dynamic Recovery time](#page-18-0)

The optimal exercise amount D_{opt}

Below is a figure of D_{opt} over different underlying prices, with $\tau_R(D) = \frac{1}{12}D$.

- As S goes beyond K_d and K_a , D_{opt} tends to increase, because in this region instantaneous profit $g(x, t, D)$ tends to dominate in the payoff $g(x, t, D) + \phi_D^t(x, t)$.
- Between $S = 20$ and $S = 25$, $D_{opt} = 0$, since $g(x, t, D) = 0$ for all $D > 0$ in this interval.

[Constant Recovery time](#page-16-0) [Dynamic Recovery time](#page-18-0)

Convergence of the algorithm

With N the number of Fourier Cosine expansion terms, and L the upper bound of exercise amount,

- \triangleright With $N = 256$ the swing option algorithm reaches basis point accuracy.
- \triangleright The algorithm is flexible regarding the variation in parameter L.

4. 0. 3.

Conclusions

- \triangleright We presented an efficient pricing algorithm for swing options with early-exercise features, based on Fourier Cosine Expansions.
- It performs well for different swing contracts with varying flexibility in upper bounds of exercise amount and different recovery times.
- \triangleright For Lévy processes the Fast Fourier Transform can be applied in the backward recursion procedure, which gives us Bermudan-style swing option prices accurate to one basis point in milli-seconds for constant recovery time, and in less than one, to three seconds for dynamic recovery time with different values of L.
- \triangleright The Richardson 4-point extrapolation technique is efficient in pricing American-style swing options.