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A model of forward LIBOR

The forward LIBOR L(t ,T ) is defined in terms of zero coupon
bond prices by

L(t ,T ) :=
1
δ

(
B(t ,T )

B(t ,T + δ)
− 1
)

Note that irrespective of the model we choose, L(t ,T ) is a mar-
tingale under IPT+δ.

Therefore, assuming deterministic volatility for L(t ,T ) means
that it is lognormally distributed under IPT+δ.
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Setup

Discrete–tenor lognormal forward LIBOR model
(as in Musiela/Rutkowski (1997))

Horizon date TN for some N ∈ IIN, finite number of maturities

Ti = TN − (N − i)δ, i ∈ {0, . . . ,N}

Dynamics of (domestic) forward LIBORs

dL(t ,Ti) = L(t ,Ti)λ(t ,Ti)dWTi+1(t)

where
λ(·, ·) is a deterministic function of its arguments
WTi+1(·) is a Brownian motion under the time Ti+1 forward
measure

Note that lognormality in this model is a measure–dependent
property.
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Links between domestic forward measures

By Ito’s lemma

d
(

B(t ,T )

B(t ,T + δ)

)
=

B(t ,T )

B(t ,T + δ)

δL(t ,T )

1 + δL(t ,T )
λ(t ,T )dWT+δ(t)

Setting

γ(t ,T ,T + δ) =
δL(t ,T )

1 + δL(t ,T )
λ(t ,T )

we can write

dPTi

dPTi+1

∣∣∣∣
Ft

=
B(t ,Ti)

B(t ,Ti+1)

B(0,Ti+1)

B(0,Ti)
= Et

(∫ ·
0
γ(u,Ti ,Ti+1) · dWTi+1(u)

)
Thus

dWTi (t) = dWTi+1(t)− γ(t ,Ti ,Ti+1)dt
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Adding a foreign economy, case 1

Assume lognormal forward LIBOR dynamics in the foreign
economy as well

dL̃(t ,Ti) = L̃(t ,Ti)λ̃(t ,Ti)dW̃Ti+1(t)

Then the foreign forward measures are linked in a manner
analogous to the domestic forward measures.

This leaves us with the freedom of specifying one further link
(only) between a domestic and a foreign forward measure.
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Measure Links 1

Domestic                                     Foreign

T0  forward measure T0  forward measure

T2  forward measure

T1  forward measure

T2  forward measure

T1  forward measure

Ti  forward measureTi  forward measure

TN  forward measureTN  forward measure

Measure Links 2

Domestic                                     Foreign

T0  forward measure T0  forward measure

T2  forward measure

T1  forward measure

T2  forward measure

T1  forward measure

Ti  forward measureTi  forward measure

TN  forward measureTN  forward measure

Kay Pilz and Erik Schlögl A Hybrid Commodity and Interest Rate Market Model



A Hybrid Market Model
Calibration algorithm

Recall: The basic LIBOR Market Model
The cross–currency LIBOR Market Model

Linking domestic & foreign forward measures

X (t): spot exchange rate in units of domestic currency per unit
of foreign currency

Time Ti forward exchange rate:

X (t ,Ti) =
B̃(t ,Ti)X (t)

B(t ,Ti)

This is a martingale under PTi . Conversely

1
X (t ,Ti)

=
B(t ,Ti)

1
X(t)

B̃(t ,Ti)

is a martingale under P̃Ti .

So we can write

dX (t ,TN) = X (t ,TN)σX (t ,TN) · dWTN (t)
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Domestic vs. foreign forward measures

dP̃TN

dPTN

=
X (TN)B̃(TN ,TN)B(0,TN)

X (0)B̃(0,TN)B(TN ,TN)
=

X (TN ,TN)

X (0,TN)

resp. restricting PTN , P̃TN to the information given at time t :

dP̃TN

dPTN

∣∣∣∣∣
Ft

=
X (t ,TN)

X (0,TN)

By the dynamics assumed forX (t ,TN),

dP̃TN

dPTN

= Et

(∫ ·
0
σX (u,TN)dWTN (u)

)
PTN –a.s.

Thus
dW̃TN (t) = dWTN (t)− σX (t ,TN)dt
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Forward exchange rate volatilities

Note that all measure relationships and therefore all volatilities
are now fixed.

To determine the remaining forward exchange rate volatilities,
inductively make use of the relationship

X (t ,Ti)

X (t ,Ti+1)
=

B(t ,Ti+1)

B(t ,Ti)

B̃(t ,Ti)

B̃(t ,Ti+1)
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For ease of notation, consider just the first step of the induction.
Writing all processes under the domestic time TN−1 forward
measure and applying Ito’s lemma then yields

dX (t ,TN−1) = X (t ,TN−1)(
(γ̃(t ,TN−1,TN)− γ(t ,TN−1,TN) + σX (t ,TN)) · dWTN−1(t)

)
Thus we must set

σX (t ,TN−1) = γ̃(t ,TN−1,TN)− γ(t ,TN−1,TN) + σX (t ,TN)

i.e. we can choose only one σX (t ,Ti) to be a deterministic
function of its arguments.

So for FX options we can have a Black/Scholes–type formula
for only one maturity, as all other forward exchange rates are
not lognormal.
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Adding a foreign economy, case 2

Assume lognormal forward LIBOR dynamics in the domestic
economy only; assume lognormal forward exchange rates

dX (t ,Ti) = X (t ,Ti)σX (t ,Ti)dWTi (t)

for σX a deterministic function of its arguments.

Thus for all maturities Ti

dW̃Ti (t) = dWTi (t)− σX (t ,Ti)dt

Since the derivation of the links between forward exchange rate
volatilities did not depend on the lognormality assumptions, it is
valid in the present context as well and therefore

γ̃(t ,Ti−1,Ti) = σX (t ,Ti−1)− σX (t ,Ti) + γ(t ,Ti−1,Ti)

Kay Pilz and Erik Schlögl A Hybrid Commodity and Interest Rate Market Model



A Hybrid Market Model
Calibration algorithm

Recall: The basic LIBOR Market Model
The cross–currency LIBOR Market Model

A commodity as “foreign currency”

The commodity market can naturally be considered as a
“foreign interest rate market.”
The currency is the physical commodity itself.
The “zero coupon bond prices” C(t ,T ) quote (as seen at
time t) the amount of the commodity that has to be
invested at time t to physically receive one unit of the
commodity at time T .
Thus the yield of C(t ,T ) is the convenience yield (adjusted
for storage costs, if applicable).
Since convenience yields are implicit rather than explicitly
quoted in the market, “Case 2” of the multicurrency model
is applicable.
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Pedersen (1998) Calibration

Calibration to market prices of caps (or caplets) and
swaptions.
Calibration of a non-parametric volatility function λ(·, ·),
piecewise constant on a discretisation of both time to
maturity and calendar time.
Unconstrained non-linear optimisation of weighted sum of
quality–of–fit and smoothness criteria.
Correlation is exogenous to the calibration procedure:
Assumed to be constant in time and estimated from
historical data.
Reduction of dimension via principal components analysis.
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The nonparametric approach

Suppose we have nfac factors (the dimension of the driving
Brownian motion) and discretise process time into ncal
segments, and forward time (maturities) into nfwd segments.

The i-th component of (1 ≤ i ≤ nfac) of the volatility function
λ(t ,T ) will be given by

λi(t , x) = λijk , t ∈ [tj−1, tj) , x ∈ [xk−1, xk )

where x = T − t is the forward tenor, tj , j > 0, and xk , k > 0,
are the chosen process and forward times, respectively.

For convenience set t0 = x0 = 0.
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Objective function

wcapsQOFcaps + wswaptionsQOFswaptions + smooth

Quality of fit QOF =
1
N

N∑
i=1

(
PVi

PVi
− 1

)2

smooth = scalefwd · smoothfwd + scalecal · smoothcal

smoothfwd =

ncal∑
j=1

nfwd∑
j=2

(
voli,j

voli,j−1
− 1
)2

smoothcal =

ncal∑
j=2

nfwd∑
j=1

(
voli,j

voli−1,j
− 1
)2
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Reducing the dimesionality of the problem

Original dimensionality: nfac × ncal × nfwd

Separate volatility levels and correlation:

Volatility levels given by volatility grid

voli,j , 1 ≤ i ≤ ncal , 1 ≤ j ≤ nfwd

where voli,j is the volatility as seen at time ti−1 (assumed
constant until ti ) of the basic period rate L(·, ti−1 + xj) for the
forward period beginning at time ti−1 + xj .

This is the object which will be calibrated.
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Covariance and correlation — Principal components
representation

Let vol be the vector of basic period forward rate volatilities as
seen on time tj−1. Let Corr be the corresponding correlation
matrix. The covariance matrix is then computed as

Cov = volT Corr vol

Let Γ be the diagonal matrix containing the eigenvalues of Cov
and V be the corresponding matrix of eigenvectors, i.e. we
have the eigenvalue/eigenvector decomposition of Cov

Cov = V T ΓV
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As Cov is positive semidefinite, all entries γk on the diagonal of
Γ will be non-negative and we have

Cov = W T W

where
wik =

√
γkvik

We can then extract the stepwise constant volatility function for
forward LIBORs as

λijk = wik

W will provide values for as many factors as the rank of the
covariance matrix. For a given nfac, we only use the rows of W
corresponding to the nfac largest eigenvalues.
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Spot measure dynamics

Brownian motion under the rolling spot LIBOR measure Q is
related to BM under the Ti forward measure by

dWTi (t) = φ(t ,Ti)dt + dWQ(t)

with φ(·,Ti) defined recursively as

φ(t ,Ti)− φ(t ,Ti−1) = γ(t ,Ti−1,Ti) =
δL(t ,Ti−1)

1 + δL(t ,Ti−1)
λ(t ,Ti−1)

Under an appropriate extension of the discrete–tenor LMM to
continuous tenor, Q coincides with the spot risk–neutral
measure and the futures price corresponds to the expected
future spot price under this measure.
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Futures vs. forward

Thus for the futures price G(t ,T ) observed at time t for maturity
T , we have

G(t ,T ) = EQ[X (T ,T )|Ft ]

= X (t ,T )EQ

[
exp

{∫ T

t
σX (u,T )dWQ(u)

− 1
2

∫ T

t
σ2

X (u,T )du +

∫ T

t
σX (u,T )φ(u,T )du

}∣∣∣∣∣Ft

]

≈ X (t ,T ) exp

{∫ T

t
σX (u,T )φ(u,T )du

}

where φ is the “frozen coefficient” approximation for φ.
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Merging Interest Rate & Commodity Calibrations

Step 1:

Calibrate LMM for interest rates using Pedersen approach. An
output of this is the matrix W (I).

Step 2:

Calibrate the volatility of forward commodity prices to the
market using an appropriately modified Pedersen approach. An
output of this is the matrix W (C).
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Step 3:

Suppose we have an exogenously given covariance matrix ΣCI
of all forward LIBORSs and commodity prices.

In order to achieve an approximate fit to this covariance matrix,
we exploit the property that multivariate normally distributed
random variables are invariant under orthonormal rotations.

We seek a square matrix Q, which minimises

‖ΣCI −W (C)Q(W (I))>‖

and
‖QQ> − I‖

We then replace W (C) by W (C)Q when determining the
volatility functions for forward commodity prices.
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Notes

The dimension of Q is the total number of factors, which
may be greater than or equal to the greater of the number
of factors in W (I) and W (C).
W (I) and W (C) are padded with zeroes where needed.
Due to the dependence of the convexity adjustment on
interest rate volatilities, steps 2 and 3 need to be repeated
iteratively.
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The commodity and interest rate market on the
calibration date 5 May 2008
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Historically estimated interest rate correlation matrix
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Calibrated interest rate volatility matrix
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Market prices vs. model prices
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Historically estimated commodity correlation matrix
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Calibrated commodity volatility matrix
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Commodity futures vs. forwards & call option prices
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Target & model cross correlations
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Six-factor correlation fitting errors
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Factors before & after rotation
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Target & model cross correlations
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Twelve-factor correlation fitting errors
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