MULTIVARIATE EXTENSION OF PUT-CALL SYMMETRY

Michael Schmutz

joint work with I. Molchanov

University of Bern, Switzerland

Barrier-contingent claims

•
$$
S_t = (S_{01}e^{t\lambda_1}e^{\xi_{t1}}, \dots, S_{0n}e^{t\lambda_n}e^{\xi_{tn}}), t \in [0, T]
$$

 $(\lambda_1, \dots, \lambda_n$ —deterministic carrying costs)

• $S_T = F \eta = (F_1 \eta_1, \ldots, F_n \eta_n)$

Barrier-contingent claim:

$$
X = f(S_T)1\!\!1_{\{\dots\}} = f(F\eta)1\!\!1_{\{\dots\}}
$$

where $\mathbb{I}_{\{\ldots\}}$ is the indicator of some barrier event and f is some payoff function, e.g. $(k > 0)$

$$
f(S_T) = (w_1 F_1 \eta_1 + \dots + w_n F_n \eta_n - k)_+,
$$

\n
$$
f(S_T) = (\max(w_1 F_1 \eta_1, \dots, w_n F_n \eta_n) - k)_+,
$$

\n
$$
f(S_T) = (w_1 F_1 \eta_1 + \dots + w_n F_n \eta_n)_+.
$$

Symmetries

Well-known classic European put-call symmetry (holding for *certain* models)

 $\mathbf{E}(F\eta - k)_+ = \mathbf{E}(F - k\eta)_+$ for every $k \geq 0$.

In view of that, consider

- $\eta = (\eta_1, \ldots, \eta_n)$, $(1, \eta_1, \ldots, \eta_n)$ random price changes
- $f(\eta)$ payoff function (forward prices are included in the payoff functions)
- Discussion: In which case is $\mathbf{E}_{\mathbf{Q}}f(\eta)$ invariant with respect to swaps of its arguments (expectation w.r.t. martingale measure)?

Main application: Semi-static hedging of certain barrier-contingent claims, i.e. the replication of these contracts by trading European-style claims at no more than two times after inception.

Some historic remarks

• Bates' rule:

D.S. Bates. In particular: The skewness premium. Adv. Fut. Options Res., 1997; see also J. Bowie and P. Carr, Static simplicity, Risk, 1994.

- Semi-static hedge of barrier options (based on J. Bowie and P. Carr): (a call option at the barrier can be converted in certain put options) P. Carr, K. Ellis, V. Gupta. J. Finance, 1998; P. Carr, R. Lee, 2009.
- Lévy markets:

J. Fajardo, E. Mordecki. Symmetry and duality. Quant. Finan., 2006.

- Multiasset case:
	- I. M., M. S., 2010.

Duality principle alone does not suffice

For the duality principle, see Eberlein, Papapantoleon & Shiryaev 2008, 2009 and the literature cited therein.

Since $\mathbf{E}_{\mathbf{Q}}\eta = 1$, define

$$
\frac{d\tilde{\mathbf{Q}}}{d\mathbf{Q}} = \eta \,.
$$

With $\tilde{\eta}=\eta^{-1}$

$$
\mathbf{E}_{\mathbf{Q}}(H\eta - k)_{+} = \mathbf{E}_{\tilde{\mathbf{Q}}}\eta^{-1}(H\eta - k)_{+} = \mathbf{E}_{\tilde{\mathbf{Q}}}(H - k\tilde{\eta})_{+}
$$

$$
= kH^{-1}\mathbf{E}_{\tilde{\mathbf{Q}}}(H^{2}k^{-1} - H\tilde{\eta})_{+}.
$$

Need

$$
\mathbf{E}_{\mathbf{Q}}(H\eta - k)_{+} = kH^{-1}\mathbf{E}_{\mathbf{Q}}(H^{2}k^{-1} - H\eta)_{+}
$$

(resp. equivalent properties) for symmetry based semi-static hedges.

Most important multivariate functions

- $\bullet\,$ Basket option $\mathbf{E}_{\mathbf{Q}}\left(u_{0}+u_{1}\eta_{1}+\cdots+u_{n}\eta_{n}\right)_{+}$ function of $(\eta_0 = 1, \eta_1, \ldots, \eta_n)$
- Calls (puts) on maximum/minimum, e.g.

 $\mathbf{E_Q}(\max(u_1\eta_1,\ldots,u_n\eta_n)-u_0)_+$

for our symmetry analysis can be replaced by $\mathbf{E_Q} \max(u_0, u_1\eta_1, \dots, u_n\eta_n)$

 $\bullet\,$ Exchange option $\mathbf{E}_{\mathbf{Q}}\left(u_{1}\eta_{1}+\cdots+u_{n}\eta_{n}\right)_{+}$

Characterisation of distributions

- Breeden & Litzenberger (1978): the prices of all call (resp. put) options determine the distribution of the single underlying.
- The prices of all basket options determine the multiasset distribution Carr & Laurence — absolutely continuous case;

the general case is implicit in Henkin & Shananin, Koshevoy & Mosler.

• The same holds for all options on the maximum (weighted) $\max(u_0,u_1\eta_1,\ldots,u_n\eta_n)$ or minimum $\min(u_0,u_1\eta_1,\ldots,u_n\eta_n).$

• The same holds for calls (puts) on maximum/minimum, e.g.

 $(\min(u_1\eta_1,\ldots,u_n\eta_n)-u_0)_+$.

Does not hold for exchange options $(u_1\eta_1+\cdots+u_n\eta_n)_+.$

Information in exchange options

Let $\eta=e^\xi$ and $\eta^*=e^{\xi^*}$ be integrable random vectors. Then

$$
\mathbf{E}(\langle u,\eta\rangle)_+=\mathbf{E}(\langle u,\eta^*\rangle)_+\quad\text{for all }u\in\mathbb{R}^n
$$

if and only if

$$
\varphi_{\xi}(u - \iota w) = \varphi_{\xi^*}(u - \iota w) \tag{1}
$$

for all $u \in \mathbb{H}$, where

$$
\mathbb{H} = \{ u \in \mathbb{R}^n : \sum_{k=1}^n u_k = 0 \},\
$$

and for at least one (and then necessarily for all) w , such that $\sum w_i = 1$ and both sides in (1) are finite.

Infinitely divisible case: (1) can be expressed via the Lévy triplet.

Consequences

- Prices of all basket options determine the prices of all European options (depending on the same assets, with the same maturity).
- Prices of all exchange options determine them for a certain class of payoff functions.

Symmetries of multivariate option prices functions

- $\bullet\,$ Basket option $\mathbf{E}_{\mathbf{Q}}\left(u_{0}+u_{1}\eta_{1}+\cdots+u_{n}\eta_{n}\right)_{+}$ (swap u_0 and u_i) \qquad \qquad \qquad η is i -self-dual (for all $(u_0, u) \in \mathbb{R}^{n+1}$)
- Option on the maximum $\mathbf{E}_{\mathbf{Q}}\max(u_0,u_1\eta_1,\ldots,u_n\eta_n)$ (swap u_0 and u_i) \qquad \qquad \qquad η is i -self-dual \qquad (for all $(u_0, u) \in \mathbb{R}^{n+1}$)
- $\bullet\,$ Exchange option $\mathbf{E}_{\mathbf{Q}}\left(u_{1}\eta_{1}+\cdots+u_{n}\eta_{n}\right)_{+}$ (swap u_i and u_j with $u_0 = 0$) \qquad \qquad (for all $u \in \mathbb{R}^n$)

Characterisation of self-dual distributions

Integrable η is *i*-self-dual if and only if e.g.

• $\mathbf{E} f(\eta) = \mathbf{E}[f(\varkappa_i(\eta))\eta_i]$ for all integrable payoffs f , where

$$
\varkappa_i(x) = \left(\frac{x_1}{x_i}, \ldots, \frac{x_{i-1}}{x_i}, \frac{1}{x_i}, \frac{x_{i+1}}{x_i}, \ldots, \frac{x_n}{x_i}\right).
$$

• The distribution of η under ${\bf Q}$ coincides with the distribution of $\varkappa_i(\eta)$ under \mathbf{Q}^i , where

$$
\frac{d\mathbf{Q}^i}{d\mathbf{Q}} = \eta_i \,.
$$

• If η is absolutely continuous, $p_{\eta}(x) = x_i^{-n-2}$ $\frac{-n-2}{i} p_{\eta}(\varkappa_i(x))$ a.e. • Characterisation in terms of the distribution of $\xi = \log \eta$

$$
\varphi_{\xi}\left(u-\frac{1}{2}\,\boldsymbol{\imath} e_i\right)=\varphi_{\xi}\left(K_i^{\top}u-\frac{1}{2}\,\boldsymbol{\imath} e_i\right),\quad u\in\mathbb{R}^n\,,
$$

where

$$
K_i x = (x_1 - x_i, \ldots, x_{i-1} - x_i, -x_i, x_{i+1} - x_i, \ldots, x_n - x_i),
$$

(some other equivalent complex shifts are also possible).

Infinitely divisible case: This characterisation can be expressed via the Lévy triplet.

PCS in the one asset case

- Classic European put-call symmetry is equivalent to many other definitions.
- Almost any tail behaviour is possible.
- η has a non-negative skewness and for infinitely divisible $\xi = \log \eta$, ξ has non-positive skewness.
- For much more, see Carr and Lee 2009 and the literature cited therein.

Swap-invariance and PCS

Integrable η is called ij -swap-invariant if

 $\mathbf{E_Q}(u_1\eta_1 + \cdots + u_n\eta_n)_+$, $u \in \mathbb{R}^n$,

is π_{ij} -invariant (swap u_i and u_j).

Integrable η is ij -swap-invariant if and only if the $(n-1)$ -dimensional random vector

$$
\tilde{\varkappa}_j(\eta) = \left(\frac{\eta_1}{\eta_j}, \dots, \frac{\eta_{j-1}}{\eta_j}, \frac{\eta_{j+1}}{\eta_j}, \dots, \frac{\eta_n}{\eta_j}\right)
$$

is *self-dual* with respect to the i th component under $\mathbf{Q}^j.$

Characterisation

An integrable random vector $\eta=e^\xi$ is ij -swap-invariant if and only if the characteristic function of ξ satisfies

$$
\varphi_{\xi}(u - \mathbf{1}\frac{1}{2}e_{ij}) = \varphi_{\xi}(\pi_{ij}u - \mathbf{1}\frac{1}{2}e_{ij})
$$

for all

$$
u \in \mathbb{H} = \{u \in \mathbb{R}^n : \sum_{k=1}^n u_k = 0\},\,
$$

where $e_{ij} = e_i + e_j$ (many equivalent complex shifts). Infinitely divisible case: This characterisation can be expressed via the Lévy triplet.

Examples

- Black-Scholes case: Each bivariate risk-neutral log-normal distribution is swap-invariant, no matter what volatilities of the assets and correlation are.
- The considerable effective degrees of freedom for modelling two assets based on dependent generalised hyperbolic Lévy processes only slightly decrease if we ensure that the bivariate swap-invariance property holds.
- Etc.

Example: Certain knock-out Margrabe (n = 2**)**

• Payoff

$$
X_{\rm sw} = (S_{T1} - S_{T2})_{+} \mathbb{I}_{c > \frac{S_{t2}}{S_{t1}} \forall t \in [0, T]}
$$

with $c\geq 1,$ $0<\frac{S_{02}}{S_{02}}$ $\frac{S_{02}}{S_{01}} < c$, and (for simplicity) assume $(S_{t1}, S_{t2}) = (S_{01}e^{\lambda t}e^{\xi_{t1}}, S_{02}e^{\lambda t}e^{\xi_{t2}}), (\xi_{t1}, \xi_{t2}), t \in [0, T]$, is a

Brownian motion with drift and non singular covariance matrix

$$
\mu = -\left(\frac{\sigma_1^2}{2}, \frac{\sigma_2^2}{2}\right) \text{ and } \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.
$$

- Hedge portfolio:
	- **–** long position in the Margrabe option with payoff function $(S_{T1}-S_{T2})_{+},$
	- **–** short position in the weighted Margrabe option with payoff function $(c^{-1}S_{T2} - cS_{T1})_{+}.$

Verification of the hedge

- If the barrier is not hit, then $cS_{t1} > S_{t2}$ for all t; the short position $(c^{-1}S_{T2} - cS_{T1})_+$ expires worthless and the long position $(S_{T1}-S_{T2})_+$ replicates the option.
- If $cS_{\tau1} = S_{\tau2}$, then the values of these two options at time τ are identical.

Problems with carrying costs

Write

$$
e^{\lambda}\eta = (e^{\lambda_1+\xi_1}, \ldots, e^{\lambda_n+\xi_n}),
$$

where $\lambda_i=r-q_i$ (q_i -dividend yield), $i=1,\ldots,n$ (and for simplicity of notation $T = 1$).

The problem in self-dual cases

- For applications usually $\mathbf{E}e^{\xi_j}=1, j=1,\ldots,n.$
- Multiplication by e^{λ_i} , $\lambda_i \neq 0$, moves the expectation away from one.
- $e^{\lambda+\xi}$ self-dual with respect to the *i*th coordinate \Rightarrow $\mathbf{E}e^{\lambda_i+\xi_i}=1$.
- For semi-static hedging, symmetry is rather needed in $e^{\lambda+\xi}$ than in e^{ξ} .

Quasi-self-duality

 $\eta=e^\xi$ is \boldsymbol{q} uasi-self-dual (with respect to the i th coordinate) if there exist $\lambda \in \mathbb{R}^n$ and $\alpha \neq 0$ such that $(e^{\lambda + \xi})^\alpha$ is integrable and self-dual with respect the i th coordinate.

Univariate power-transform: Carr and Lee (2009), based on earlier work of Carr and Chou.

For the multivariate case

$$
\mathbf{E}f(S_T)
$$

= $\mathbf{E}\Big[f\Big(\frac{S_{0i}}{S_{Ti}}(S_{T1},\ldots,S_{T(i-1)},S_{0i},S_{T(i+1)},\ldots,S_{Tn})\Big)\Big(\frac{S_{Ti}}{S_{0i}}\Big)^{\alpha}\Big],$

etc.

A similar extension to quasi-swap-invariance is known (useful for non-equal carrying costs).

Finding α **in infinitely divisible cases**

To ensure that $\mathbf{E}\eta_i = 1$ the value α must satisfy

$$
a_{ii}\alpha = a_{ii} - 2\lambda_i + 2\int_{\mathbb{R}^n} (e^{x_i} - 1 - x_i e^{\frac{\alpha}{2}x_i} 1\!\!1_{\|x\| \le 1}) d\nu(x),
$$

where $|\|x\|^2=\frac{1}{2}$ $\frac{1}{2}$ ($||x||^2 + ||K_ix||^2$).

Usually not easy to solve (even for $n = 1$) and solution(s) may not exist.

There are some friendly special cases.

References

I. Molchanov and M. Schmutz, Multivariate extensions of put-call symmetry, 2010 SIAM J. Financial Math.

See also

• **P. Carr and R. Lee, Put-call symmetry: Extensions and applications, 2009 (preprint 2007)**

Math. Finance

• Self-duality and geometry: **I. Molchanov and M. Schmutz, Geometric extension of put-call symmetry in the multiasset setting, 2008** ArXiv math.PR/0806.4506

• **I. Molchanov and M. Schmutz, Exchangeability type properties of asset prices, 2010**

Submitted.

• **M. Schmutz, Semi-static hedging for certain Margrabe type options with barriers, 2008**

ArXiv math.PR/0810.5146

Extended version: to appear 2010

Quant. Finance