Monsoon options: early-exercise Asian tail using fast & accurate hybrid numerical techniques

Sebastian H Law Peter W Duck David P Newton

The University of Manchester

Bachelier Finance Congress 2010

Outline

- introduction
- contract space
- motivation & the modelling scenario
- commodity futures model
- geometric averaging
 - Asian tail
 - Monsoon
- arithmetic averaging
 - Asian tail
 - Monsoon
- results

Introduction to the contract

We introduce and value a class of option that is a surprising omission from the current literature, which we christen the 'Monsoon' option.

- The number of exercise opportunities, *I*. Unconventionally, the corresponding time to each opportunity does not necessarily equate to the termination of the contract, rather it is simply when a decision may be taken.
- The averaging period for Asian-style options, T̄. Best expressed as a fraction of the option's life, T̄/T.

Contract	\overline{T}/T	Ι	notes
Monsoon - Vanilla Asian - Asian tail or forward-starting Asian - European - Bermudan - American	[0, 1] 1 [0, 1] 0 0 0	$egin{array}{c} [1,\infty)\ [1,\infty)\ 1\ 1\ [1,\infty)\ \infty \end{array}$	trivial when $I \neq 1$

(Law 2009, Bilger 2004)

< ロ > < 同 > < 回 > < 回 > .

Contract space

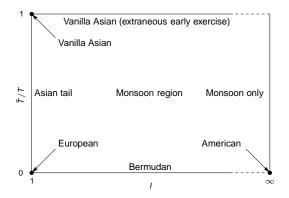


Figure: Schematic of the contract space encompassed by a Monsoon option.

Sebastian H Law, Peter W Duck, David P Newton

Image: A matrix

Motivation and modelling scenario

The Monsoon contract encompasses several notable features

- Asian features
 - less susceptible to market manipulation
 - reduce contract volatility generally cheaper than European
- Early-exercise
 - desirable but expensive
- Leads us initially to commodities
 - consumed on a continual basis Asian
 - choice of delivery dates early-exercise

Also note

- Not to be confused with Hawaiian options (Jørgensen, et al. 1999) conflicting features
- Bars the use of perpetuals (Chung & Shackleton 2007)

Sebastian H Law, Peter W Duck, David P Newton

イロト イポト イヨト イヨト

modelling

Commodity futures model

Basic model with spot commodity S & convenience yield y (Schwartz 1997)

$$\frac{\mathrm{d}S}{\mathrm{S}} = (r - y)\,\mathrm{d}t + \sigma_{\mathrm{S}}\mathrm{d}W_{\mathrm{S}}^{\mathbb{Q}}$$

$$dy = (\hat{y} - \kappa_y y) dt + \sigma_y dW_y^{\mathbb{Q}}$$

Leads to futures contract $F(t; T_F)$ maturing at T_F as the underlying (Hilliard & Reis 1998)

$$\frac{\mathrm{d}F}{F} = \sigma(t)\mathrm{d}W_F^\mathbb{Q}$$

Time-dependent volatility

$$\sigma(t; T_F) = \sqrt{\sigma_S^2 + \sigma_y^2 B^2 + 2\rho_{Sy} \sigma_S \sigma_y B}, \quad B(t; T_F) = \frac{1}{\kappa_y} \left(e^{-\kappa_y (T_F - t)} - 1 \right)$$

We ignore stochastic interest rate.

Developed further with no-arbitrage model (Trolle & Schwartz 2009).

・ロト ・ 雪 ト ・ ヨ ト ・

-numerical approach and the problems considered

Numerical approach: European example

Four pricing problems, all satisfying Monsoon option criteria:

- 1 Geometric: Asian tail ... QUAD & Analytic
- 2 Geometric: Monsoon ... early-exercise QUAD & Analytic
- 3 Arithmetic: Asian tail ... QUAD & finite-difference
- 4 Arithmetic: Monsoon ... early-exercise QUAD & finite-difference

・ 同 ト ・ ヨ ト ・ ヨ ト

-numerical approach and the problems considered

QUAD: European example

In order to introduce the notation and valuation approach, begin with simplest option contract

$$V^{\mathsf{E}}(F, T; T) = \begin{cases} V_0^{\mathsf{CE}} = [F(T) - K]^+ \\ V_0^{\mathsf{PE}} = [K - F(T)]^+ \end{cases}$$

Standard hedging arguments with futures (Black 1976) yield

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 F^2 \frac{\partial^2 V}{\partial F^2} - rV = 0$$

Simply solved by transformations to the heat equation

$$V^{\mathsf{E}}(x,t;T) = \frac{e^{-r(T-t)}}{2\sqrt{\pi v}} \int_{-\infty}^{\infty} V_0^{\mathsf{E}}(x') \exp\left[-\frac{(x-x')^2}{4v}\right] \mathrm{d}x'$$

We solve using QUAD (Andricopoulos, et al. 2003), with substitution of limits

$$\hat{x}(F, t_i, t_{i+1}) = x(F, t_i) + D\left(\int_{t_i}^{t_{i+1}} \sigma^2(t') dt'\right)^{1/2}$$

QUAD: Numerical integration specific to derivatives.

Sebastian H Law, Peter W Duck, David P Newton

< ロ > < 同 > < 回 > < 回 > < 回 > <

Geometric options: Asian tail

1 Geometric options: Asian tail

Geometric options: Asian tail: pricing method

Geometrics are easiest to value, so good starting point

$$V^{\text{GT}}(\bar{F}, T; t^*, T) = \begin{cases} V_0^{\text{CGT}} = [\bar{F}^{\text{GT}}(t^*, T) - K]^+ \\ V_0^{\text{PGT}} = [K - \bar{F}^{\text{GT}}(t^*, T)]^+ \end{cases}$$

Start of averaging period t^* ; end of averaging and maturity of the contract *T*. Note that we use $\overline{T} = T - t^*$.

The geometric average of the tail $\bar{F}^{GT}(t^*, T)$ given by

$$ar{\mathcal{F}}^{ ext{GT}}(t^*,t) = \exp\left[rac{1}{t-t^*}\int_{t^*}^t \ln(\mathcal{F}(t'))\mathrm{d}t'
ight] ext{ for } t \geq t^*$$

Solution method - split problem into two regions

- Tail region $t \in [t^*, T]$, analytic evaluation of the Asian option
- 'European' region $t \in [t_0, t^*]$, solved using QUAD, with 'payoff' given by the tail prices at nodes at t^*

Sebastian H Law, Peter W Duck, David P Newton

(日)

Geometric options: Asian tail: pricing schematic

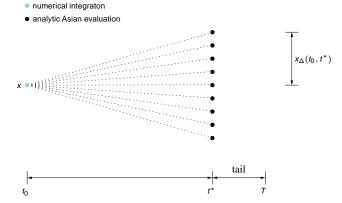


Figure: Schematic of Asian tail QUAD. Nodes are highlighted to indicate how they are evaluated.

Sebastian H Law, Peter W Duck, David P Newton

< ロ > < 同 > < 回 > < 回 > < 回 >

Geometric options: Asian tail: The tail region

Using a convenient definition (Kemna & Vorst 1990)

$$G(t) = \int_{t^*}^t \ln(F(t')) dt', \quad G \in (-\infty, \infty)$$

We arrive at the PDE for the fixed strike Asian option price process

$$\frac{\partial V}{\partial t} + \ln(F)\frac{\partial V}{\partial G} + \frac{1}{2}\sigma^2 F^2 \frac{\partial^2 V}{\partial F^2} - rV = 0 \text{ for } t^* \le t \le T$$

Which prices options at t^* over values of $F \leftrightarrow x$, i.e. the put option

$$V^{\mathsf{PGR}}(F, t^*; \overline{T}) = \mathrm{e}^{-r\overline{T}} \Big\{ \mathsf{K} \Phi\left(-\mathsf{d}_2\right) - F \mathrm{e}^{u-w} \Phi\left(-\mathsf{d}_1\right) \Big\}$$

respectively, where $\Phi(d)$ is the cumulative normal distribution function.

Sebastian H Law, Peter W Duck, David P Newton

・ロット (雪) (日) (日)

Geometric options: Asian tail: The European region

Identical to the pure European pricing option, with maturity t^* , where the payoff is given by the tail.

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 F^2 \frac{\partial^2 V}{\partial F^2} - rV = 0 \text{ for } t_0 \le t \le t^*$$

With the payoff

$$V_0^{\mathsf{GR}}(x) = V^{\mathsf{GR}}(F,t^*),$$

And thus we can use QUAD with our modified limits of integration to yield

$$V^{\text{GT}}(x, t_0; t^*) = \frac{e^{-r(t^*-t_0)}}{2\sqrt{\pi v}} \int_{\tilde{x}(t_0, t^*)}^{\hat{x}(t_0, t^*)} V_0^{\text{GR}}(x') \exp\left[-\frac{(x-x')^2}{4v}\right] dx'$$

くロト く得ト くヨト くヨト

Geometric options: Monsoon

2 Geometric options: Monsoon

Geometric options: Monsoon: The tail region

Early-exercise Asian tail - where 'exercise' triggers the commencement of the averaging process

$$V(\bar{F}, t; \bar{T}, T) = \begin{cases} V^{\text{CGM}} \ge [\bar{F}^{\text{GT}}(t, t + \bar{T}) - K]^+ \\ V^{\text{PGM}} \ge [K - \bar{F}^{\text{GT}}(t, t + \bar{T})]^+ \end{cases}$$

Given early-exercise, we must locate the free-boundary, so the payoff is given by

$$V_0^{GM*}(x, t_i) = V_0^{GR}(x) \text{ if } i = I,$$
$$V_0^{GM*}(x, t_i) = \left[V_0^{GR}(x), V^{GM}(x, t_i)\right]^+ \text{ if } i < I.$$

The Monsoon contract price is given by

$$V^{\text{GM}}(x, t_{i}; t_{i+1}) = \frac{e^{-r(t_{i+1}-t_{i})}}{2\sqrt{\pi v}} \int_{\tilde{x}(t_{i}, t_{i+1})}^{\hat{x}(t_{i}, t_{i+1})} V_{0}^{\text{GM}*}(x', t_{i+1}) \exp\left[-\frac{(x-x')^{2}}{4v}\right] dx'$$

- We can curtail local integration to save computing time.
- This describes Bermudan implementation. Richardson extrapolation for Americans. (Andricopoulos et al. 2003)

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Geometric options: Monsoon schematic

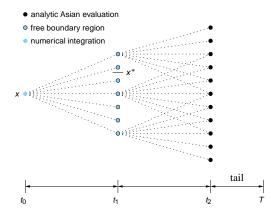


Figure: Schematic of two-step geometric Monsoon QUAD. Nodes are highlighted to indicate how they are evaluated.

Arithmetic options: Asian tail

3 Arithmetic options: Asian tail

Arithmetic options: Asian tail I

We begin by stating the continuous arithmetic average

$$ar{F}^{\mathsf{A}}(t) = rac{1}{t-t^*}\int_{t^*}^t F(t') \mathrm{d}t' ext{ for } t \geq t^*$$

Neat method to reduce the dimensionality of the problem (Večeř 2001, Večeř 2002). The identity d(tF) = tdF + Fdt permits

$$\bar{F}^{\mathsf{A}}(t) = F(t^*) + \int_{F(t^*)}^{F(t)} \left(1 - \frac{t'}{t - t^*}\right) \mathsf{d}F(t')$$

So we can express the option in terms of a 'traded account' X, rather than average \overline{F} , so $V(F, X, t) = V(F, \overline{F}, t)$, where the account follows

$$X(t) = X(t^*) + \int_{F(t^*)}^{F(t)} q(t') \mathrm{d}F(t')$$

given a holding strategy q(t).

Arithmetic options: Asian tail II

We obtain the PDE for the process on the traded account

$$\frac{\partial V}{\partial t} + \frac{1}{2} \frac{\partial^2 V}{\partial F^2} (\sigma F)^2 + \frac{1}{2} \frac{\partial^2 V}{\partial X^2} (q \sigma F)^2 + \frac{\partial^2 V}{\partial F \partial X} q (\sigma F)^2 - rV = 0$$

Substitutions $z(X, F) = \frac{X}{F}$ and $U(z, t) = \frac{V}{F}$ turn the problem from 3D to 2D

$$\frac{\partial U}{\partial t} + \frac{1}{2} \frac{\partial^2 U}{\partial z^2} \sigma^2 (z - q)^2 - rU = 0$$

With the boundary conditions

$$\frac{\partial U}{\partial t} - rU \to 0$$
 as $z \to +\infty;$ $\frac{\partial U}{\partial z} \to 0$ as $z \to -\infty$

Solve by

- Use of 2D finite-difference grid to price the Asian (tail) region from T to t*.
- Grid can value options (payoffs) at t* over range of underlying F in one go.
- Map from grid to QUAD $U(z) \rightarrow V(x)$. Use polynomial interpolation.

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Arithmetic options: Asian tail schematic

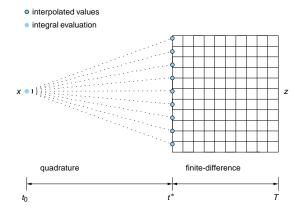


Figure: Schematic of arithmetic Asian tail QUAD-finite-difference numerical scheme. Nodes are highlighted to show how they are evaluated.

Sebastian H Law, Peter W Duck, David P Newton

< ロ > < 同 > < 回 > < 回 >

Arithmetic options: Monsoon

4 Arithmetic options: Monsoon

Arithmetic options: Monsoon

To extend the Arithmetic method to pricing early-exercise options

- Identical treatment of 'European' region, and general method as geometric Monsoon.
- We solve one finite-difference grid per exercise time.
- Locating the free boundary will then only perform polynomial interpolation on the grid, not recalculating.

くロト く得ト くヨト くヨト

results

Results overview

General overview of results is best illustrated by some figures, but

- General behaviours
 - Even with short tails, multiple-exercise Monsoons are considerably cheaper than Bermudan equivalent, and often Europeans.
- Arithmetic vs. Geometric
 - Geometric average is always smaller than arithmetic (Levy 1992): arithmetic ≠ geometric.
 - Given short tails and/or low volatility, geometric method is a practical substitute for Arithmetic.
 - Calculation times for geometric Monsoon options are a matter of seconds, arithmetics less than a minute on modern systems.

・ロット (雪) ・ ヨ) ・ ・ ー

Sebastian H Law, Peter W Duck, David P Newton

SOA

Following figures are for contracts with:

- strike *K* = 100
- maturity T = 3 months
- absolute price differences shown

results

Illustration of contract prices

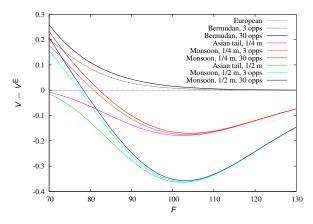


Figure: Geometric put option prices at initiation relative to European. K = 100, T = 0.25. QUAD numerics: Simpsons, D = 12, $x_{\delta} = 10^{-3}$, $\varepsilon = 10^{-9}$.

Sebastian H Law, Peter W Duck, David P Newton

< ロ > < 同 > < 回 > < 回 >

results

Difference between arithmetic and geometric averaging

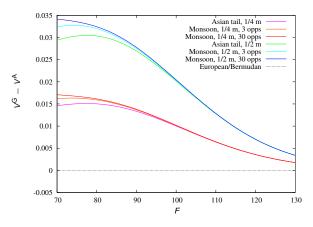


Figure: Absolute price premium of geometric put option prices over arithmetic at initiation. QUAD numerics: Simpsons, D = 12, $x_{\delta} = 10^{-3}$, $\varepsilon = 10^{-9}$. FD numerics: $t_{\delta} = 5 \times 10^{-4}$, $z_{\delta} = 5 \times 10^{-4}$, $\hat{z} = 2$, $\check{z} = -2$. Third-order polynomial interpolation.

end matter

End & contact

Thank you for listening

www.maths.manchester.ac.uk/~slaw

Sebastian H. Law^{1,2} | sebastian@sebastianhlaw.com Peter W. Duck¹ | peter.duck@manchester.ac.uk David P. Newton³ | david.newton@nottingham.ac.uk

- 1. School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- 2. QuaRC, Royal Bank of Scotland, 280 Bishopsgate, London, EC2M 4RB, UK
- 3. Nottingham University Business School, Jubilee Campus, Nottingham, NG8 1BB, UK

Sebastian H Law, Peter W Duck, David P Newton

・ ロ ト ・ 同 ト ・ 日 ト ・ 日 ト

end matter

References I

- A.D. Andricopoulos, et al. (2003). 'Universal option pricing using Quadrature methods'. Journal of Financial Economics 67:447-471
- A.D. Andricopoulos, et al. (2004). 'Corrigendum to "Universal option pricing using Quadrature methods" Journal of Financial Economics 73:603
- R Bilder (2004), 'Valuation of American-Asian Options with the Longstaff-Schwartz Algorithm'. www.mathfinance.com/workshop/2004/papers/bilger/slides.pdf. d-fine GmbH. Presented at Frankfurt MathFinance Workshop.
- Helack (1976). 'The pricing of commodity contracts'. Journal of Financial Economics 3:167-179.

S. Chung & M. B. Shackleton (2007). 'Generalised Geske–Johnson interpolation of option prices'. Journal of Business Finance & Accounting 34(5-6):976-1001.

JE. Hilliard & J. Reis (1998). 'Valuation of Commodity Futures and Options Under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot'. Journal of Financial and Quantitative Analysis 33(1):61-86.

Jørgensen, et al. (1999). 'Aspects of Hawaiian Option Pricing in Continuous Time'. Working paper; previous edition presented at Quantitative Methods in Finance Conference, University of Technology Sydney, 1997.

くロト く得ト くヨト くヨト

end matter

References II

- A.C. Z. Kemna & A. C. F. Vorst (1990). 'A Pricing Method for Options Based on Average Asset Prices'. Journal of Banking and Finance 14:113-129.
- Sill. Law (2009). On the Modelling, Design and Valuation of Commodity Derivatives. Ph.D. thesis, The University of Manchester - Department of Mathematics.
- Entervy (1992). 'Pricing European average rate currency options'. Journal of International Money and Finance **11**.474–491
- E. Schwartz (1997). 'The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging'. Journal of Finance 52(3):923-973.
- AB. Trolle & E. S. Schwartz (2009). 'Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives'. Review of Financial Studies 22(11):4423-4461.
- J Večeř (2001). 'A New PDE approach for pricing arithmetic average Asian options'. Journal of Computational Finance 4(4).
- Nečeř (2002). 'Unified Asian Pricing'. RISK 15(6):113–116.

・ 同 ト ・ ヨ ト ・ ヨ ト