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introduction

Introduction to the contract

We introduce and value a class of option that is a surprising omission from the current
literature, which we christen the ‘Monsoon’ option.

The number of exercise opportunities, I. Unconventionally, the corresponding time
to each opportunity does not necessarily equate to the termination of the contract,
rather it is simply when a decision may be taken.

The averaging period for Asian-style options, T̄ . Best expressed as a fraction of
the option’s life, T̄/T .

Contract T̄/T I notes

Monsoon [0, 1] [1,∞)
- Vanilla Asian 1 [1,∞) trivial when I 6= 1
- Asian tail or forward-starting Asian [0, 1] 1
- European 0 1
- Bermudan 0 [1,∞)
- American 0 ∞

(Law 2009, Bilger 2004)
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introduction
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Figure: Schematic of the contract space encompassed by a Monsoon option.
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introduction

Motivation and modelling scenario

The Monsoon contract encompasses several notable features
Asian features

less susceptible to market manipulation
reduce contract volatility - generally cheaper than European

Early-exercise
desirable but expensive

Leads us initially to commodities

consumed on a continual basis - Asian

choice of delivery dates - early-exercise

Also note

Not to be confused with Hawaiian options (Jørgensen, et al. 1999) - conflicting
features

Bars the use of perpetuals (Chung & Shackleton 2007)
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modelling

Commodity futures model

Basic model with spot commodity S & convenience yield y (Schwartz 1997)

dS

S
= (r − y) dt + σSdW Q

S

dy = (ŷ − κy y) dt + σy dW Q
y

Leads to futures contract F (t; TF ) maturing at TF as the underlying (Hilliard &
Reis 1998)

dF

F
= σ(t)dW Q

F

Time-dependent volatility

σ(t; TF ) =
q

σ2
S + σ2

y B2 + 2ρSy σSσy B, B(t; TF ) =
1

κy

“

e−κy (TF −t) − 1
”

We ignore stochastic interest rate.

Developed further with no-arbitrage model (Trolle & Schwartz 2009).
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numerical approach and the problems considered

Numerical approach: European example

Four pricing problems, all satisfying Monsoon option criteria:

1 Geometric: Asian tail ... QUAD & Analytic

2 Geometric: Monsoon ... early-exercise QUAD & Analytic

3 Arithmetic: Asian tail ... QUAD & finite-difference

4 Arithmetic: Monsoon ... early-exercise QUAD & finite-difference
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numerical approach and the problems considered

QUAD: European example

In order to introduce the notation and valuation approach, begin with simplest option
contract

V E(F , T ; T ) =



V CE
0 = [F (T ) − K ]+

V PE
0 = [K − F (T )]+

Standard hedging arguments with futures (Black 1976) yield

∂V

∂t
+

1

2
σ2F 2 ∂2V

∂F 2
− rV = 0

Simply solved by transformations to the heat equation

V E(x, t; T ) =
e−r (T−t)

2
√

πv

Z

∞

−∞

V E
0 (x ′) exp

"

− (x − x ′)2

4v

#

dx ′

We solve using QUAD (Andricopoulos, et al. 2003), with substitution of limits

x̂(F , ti , ti+1) = x(F , ti ) + D

 

Z ti+1

ti

σ2(t ′)dt ′
!1/2

QUAD: Numerical integration specific to derivatives.
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geometric pricing method

Geometric options: Asian tail

1 Geometric options: Asian tail
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geometric pricing method

Geometric options: Asian tail: pricing method

Geometrics are easiest to value, so good starting point

V GT(F̄ , T ; t∗, T ) =



V CGT
0 = [F̄ GT(t∗, T ) − K ]+

V PGT
0 = [K − F̄ GT(t∗, T )]+

Start of averaging period t∗; end of averaging and maturity of the contract T . Note that
we use T̄ = T − t∗.
The geometric average of the tail F̄ GT(t∗, T ) given by

F̄ GT(t∗, t) = exp
»

1

t − t∗

Z t

t∗
ln(F (t ′))dt ′

–

for t ≥ t∗

Solution method - split problem into two regions

Tail region t ∈ [t∗, T ], analytic evaluation of the Asian option

‘European’ region t ∈ [t0, t∗], solved using QUAD, with ‘payoff’ given by the tail
prices at nodes at t∗
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geometric pricing method

Geometric options: Asian tail: pricing schematic

tail

x

t0 t∗ T

numerical integraton

analytic Asian evaluation

x∆(t0, t∗)

Figure: Schematic of Asian tail QUAD. Nodes are highlighted to indicate how they are evaluated.
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geometric pricing method

Geometric options: Asian tail: The tail region

Using a convenient definition (Kemna & Vorst 1990)

G(t) =

Z t

t∗
ln
`

F (t ′)
´

dt ′, G ∈ (−∞,∞)

We arrive at the PDE for the fixed strike Asian option price process

∂V

∂t
+ ln(F )

∂V

∂G
+

1

2
σ2F 2 ∂2V

∂F 2
− rV = 0 for t∗ ≤ t ≤ T

Which prices options at t∗ over values of F ↔ x , i.e. the put option

V PGR(F , t∗; T̄ ) = e−r T̄


KΦ (−d2) − Feu−wΦ (−d1)

ff

respectively, where Φ(d) is the cumulative normal distribution function.
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geometric pricing method

Geometric options: Asian tail: The European region

Identical to the pure European pricing option, with maturity t∗, where the payoff is given
by the tail.

∂V

∂t
+

1

2
σ2F 2 ∂2V

∂F 2
− rV = 0 for t0 ≤ t ≤ t∗

With the payoff
V GR

0 (x) = V GR(F , t∗),

And thus we can use QUAD with our modified limits of integration to yield

V GT(x, t0; t∗) =
e−r (t∗−t0)

2
√

πv

Z x̂(t0,t∗)

x̌(t0,t∗)
V GR

0 (x ′) exp

"

− (x − x ′)2

4v

#

dx ′
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geometric pricing method

Geometric options: Monsoon
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geometric pricing method

Geometric options: Monsoon: The tail region

Early-exercise Asian tail - where ‘exercise’ triggers the commencement of the
averaging process

V (F̄ , t; T̄ , T ) =



V CGM ≥ [F̄ GT(t, t + T̄ ) − K ]+

V PGM ≥ [K − F̄ GT(t, t + T̄ )]+

Given early-exercise, we must locate the free-boundary, so the payoff is given by

V GM∗

0 (x, ti ) = V GR
0 (x) if i = I,

V GM∗

0 (x, ti ) =
h

V GR
0 (x), V GM(x, ti )

i+
if i < I.

The Monsoon contract price is given by

V GM(x, ti ; ti+1) =
e−r (ti+1−ti )

2
√

πv

Z x̂(ti ,ti+1)

x̌(ti ,ti+1)
V GM∗

0 (x ′, ti+1) exp

"

− (x − x ′)2

4v

#

dx ′

We can curtail local integration to save computing time.

This describes Bermudan implementation. Richardson extrapolation for
Americans. (Andricopoulos et al. 2003)
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geometric pricing method

Geometric options: Monsoon schematic

tail

t0 t1 t2 T

numerical integration

free boundary region

analytic Asian evaluation

x

x∗

Figure: Schematic of two-step geometric Monsoon QUAD. Nodes are highlighted to indicate how
they are evaluated.
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arithmetic pricing method

Arithmetic options: Asian tail

3 Arithmetic options: Asian tail
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arithmetic pricing method

Arithmetic options: Asian tail I

We begin by stating the continuous arithmetic average

F̄ A(t) =
1

t − t∗

Z t

t∗
F (t ′)dt ′ for t ≥ t∗

Neat method to reduce the dimensionality of the problem (Večeř 2001, Večeř 2002).
The identity d(tF ) = tdF + Fdt permits

F̄ A(t) = F (t∗) +

Z F(t)

F(t∗)

„

1 − t ′

t − t∗

«

dF (t ′)

So we can express the option in terms of a ‘traded account’ X , rather than average F̄ ,
so V (F , X , t) = V (F , F̄ , t), where the account follows

X(t) = X(t∗) +

Z F(t)

F(t∗)
q(t ′)dF (t ′)

given a holding strategy q(t).
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arithmetic pricing method

Arithmetic options: Asian tail II

We obtain the PDE for the process on the traded account

∂V

∂t
+

1

2

∂2V

∂F 2
(σF )2 +

1

2

∂2V

∂X2
(qσF )2 +

∂2V

∂F∂X
q(σF )2 − rV = 0

Substitutions z(X , F ) = X
F and U(z, t) = V

F turn the problem from 3D to 2D

∂U

∂t
+

1

2

∂2U

∂z2
σ2(z − q)2 − rU = 0

With the boundary conditions

∂U

∂t
− rU → 0 as z → +∞;

∂U

∂z
→ 0 as z → −∞

Solve by

Use of 2D finite-difference grid to price the Asian (tail) region from T to t∗.

Grid can value options (payoffs) at t∗ over range of underlying F in one go.

Map from grid to QUAD U(z) → V (x). Use polynomial interpolation.
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arithmetic pricing method

Arithmetic options: Asian tail schematic

t0 t∗ T

integral evaluation

interpolated values

quadrature finite-difference

x z

Figure: Schematic of arithmetic Asian tail QUAD-finite-difference numerical scheme. Nodes are
highlighted to show how they are evaluated.
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arithmetic pricing method

Arithmetic options: Monsoon
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arithmetic pricing method

Arithmetic options: Monsoon

To extend the Arithmetic method to pricing early-exercise options

Identical treatment of ‘European’ region, and general method as geometric
Monsoon.

We solve one finite-difference grid per exercise time.

Locating the free boundary will then only perform polynomial interpolation on the
grid, not recalculating.
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results

Results overview

General overview of results is best illustrated by some figures, but
General behaviours

Even with short tails, multiple-exercise Monsoons are considerably cheaper than
Bermudan equivalent, and often Europeans.

Arithmetic vs. Geometric
Geometric average is always smaller than arithmetic (Levy 1992): arithmetic 6=
geometric.
Given short tails and/or low volatility, geometric method is a practical substitute for
Arithmetic.
Calculation times for geometric Monsoon options are a matter of seconds, arithmetics
less than a minute on modern systems.

Following figures are for contracts with:

strike K = 100

maturity T = 3 months

absolute price differences shown
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results

Illustration of contract prices
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Figure: Geometric put option prices at initiation relative to European. K = 100, T = 0.25. QUAD
numerics: Simpsons, D = 12, xδ = 10−3, ε = 10−9 .
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results

Difference between arithmetic and geometric averaging
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Figure: Absolute price premium of geometric put option prices over arithmetic at initiation. QUAD
numerics: Simpsons, D = 12, xδ = 10−3, ε = 10−9 . FD numerics: tδ = 5 × 10−4 ,
zδ = 5 × 10−4 , ẑ = 2, ž = −2. Third-order polynomial interpolation.
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end matter

End & contact
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