TWO EXTENSIONS TO

FORWARD START OPTIONS VALUATION

João Pedro Vidal Nunes (ISCTE-IUL Business School, Lisbon)

and

Tiago Ramalho Viegas Alcaria (Commerzbank AG, Frankfurt)

6th World Congress of the Bachelier Finance Society

- 1. Forward start options.
- 2. Literature review.
- 3. Purpose.
- 4. Affine jump-diffusion (AJD) financial model.
- 5. FFT approach.
- 6. Direct integration approach (main result).
- 7. Numerical results.
- 8. Conclusions.

FORWARD START OPTIONS

• Two types of European-style FS (call) options:

LITERATURE REVIEW

- Rubinstein (1991): under Black-Scholes-Merton framework.
- Kruse and Nögel (2005):
 - under Heston (1993) SV model; but
 - two 2-dim integrations.
- Mercurio and Moreni (2005): solves integration wrt SV.

LITERATURE REVIEW (cont)

- Hong (2004) approach:
 - single 1-dim Fourier transform inversion;
 - requires characteristic function of the forward rate of return;
 - "applicable" to any exponential affine Lévy model;
 - BUT requires model dependent optimization of a dampening factor (α) to ensure square-integrability.

LITERATURE REVIEW (cont)

- Haastrecht and Pelsser (2009):
 - Hong (2004) approach under
 - * SV model of Schöbel and Zhu (1999);
 - * Gaussian TS model of Hull and White (1993); and
 - * a full correlation structure.

PURPOSE

- Alternative pricing methodology:
 - Valid under the general AJD framework of Duffie, Pan and Singleton (2000);
 - Only requires plain-vanilla option to be homogeneous of degree 1 in spot and strike;
 - Does not require any parallel optimization routine;
 - Yields a single (and exact) Fourier inversion \implies no truncation error;
 - Straightforward to implement (e.g. Gaussian quadrature);
 - Better accuracy-efficiency trade-off than the usual Hong (2004) approach.

- As in Duffie et al. (2000):
 - Markovian model factors $X \in \mathbf{D} \subseteq \mathbb{R}^n$:

$$dX_t = [K_0(t) + K_x(t) \cdot X_t] dt + \sigma (X_t, t) \cdot dW_t^{\mathbb{Q}} + dZ_t^{\mathbb{Q}}, \quad (1)$$

$$\sigma(X_t, t) \cdot \sigma(X_t, t)' = H_0(t) + \sum_{k=1}^n H_x^{(k)}(t) (X_t)_k, \quad (2)$$

(3)

with $K_0(t) \in \mathbb{R}^n$, $K_x(t)$, $H_0(t)$, $H_x^{(k)}(t) \in \mathbb{R}^{n \times n}$.

- Jump-arrival intensity: $(l_0(t) \in \mathbb{R}, l_x(t) \in \mathbb{R}^n)$ $\lambda(X_t, t) = l_0(t) + l_x(t)' \cdot X_t.$
- Short-term interest rate: $(\rho_0(t) \in \mathbb{R}, \rho_x(t) \in \mathbb{R}^n)$ $r(X_t, t) = \rho_0(t) + \rho_x(t)' \cdot X_t.$ (4)

- Underlying asset $S_t = \exp[(X_t)_1]$ pays continuous (but deterministic) dividend-yield $\delta \in \mathbb{R}$.
- Hence, $X_t = (\ln(S_t), Y_t)$, where $Y_t \in \mathbf{D}_y \subset \mathbb{R}^{n-1}$.
- Assumption 1 (homogeneity requirement):

$$(K_x(t))_{i,1} = (H_x^{(1)}(t))_{i,j} = (l_x(t))_1 = (\rho_x(t))_1 = 0,$$
 (5)
for $i, j = 1, \dots, n.$

• Very general AJD framework!

• Therefore, and based on Duffie et al. (2000, Proposition 1):

$$\psi(u, t, T; X_t) = \mathbb{E}_{\mathbb{Q}} \left\{ \exp\left[-\int_t^T r(X_s, s) \, ds \right] \exp\left(u' \cdot X_T \right) \middle| \mathcal{F}_t \right\}$$
$$= \exp\left[\alpha(t, T; u) + u_1 \ln(S_t) + \beta_y(t, T; u)' \cdot Y_t \right] (6)$$

where

–
$$u_1$$
 is the first element of vector $u \in \mathbb{C}^n$; and

- $\beta_y \in \mathbb{C}^{n-1}$ and $\alpha \in \mathbb{C}$ satisfy known complex-valued ODEs.

• **Proposition 1** (marginal characteristic functions):

$$f_{j}(T,\phi; S_{t}, Y_{t})$$

$$= \mathbb{E}_{\mathbb{Q}_{j}}\left[e^{i\phi \ln(S_{T})}|\mathcal{F}_{t}\right]$$

$$= \exp\left[\lambda_{c,j}(t,T;\phi) + i\phi \ln(S_{t}) + \lambda_{y,j}(t,T;\phi)' \cdot Y_{t}\right], \quad (7)$$
for $\phi \in \mathbb{C}, j = 1, 2$,

- where $\lambda_{c,j}(t,T;\phi)$ and $\lambda_{y,j}(t,T;\phi)$ are simple functions of δ , $\beta_y \in \mathbb{C}^{n-1}$ and $\alpha \in \mathbb{C}$;

– and

EMM	Numeraire				
$\mathbb{Q}^S \equiv \mathbb{Q}_1$	$S_t e^{\delta t}$				
$\mathbb{Q}_T \equiv \mathbb{Q}_2$	$P\left(t,T ight)$				

- Plain-vanilla options:
 - Duffie et al. (2000, Equation 3.5) would involve 2 Fourier transform inversions;
 - Instead, can use Lee (2004, Theorem 5.1), Attari (2004, Equation 14) or Kilin (2007, Equation 14):

$$c_t(K,T;S_t,Y_t) = S_t e^{-\delta(T-t)} - \frac{KP(t,T)}{2} - K\Omega(t,K,T;S_t,Y_t),$$
(8)

where

$$\Omega(t, K, T; S_t, Y_t)$$

$$= P(t, T) \frac{1}{\pi} \int_0^\infty \operatorname{Re} \left[\frac{e^{-i\phi \ln(K)} f_2(T, \phi; S_t, Y_t)}{\phi^2 + i\phi} \right] d\phi.$$
(9)

FFT APPROACH

• **Proposition 2** (Hong (2004)):

$$c_{FWS}(t, t^*, T, \omega)$$

$$= \omega e^{-\delta(T-t)} S_t \frac{e^{-\alpha \ln(\omega)}}{\pi}$$

$$\operatorname{Re}\left[\int_0^\infty e^{-iu \ln(\omega)} \frac{g_1(t^*, T, u - i(\alpha - 1); S_t, Y_t)}{\alpha (\alpha - 1) - u^2 + i(2\alpha - 1)u} du\right],$$
(10)

where $\alpha \in \mathbb{R}_+$, and

$$g_j(t^*, T, \phi_z; S_t, Y_t) := \mathbb{E}_{\mathbb{Q}_j}\left[e^{i\phi_z z(t^*, T)} \middle| \mathcal{F}_t \right]$$
(11)

is the characteristic function of the forward rate of return

$$z(t^*,T) := \ln\left(\frac{S_T}{S_{t^*}}\right),$$

for j = 1, 2 and $\phi_z \in \mathbb{C}$.

FFT APPROACH

Proposition 3: g_j (t*, T, φ_z; S_t, Y_t) can be obtained from the (marginal) characteristic function of the additional state variables Y (and independently of S_t!):

$$h_{j}\left(T,\phi_{y};Y_{t}\right) = \mathbb{E}_{\mathbb{Q}_{j}}\left(e^{i\phi_{y}'\cdot Y_{T}}|\mathcal{F}_{t}\right)$$
$$= \exp\left[l_{c,j}\left(t,T;\phi_{y}\right) + l_{y,j}\left(t,T;\phi_{y}\right)'\cdot Y_{t}\right], (12)$$

– for
$$j=1,2$$
, where $\phi_y\in\mathbb{C}^{n-1}$, and

$$\begin{array}{l} - \ l_{c,j}\left(t,T;\phi_y\right) \text{ and } l_{y,j}\left(t,T;\phi_y\right) \text{ are simple functions of } \delta, \ \beta_y \in \mathbb{C}^{n-1} \\ \text{ and } \alpha \in \mathbb{C}. \end{array}$$

DIRECT INTEGRATION APROACH

• Proposition 4:

$$c_{FWS}(t, t^*, T, \omega)$$

$$= S_t e^{\delta t} \mathbb{E}_{\mathbb{Q}^S} \left[\frac{c_{FWS}(t^*, t^*, T, \omega)}{S_{t^*} e^{\delta t^*}} \middle| \mathcal{F}_t \right]$$

$$= S_t e^{-\delta(t^*-t)} \mathbb{E}_{\mathbb{Q}^S} \left[\frac{c_{t^*}(\omega S_{t^*}, T; S_{t^*}, Y_{t^*})}{S_{t^*}} \middle| \mathcal{F}_t \right]$$

$$= S_t e^{-\delta(T-t)} - \omega S_t e^{-\delta(t^*-t)} \left\{ \frac{1}{2} \mathbb{E}_{\mathbb{Q}^S} \left[P(t^*, T) \middle| \mathcal{F}_t \right] \right\}$$

$$= S_t e^{-\delta(T-t)} - \omega S_t e^{-\delta(t^*-t)} \left\{ \frac{1}{2} \mathbb{E}_{\mathbb{Q}^S} \left[P(t^*, T) \middle| \mathcal{F}_t \right] \right\}$$

$$= S_t e^{-\delta(T-t)} - \omega S_t e^{-\delta(t^*-t)} \left\{ \frac{1}{2} \mathbb{E}_{\mathbb{Q}^S} \left[P(t^*, T) \middle| \mathcal{F}_t \right] \right\}$$

$$= S_t e^{-\delta(T-t)} - \omega S_t e^{-\delta(t^*-t)} \left\{ \frac{1}{2} \mathbb{E}_{\mathbb{Q}^S} \left[P(t^*, T) \middle| \mathcal{F}_t \right] \right\}$$
(13)

DIRECT INTEGRATION APROACH

• Proposition 5:

$$\mathbb{E}_{\mathbb{Q}^{S}}\left[\Omega\left(t^{*},\omega,T;1,Y_{t^{*}}\right)|\mathcal{F}_{t}\right]$$

$$=\mathbb{E}_{\mathbb{Q}^{S}}\left\{\frac{P\left(t^{*},T\right)}{\pi}\int_{0}^{\infty}\operatorname{Re}\left[\frac{e^{-i\phi\ln(\omega)}f_{2}\left(T,\phi;1,Y_{t^{*}}\right)}{\phi^{2}+i\phi}\right]d\phi\Big|\mathcal{F}_{t}\right\}$$

$$=\mathbb{E}_{\mathbb{Q}^{S}}\left\{\frac{P\left(t^{*},T\right)}{\pi}\int_{0}^{\infty}\operatorname{Re}\left[\frac{e^{-i\phi\ln(\omega)}}{\left(\phi^{2}+i\phi\right)P\left(t^{*},T\right)}\right]d\phi\Big|\mathcal{F}_{t}\right\}$$

$$=\frac{1}{\pi}\int_{0}^{\infty}\operatorname{Re}\left\{\frac{\exp\left[\alpha\left(t^{*},T;\left(i\phi,\underline{0}\right)\right)+\beta_{y}\left(t^{*},T;\left(i\phi,\underline{0}\right)\right)'\cdot Y_{t^{*}}\right)\right]d\phi\Big|\mathcal{F}_{t}\right\}$$

$$=\frac{1}{\pi}\int_{0}^{\infty}\operatorname{Re}\left\{\frac{\exp\left[\alpha\left(t^{*},T;\left(i\phi,\underline{0}\right)\right)-i\phi\ln(\omega)\right]}{\phi^{2}+i\phi}$$

$$\mathbb{E}_{\mathbb{Q}^{S}}\left[\exp\left(\beta_{y}\left(t^{*},T;\left(i\phi,\underline{0}\right)\right)'\cdot Y_{t^{*}}\right)\Big|\mathcal{F}_{t}\right]\right\}d\phi.$$
(14)

DIRECT INTEGRATION APROACH

- Explicit and single 1-dim integral pricing solution (even for n > 1);
- Modulo to the specification of $\beta_y(t,T;u) \in \mathbb{C}^{n-1}$ and $\alpha(t,T;u) \in \mathbb{C}$;
- Quadratic term on the denominator \implies fast rate of decay;
- Closed-form solutions for functions $\beta_y(t, T; u) \in \mathbb{C}^{n-1}$ and $\alpha(t, T; u) \in \mathbb{C}$ under the Bakshi, Cao and Chen (1997) model:
 - Stochastic volatility; Stochastic interest rates; Jumps in the asset returns;
 - Nests Heston (1993) model.

NUMERICAL RESULTS

- Heston (1993) model.
- $4 \neq$ parameter settings:
 - Bakshi et al. (1997, Table III)—S&P 500 call option prices;
 - Broadie and Kaya (2006, Table 1)—S&P 500 futures option prices;
 - Broadie and Kaya (2006, Table 2)—equity option market;
 - Andersen (2007, Table 1)—long-dated currency options.

NUMERICAL RESULTS

- Proxy for the *exact* FS option price:
 - Quadratic exponential (and martingale-corrected) Monte Carlo scheme of Andersen (2007);
 - 32 steps per year and 10^7 paths.
- Proposed direct integration approach:
 - Gauss-Laguerre with 100 weights and abscissas;
 - Gauss-Lobatto adaptive quadrature of Gander and Gautschi (2000):
 - * $[0,\infty) \rightarrow [0,1]$ following Kahl and Jackel (2006, Equation 41);
 - * Relative tolerance of 10^{-12} .

NUMERICAL RESULTS

- Hong (2004) approach:
 - FFT method:
 - * Log-strike grid with 16, 384 prices and constant spacing of size 0.01.
 - Optimal dampening parameter α —Lord and Kahl (2007) algorithm.
 - Gauss-Lobatto quadrature is also tested.
 - Extension of the COS approximation of Fang and Oosterlee (2008):
 - * Pdf of $z(t^*, T)$ is replaced by its Fourier-cosine series expansion with 10⁴ terms;
 - * Same integration range as in Fang and Oosterlee (2008).

			Monte Carlo		Propositions 4 and 5		Hong (2004)		
Model			QEM scheme		G-Laguerre	G-Lobatto	FFT	G-Lobatto	COS
setup	ho	r	price	%SE	%errors	%errors	%errors	%errors	%errors
$\kappa_v = 1.15$	-0.64	0.04	8.517	0.006	-0.019	-0.019	-0.019	-0.019	-0.019
$ heta_v = 0.04$	-0.9	0.04	8.452	0.004	-0.001	-0.001	-0.001	-0.001	-0.001
$\sigma_v = 0.39$	0	0.04	8.617	0.011	-0.029	-0.029	-0.029	-0.029	-0.029
$v_t=$ 0.04 $/1.15$	-0.64	0.10	12.572	0.005	-0.024	-0.024	-0.024	-0.024	-0.024
	-0.64	0.00	6.095	0.009	-0.012	-0.012	-0.012	-0.012	-0.012
$\kappa_v = 6.21$	-0.7	0.03	6.954	0.004	0.001	0.001	0.001	0.001	0.001
$ heta_v=$ 0.11799	-0.9	0.03	6.940	0.003	0.005	0.005	0.005	0.005	0.005
$\sigma_v = 0.61$	0	0.03	6.901	0.005	-0.003	-0.003	-0.003	-0.003	-0.003
$v_t = 0.010201$	-0.7	0.10	11.562	0.004	0.001	0.001	0.001	0.001	0.001
	-0.7	0.00	5.076	0.004	-0.004	-0.004	-0.004	-0.004	-0.004
$\kappa_v = 2$	-0.3	0.05	12.558	0.011	-0.033	-0.033	-0.033	-0.033	-0.034
$ heta_v = 0.18$	-0.9	0.05	11.996	0.006	-0.009	-0.009	-0.009	-0.009	-0.009
$\sigma_v = 1$	0	0.05	12.774	0.015	-0.022	-0.022	-0.022	-0.022	-0.029
$v_t = 0.09$	-0.3	0.10	15.504	0.010	-0.027	-0.027	-0.027	-0.027	-0.027
	-0.3	0.00	9.891	0.012	-0.043	-0.043	-0.043	-0.043	-0.043
$\kappa_v = 0.5$	-0.9	0.00	2.645	0.028	0.014	0.015	0.015	0.015	0.015
$ heta_v = 0.02$	-0.5	0.00	3.268	0.036	-0.008	-0.008	-0.008	-0.008	-0.008
$\sigma_v = 1$	0	0.00	3.927	0.056	-0.054	-0.054	-0.054	-0.054	-0.054
$v_t = 0.04$	-0.9	0.10	11.087	0.004	-0.013	-0.013	-0.013	-0.013	-0.013
	-0.9	0.03	5.120	0.012	0.069	0.068	0.068	0.068	0.068
Mean Abs. Percentage Error		0.020	0.019	0.019	0.019	0.020			
CPU (seconds)			150879.70		0.05	6.22	1.96	12.66	1.75

		Monte Carlo		Propositions 4 and 5		Hong (2004)		
Model		QEM scheme		G-Laguerre	G-Lobatto	FFT	G-Lobatto	COS
setup	ω	price	%SE	%errors	%errors	%errors	%errors	%errors
$\kappa_v=1.15$	0.50	52.036	0.008	-0.026	-0.026	-0.026	-0.026	-0.026
$ heta_v = 0.04$	0.75	28.662	0.007	-0.025	-0.025	-0.025	-0.025	-0.025
$\sigma_v = 0.39$	1.00	8.516	0.009	-0.014	-0.014	-0.014	-0.014	-0.014
$v_t = 0.04/1.15$	1.25	0.750	0.059	0.016	0.016	0.016	0.016	0.016
(ho;r)=(-0.64;4%)	1.50	0.098	0.120	-0.012	-0.012	-0.013	-0.012	-0.012
$\kappa_v = 6.21$	0.50	51.571	0.006	0.012	0.012	0.012	0.012	0.012
$ heta_v = 0.11799$	0.75	27.625	0.006	0.001	0.001	0.001	0.001	0.001
$\sigma_v = 0.61$	1.00	6.954	0.005	0.001	0.001	0.001	0.001	0.001
$v_t = 0.010201$	1.25	0.127	0.038	-0.056	-0.056	-0.056	-0.056	-0.056
(ho;r)=(-0.7;3.19%)	1.50	0.0005	0.230	-0.053	-0.049	-0.173	-0.067	-0.053
$\kappa_v = 2$	0.50	52.808	0.013	-0.023	-0.023	-0.023	-0.023	-0.023
$ heta_v=$ 0.18	0.75	30.636	0.013	-0.018	-0.018	-0.018	-0.018	-0.018
$\sigma_v = 1$	1.00	12.556	0.016	-0.018	-0.018	-0.018	-0.018	-0.018
$v_t = 0.09$	1.25	3.804	0.032	-0.073	-0.073	-0.073	-0.073	-0.074
(ho;r)=(-0.3;5%)	1.50	1.415	0.052	-0.077	-0.077	-0.077	-0.077	-0.079
$\kappa_v=$ 0.5	0.50	50.204	0.006	0.085	0.086	0.086	0.086	0.086
$ heta_v = 0.02$	0.75	25.839	0.005	-0.103	-0.103	-0.103	-0.103	-0.103
$\sigma_v = 1$	1.00	2.644	0.039	0.059	0.059	0.059	0.059	0.059
$v_t = 0.04$	1.25	0.232	0.187	1.897	1.868	1.868	1.867	1.868
(ho;r)=(-0.9;0%)	1.50	0.081	0.198	1.012	1.816	1.816	1.815	1.816
Mean Abs. Percentage Error		0.179	0.218	0.224	0.218	0.218		
MAPE (full truncation Euler MC)				0.109	0.068	0.074	0.069	0.068
CPU (seconds)		77859.93		0.08	7.83	1.95	41.49	1.78

			Monte Carlo		Proposition	Propositions 4 and 5		Hong (2004)		
Model			QEM s	cheme	G-Laguerre	G-Lobatto	FFT	G-Lobatto	COS	
setup	t^*-t	au	price	%SE	%errors	%errors	%errors	%errors	%errors	
$\kappa_v = 1.15$	0.0625	0.5	5.495	0.005	0.002	0.002	0.002	0.002	0.002	
$ heta_v = 0.04$	0.2500	0.5	3.785	0.010	-0.001	-0.001	-0.001	-0.001	-0.001	
$\sigma_v = 0.39$	0.4375	0.5	1.663	0.015	-0.062	-0.078	-0.045	-0.078	-0.045	
$v_t = 0.04/1.15$	0.6250	5.0	23.276	0.004	-0.001	-0.001	-0.001	-0.001	-0.001	
ho=-0.64	2.5000	5.0	15.797	0.008	-0.067	-0.067	-0.067	-0.067	-0.067	
r = 4%	4.3750	5.0	6.172	0.012	-0.122	-0.122	-0.122	-0.122	-0.122	
$\kappa_v = 6.21$	0.0625	0.5	3.950	0.003	0.000	0.000	0.000	0.000	0.000	
$ heta_v = 0.11799$	0.2500	0.5	2.837	0.006	0.008	0.008	0.008	0.008	0.008	
$\sigma_v = 0.61$	0.4375	0.5	1.257	0.013	-0.010	-0.008	-0.008	-0.008	-0.008	
$v_t = 0.010201$	0.6250	5.0	18.615	0.003	-0.007	-0.007	-0.007	-0.007	-0.007	
ho = -0.7	2.5000	5.0	12.757	0.006	-0.011	-0.011	-0.011	-0.011	-0.011	
r = 3.19%	4.3750	5.0	5.129	0.009	-0.011	-0.011	-0.011	-0.011	-0.011	
$\kappa_v = 2$	0.0625	0.5	8.004	0.007	-0.009	-0.009	-0.009	-0.009	-0.009	
$ heta_v = 0.18$	0.2500	0.5	5.490	0.014	0.011	0.011	0.011	0.011	0.011	
$\sigma_v = 1$	0.4375	0.5	2.412	0.022	0.023	0.017	0.024	0.016	0.024	
$v_t = 0.09$	0.6250	5.0	32.145	0.007	-0.007	-0.007	-0.007	-0.007	-0.007	
ho = -0.3	2.5000	5.0	22.627	0.015	-0.076	-0.076	-0.076	-0.076	-0.076	
r = 5%	4.3750	5.0	9.270	0.022	-0.096	-0.096	-0.096	-0.096	-0.096	
$\kappa_v = 0.5$	0.0625	0.5	3.028	0.023	-0.324	-0.297	-0.291	-0.297	-0.297	
$ heta_v = 0.02$	0.2500	0.5	1.796	0.040	-0.457	-0.144	-0.251	-0.144	-0.154	
$\sigma_v = 1$	0.4375	0.5	0.734	0.096	3.321	0.390	1.263	0.389	0.590	
$v_t = 0.04$	0.6250	5.0	7.080	0.009	-0.031	-0.031	-0.031	-0.031	-0.031	
ho = -0.9	2.5000	5.0	4.495	0.013	0.000	0.000	0.000	0.000	0.000	
r = 0%	4.3750	5.0	1.765	0.034	-0.103	-0.138	-0.139	-0.138	-0.138	
Mean Abs. P	ercent. Erro	or			0.198	0.064	0.103	0.064	0.072	
CPU (seconds)		190814.54		0.07	2.70	2.41	126.02	2.05		

Speed-accuracy trade-off

CONCLUSIONS

- The COS approximation can be biased in a low mean reversion setting.
- The QEM Monte Carlo scheme can be biased for deep out-of-the-money contracts.
- The adaptive Gauss-Lobatto quadrature scheme is the most robust integration method.
- The direct integration method proposed provides a better accuracy-efficiency trade-off than the usual Hong (2004) approach.

References

Andersen, L., 2007, Efficient Simulation of the Heston Stochastic Volatility Model, Working paper, Banc of America.

Attari, M., 2004, Option Pricing Using Fourier Transforms: A Numerically Efficient Simplification, Working paper, Charles River Associates.

Bakshi, G., C. Cao, and Z. Chen, 1997, Empirical Performance of Alternative Option Pricing Models, *Journal of Finance* 52, 2003–2049.

Broadie, M. and Ö. Kaya, 2006, Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Models, *Operations Research* 54, 217–231.

- Duffie, D., J. Pan, and K. Singleton, 2000, Transform Analysis and Asset Pricing for Affine Jump-Diffusions, *Econometrica* 68, 1343–1376.
- Fang, F. and C. Oosterlee, 2008, A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions, SIAM Journal on Scientific Computing 31, 826–848.
- Gander, W. and W. Gautschi, 2000, Adaptive Quadrature Revisited, *BIT* 40, 84–101.
- Haastrecht, A. and A. Pelsser, 2009, Valuing Forward Starting Structures with Stochastic Volatility, Stochastic Interest Rates and Full Dependency Structures, Working paper, University of Amsterdam and Delta Lloyd Insurance.

- Heston, S., 1993, A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, *Review of Financial Studies* 6, 327–343.
- Hong, G., 2004, Forward Smile and Derivative Pricing, Working paper, UBS.
- Hull, J. and A. White, 1993, One Factor Interest-Rate Model and the Valuation of Interest-Rate Derivative Securities, *Journal of Financial and Quantitative Analysis* 28, 235–254.
- Kahl, C. and P. Jackel, 2006, Not-So-Complex Logarithms in the Heston Model, Working paper, University of Wuppertal and ABN AMRO.

- Kilin, F., 2007, Accelerating the Calibration of Stochastic Volatility Models, Working paper, Frankfurt School of Finance & Management and Quanteam AG.
- Kruse, S. and U. Nögel, 2005, On the Pricing of Forward Starting Options in Heston's Model on Stochastic Volatility, *Finance and Stochastics* 9, 233–250.
- Lee, R., 2004, Option Pricing by Transform Methods: Extensions, Unification, and Error Control, *Journal of Computational Finance* 7, 51–86.
- Lord, R. and C. Kahl, 2007, Optimal Fourier Inversion in Semi-Analytical Option Pricing, *Journal of Computational Finance* 10, 1–30.

Mercurio, F. and N. Moreni, 2005, Pricing Inflation-Indexed Options with Stochastic Volatility, Working paper, Banca IMI.

Rubinstein, M., 1991, Pay Now, Choose Later, Risk 4, 13.

Schöbel, R. and J. Zhu, 1999, Stochastic Volatility With an Ornstein-Uhlenbeck Process: An Extension, *European Finance Review* 4, 23–46.