Three make a dynamic smile unspanned skewness and interacting volatility components in option valuation

Peter H. Gruber¹, Claudio Tebaldi² and Fabio Trojani¹

June 25, 2010 6th World Congress of the Bachelier Finance society, Toronto, Canada

¹ Università della Svizzera Italiana, Lugano, ² Università L. Bocconi, Milano

 \triangleright Introduction

Three questions

Related literature

Empirical evidence

Model

Performance

Stochastic Coefficients

Conclusion

Introduction

Three questions

Introduction

Three questions Related literature

Empirical evidence

Model

Performance

Stochastic Coefficients

Conclusion

□ How many **sources of dynamic risk** can we identify in index options?

What is the empirical evidence?

□ How can we **conveniently model** the multiple risk sources in an affine framework?

And thus account for the empirical evidence?

□ How can we **improve** on existing benchmark models? And put the model to an empirical test?

Related literature

Introduction	DPS-type affine models
Three questions	Duffie, Pan, Singleton (DPS, 2000): Transform analysis and asset pricing for
▷ Related literature	affine jump-diffusions
Empirical evidence	Bates (2000): Post-'87 Crash Fears in the S&P 500 Futures Option Market
Model	Christoffersen et. al (2009): The Shape and Term Structure of the Index Option
Performance	Smirk: Why Multifactor Stochastic Volatility Models Work so Well
Stochastic	Affine models with matrix jump diffusions
Coefficients	Leippold, Trojani (wp, 2008): Asset pricing with Matrix Jump Diffusions
Conclusion	Cuchiero, Filipovic, Mayerhofer, Teichmann (2010): Finite Processes on
	Positive Semidefinite Matrices Gourieroux, Sufana (wp 2004): Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk da Fonseca, Grasselli, Tebaldi (2008): A Multifactor Volatility Heston Model
	Alternative (affine) multifactor models Muhle-Karb, Pfaffel, Stelzer (wp, 2010): Option pricing in multivariate stochastic volatility models of OU type Carr, Wu (wp, 2009): Leverage Effect, Volatility Feedback, and Self-Exciting Market Disruptions: Disentangling the Multi-dimensional Variations in S&P500 Index Options

Introd	uction
muou	uction

▷ Empirical evidence

Data

Level effects

Unspanning

Factors

Model

Performance

Stochastic Coefficients

Conclusion

Empirical evidence

Data: Call Options on the SP500 index

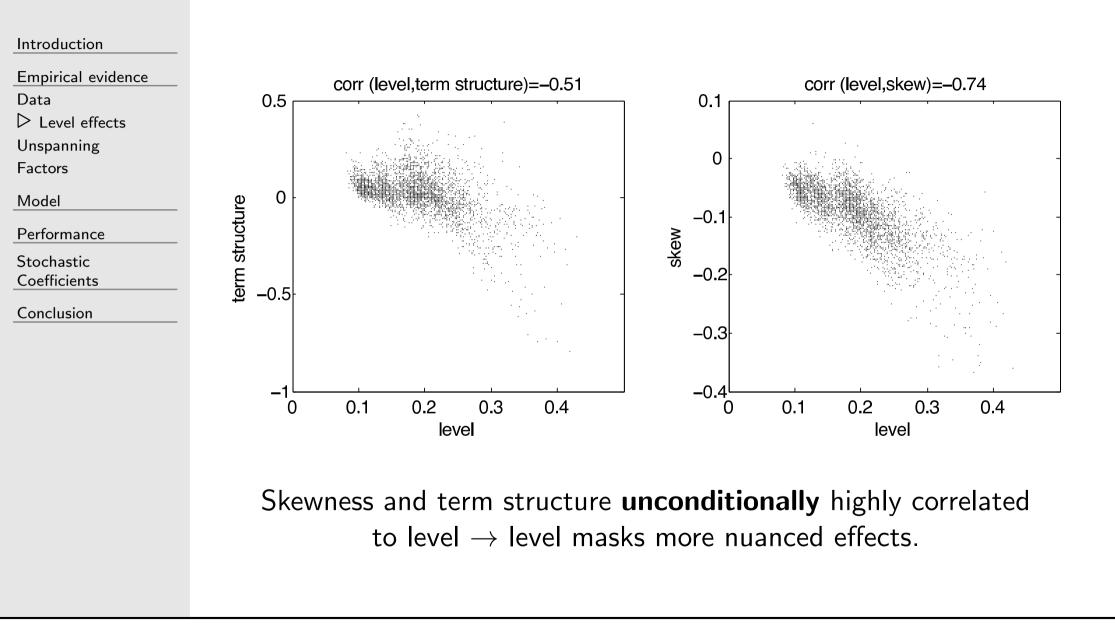
Introduction	Sample	calls only
Empirical evidence	Time frame	1996-Sept/2008
Level effects	Sampling interval	daily
Unspanning Factors	Trading days	3205
Model	Total number of observations	546'971
Performance	Average time to maturity	145 days [10d \sim 1yr]
Stochastic Coefficients	Average moneyness (S/K)	1.05
Conclusion	Data processing	Bakshi(1997), no cuts

Data: Call Options on the SP500 index

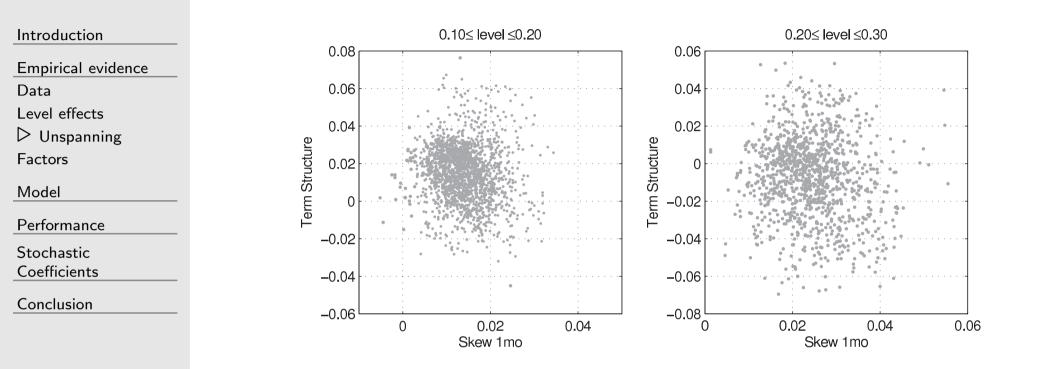
Introduction	Sample	calls only
Empirical evidence	Time frame	1996-Sept/2008
Level effects	Sampling interval	daily
Unspanning Factors	Trading days	3205
Model	Total number of observations	546'971
Performance	Average time to maturity	145 days [10d \sim 1yr]
Stochastic Coefficients	Average moneyness (S/K)	1.05
Conclusion	Data processing	Bakshi(1997), no cuts

Analytical framework: economically significant factors

level	V_t	$IV(ATM, \tau = 30d)$	
skew	\mathcal{S}_t	$[IV(\Delta = 0.4) - IV(\Delta = 0.6)] \cdot \frac{1}{(0.4 - 0.6)}$	$\tau = 30d$
term struct.	\mathcal{M}_t	$[IV(\tau = 90d) - IV(\tau = 30d)] \cdot \frac{360}{(90-30)}$	ATM

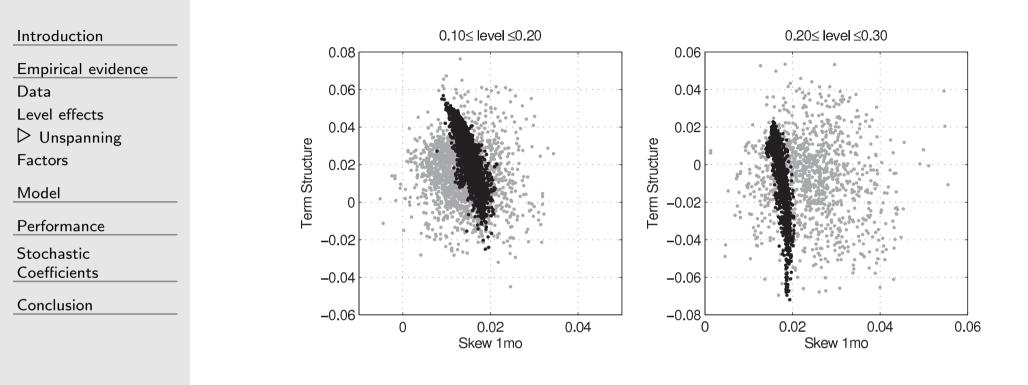


Empirical evidence – unspanning



Considerable variation in skewness and term structure that is not spanned by the volatility level.

Empirical evidence – unspanning (2)



Standard two-factor affine models cannot capture **both** unspanned skewness and term structure components

Introduction	Principal component analysis (% of variance explained)						
Empirical evidence Data Level effects		l	PC 1	PC 2	PC 3	PC 4	
Unspanning	Unconditional	2	96.8	1.9	0.9	0.1	T = 3206
Model							
Performance							
Stochastic Coefficients							
Conclusion							

Introduction	Principal component	ana	lysis (%	of varia	ance exp	olained)	
Empirical evidence Data		l	PC 1	PC 2	PC 3	PC 4	
Level effects Unspanning	Unconditional	2	96.8	1.9	0.9	0.1	T = 3206
▷ Factors	$0.08 < V_t \le 0.13$	3	84.5	6.9	5.6	0.8	T = 641
Model	$0.13 < V_t \le 0.17$	3	84.8	7.1	5.9	0.7	T = 641
Performance Stochastic	$0.17 < V_t \le 0.2$	3	75.4	12.3	8.4	1.3	T = 641
Coefficients	$0.20 < V_t \le 0.23$	3	74.7	12.0	8.6	1.77	T = 641
Conclusion	$0.23 < V_t \le 0.54$	3	87.2	8.7	2.6	0.6	T = 641
	l = significant compo	ner	nts acco	rding to	mean e	eiσenvalı	le criterion

l = significant components according to mean eigenvalue criterion. $(N = 56, \text{threshold} = \frac{1}{56} = 1.79\%)$

Introduction		
Empirical evidence		
▷ Model		
Third factor		
Properties		
State decomposition		
Illustration		
Illustration (2)		
Option pricing	Model	
Estimation	wouch	
Performance		
Stochastic		
Coefficients		
Conclusion		

Introduction

Empirical evidence

Model

 \triangleright Third factor

Properties

State decomposition

Illustration

Illustration (2)

Option pricing

Estimation

Performance

Stochastic Coefficients

Conclusion

Bates-like independent factors – $SV(J)_{3,0}$

$$\frac{dS_t}{S_t} = (r - q - \lambda_t \overline{k})dt + \sqrt{v_{1t}}dz_{1t} + \sqrt{v_{2t}}dz_{2t} + \sqrt{\mathbf{v_{3t}}}\mathbf{dz_{3t}} + kdN_t \quad (1)$$

$$dv_{it} = (\alpha_i - \beta_i v_{it}) dt + \sigma_i \sqrt{v_{it}} dw_{it} \quad i = 1, 2, 3$$
(2)

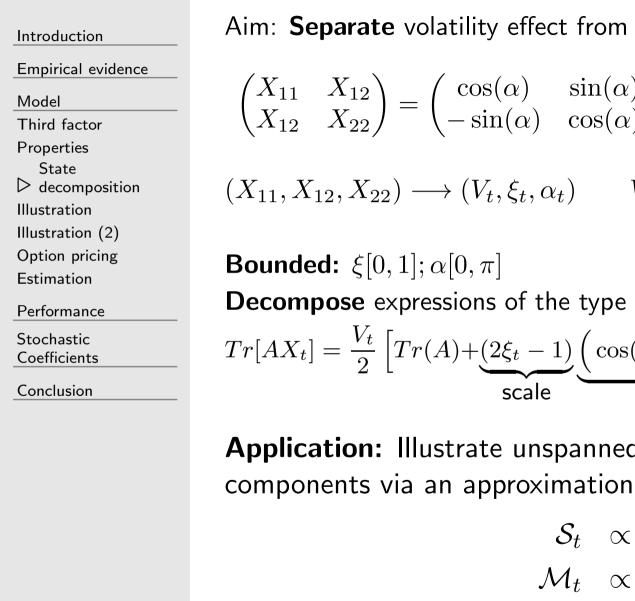
Affine Matrix Jump Diffusion – $SV(J)_{3,1}$

$$\frac{dS_t}{S_t} = (r - q - \lambda_t \overline{k})dt + \mathbf{tr}(\sqrt{\mathbf{X_t}} \mathbf{dZ_t}) + kdN_t$$
(3)

$$dX_t = [\Omega\Omega' + MX_t + X_tM']dt + \sqrt{X_t}dB_tQ + Q'dB_t'\sqrt{X_t}$$
(4)

 $-X_t$ is a (2×2) symmetric, pos.def. matrix-valued process - Interactions for M, Q not diagonal

Introduction	stoch. volatility	$V_t := var(\frac{dS_t}{S_t}) = tr[X_t] = X_{11} + X_{22}$
Empirical evidence Model Third factor	stoch. leverage effect	$cov(\frac{dS_t}{S_t}, dV_t) = 2tr[R'QX_t]$
 Properties State decomposition Illustration 	stoch. persistence	$\frac{1}{dt}E[dV_t] = tr[\Omega\Omega'] + 2tr[MX_t]$
Illustration (2) Option pricing Estimation	Natural mapping to obse (Karoui, Durrleman wp 2	ervable, economically important quantities 2007)
Performance Stochastic		
Coefficients Conclusion	I	level $\sqrt{V_t} = \sqrt{tr[X_t]}$
	S	skew $\mathcal{S}_t = rac{1}{2} rac{tr[RQX_t]}{tr[X_t]^{3/2}}$
	term st	truct $\mathcal{M}_t \approx \frac{1}{2} \frac{tr[MX_t]}{tr[X_t]^{1/2}}$



$$\begin{bmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{bmatrix} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} \mathcal{V}_{1,t} & 0 \\ 0 & \mathcal{V}_{2,t} \end{pmatrix} \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

$$\begin{bmatrix} Y_{11}, X_{12}, X_{22} \end{bmatrix} \longrightarrow (V_t, \xi_t, \alpha_t) \qquad V_t = tr[X_t] = \mathcal{V}_{1,t} + \mathcal{V}_{2,t}; \quad \xi = \frac{\mathcal{V}_{1,t}}{\mathcal{V}_{1,t} + \mathcal{V}_{2,t}}$$

$$\begin{bmatrix} \text{ounded: } \xi[0,1]; \alpha[0,\pi] \\ \text{ecompose expressions of the type } tr[AX_t]: \\ [AX_t] = \frac{V_t}{2} \left[Tr(A) + \underbrace{(2\xi_t - 1)}_{\text{scale}} \underbrace{\left(\cos(2\alpha_t)(A_{11} - A_{22}) + \sin(2\alpha_t)(A_{12} + A_{21})\right)}_{\text{direction}} \right]$$

Application: Illustrate unspanned skewness/term structure components via an approximation of the short term volatility surface

$$\mathcal{S}_t \propto [RQX_t]$$

 $\mathcal{M}_t \propto [MX_t]$

Illustration of state decomposition

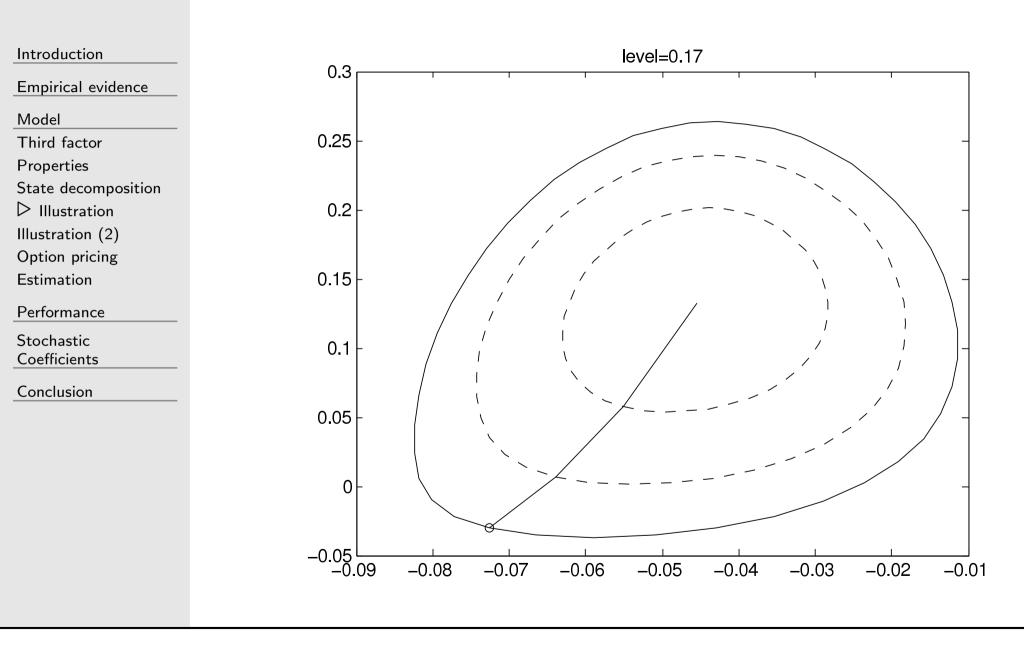
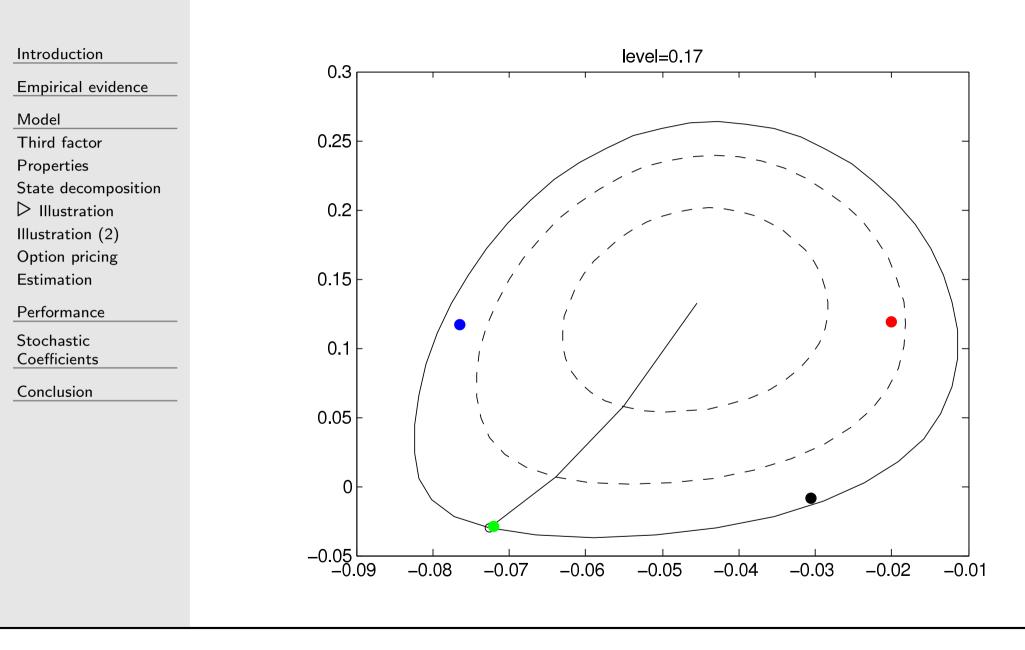
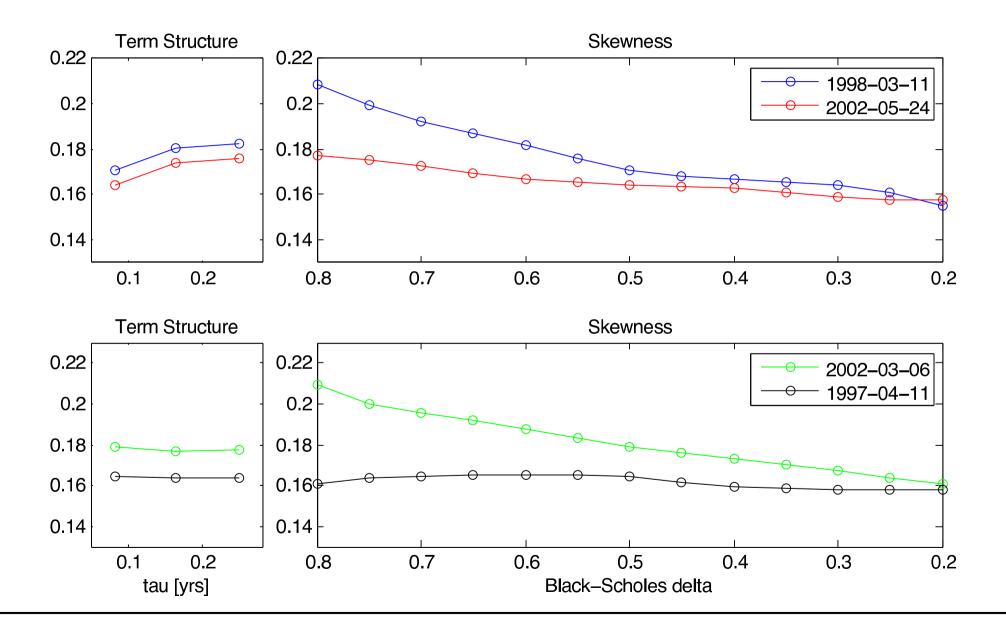


Illustration of state decomposition





Option pricing with (affine) Laplace transform

Introduction

Empirical evidence

Model

Third factor

Properties

State decomposition

Illustration

Illustration (2)

 \triangleright Option pricing

Estimation

Performance

Stochastic Coefficients

Conclusion

$$\Psi(\tau;\gamma) := E_t \left[\exp\left(\gamma Y_T\right) \right] = \exp\left(\gamma Y_t + tr \left[A(\tau) X_t \right] + B(\tau) \right)$$
(5)

where
$$A(\tau) = C_{22}(\tau)^{-1}C_{21}(\tau)$$
 with the 2×2 matrices $C_{ij}(\tau)$:

$$\begin{pmatrix} C_{11}(\tau) & C_{12}(\tau) \\ C_{21}(\tau) & C_{22}(\tau) \end{pmatrix} = \exp\left[\tau \left(\begin{array}{cc} M + \gamma Q'R & -2Q'Q \\ C_0(\gamma) & -(M' + \gamma R'Q) \end{array}\right)\right]$$
(6)

$$C_0(\gamma) = \frac{\gamma(\gamma - 1)}{2} I_2 + \Lambda \left[(1 + \overline{k})^\gamma \exp\left(\gamma(\gamma - 1)\frac{\delta^2}{2}\right) - 1 - \gamma \overline{k} \right]$$
(7)

$$B(\tau) = \left\{ r - q + \lambda_0 \left[(1 + \overline{k})^{\gamma} \exp\left(\gamma(\gamma - 1)\frac{\delta^2}{2}\right) - 1 - \gamma \overline{k} \right] \right\} \tau$$
$$-\frac{\beta}{2} tr[\log C_{22}(\tau) - \tau (M' + R'Q)]$$
(8)

See Leippold/Trojani wp 2008

Estimation strategy

Introduction

Empirical evidence

Model

Third factor

Properties

State decomposition

Illustration

Illustration (2)

Option pricing

 \triangleright Estimation

Performance

Stochastic Coefficients

Conclusion

□ Sub-sample: 59 monthly observations (2000-2004) Challenging, avoid over-fitting

□ Cross-section only; risk-neutral pricing

□ Nested optimum

□ Max. likelihood like Bates(2000), correct for heteroskedasticity

Parameter estimate

$$\widehat{\theta} = \arg \max_{\theta} - \frac{1}{2} \sum_{t} \left(\ln |\Omega_t| + \mathbf{e}'_t \, \Omega_t^{-1} \, \mathbf{e}_t \right) \tag{9}$$

 $\mathbf{e}_t(\theta, X_t^*(\theta)) =$ relative pricing error, $\Omega_t =$ conditional cov. matrix of $e_{i,t}$

Implied state by NLS

$$X_t^*(\theta) = \arg\min_{\{X_t\}} \left(\widehat{C}_i(\theta, X_t) - C_i \right)^2$$
(10)

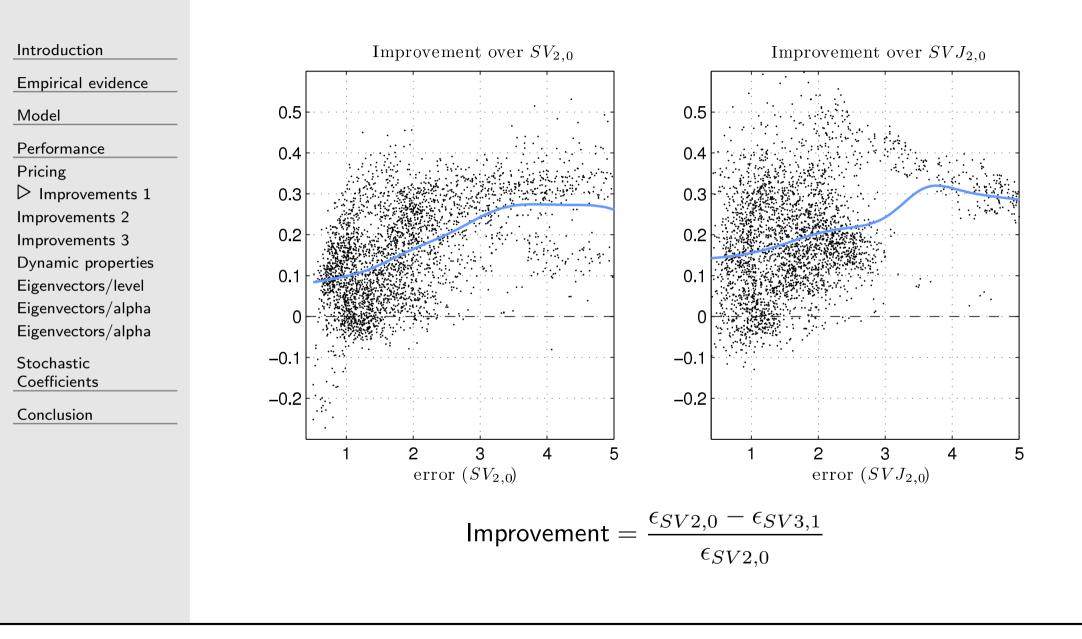
Introduction
Empirical evidence
Model
▷ Performance
Pricing
Improvements 1
Improvements 2
Improvements 3
Dynamic properties
Eigenvectors/level
Eigenvectors/alpha
Eigenvectors/alpha
Stochastic
Coefficients
Conclusion

Performance

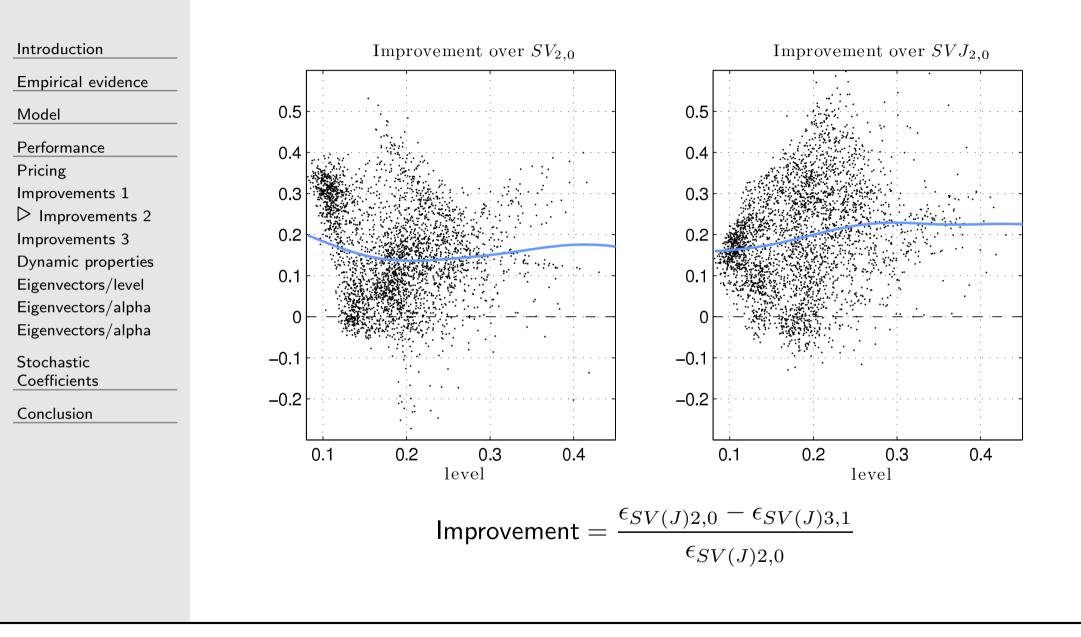
Pricing

Introduction Empirical evidence	In sample (2000-2004, monthly) $SV_{2,0}$ $SV_{3,0}$ $SV_{3,1}$ $SVJ_{2,0}$ $SVJ_{3,1}$								
ModelPerformance▷ PricingImprovements 1Improvements 2Improvements 3Dynamic propertiesEigenvectors/levelEigenvectors/alphaEigenvectors/alphaStochastic	State variables rms\$E (stdv) Within bid-ask	2 1.180 (0.370) 0.603	3 1.127 (0.348) 0.617	3 1.048 (0.285) 0.640	$ \begin{array}{c} 2 \\ 1.115 \\ (0.446) \\ 0.635 \end{array} $	3 0.913 (0.324) 0.633			
		Full sar $SV_{2,0}$	nple (199 $SV_{3,0}$	6-09/2008 $SV_{3,1}$) $SVJ_{2,0}$	$SVJ_{3,1}$			
<u>Coefficients</u> Conclusion	State variables rms\$E (stdv) rmsIVE Within bid-ask	2 1.937 (1.101) 2.69 0.437	3 2.057 (1.727) 2.61 0.461	3 1.570 (0.808) 2.60 0.540	2 1.862 (1.129) 3.18 0.452	3 1.457 (0.809) 2.36 0.527			

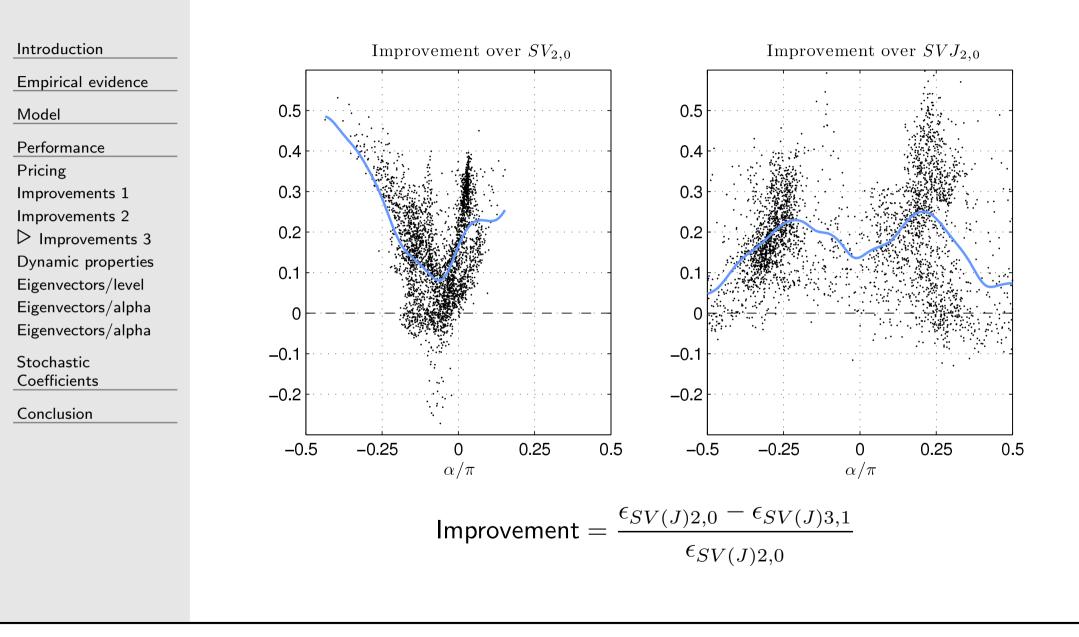
Improvements by pricing error of the 2-factor model



Improvements by volatility level



Improvements by model-implied α



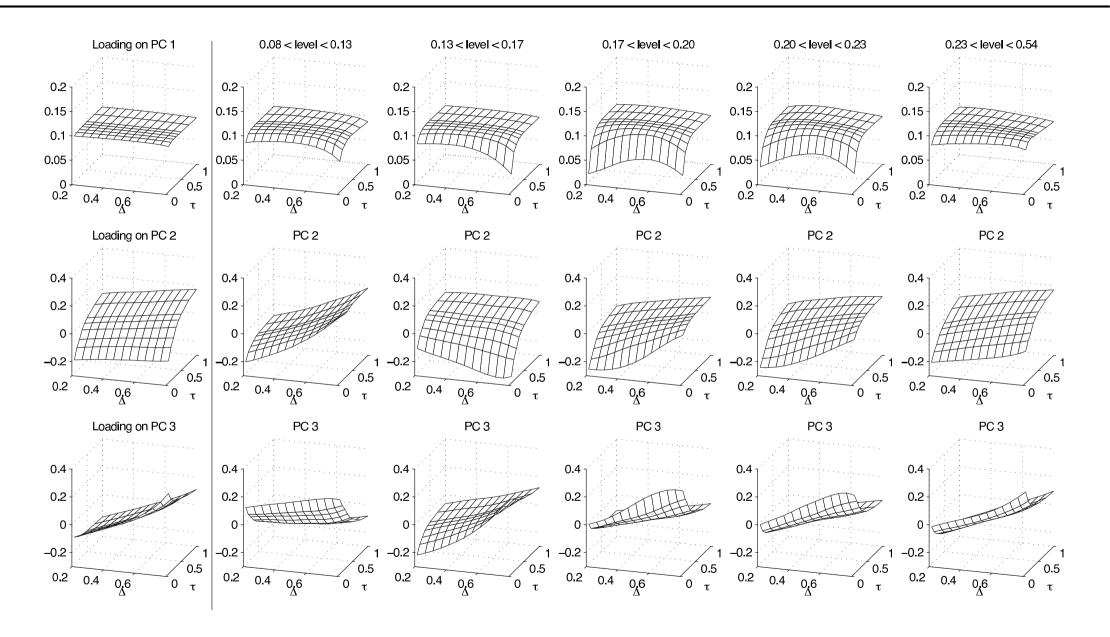
Dynamic properties

Introduction		l	PC 1	PC 2	PC 3	PC 4	
Empirical evidence	Unconditional	2	97.0	1.9	0.8	0.1	T = 3206
Model							
Performance							
Pricing							
Improvements 1							
Improvements 2							
Improvements 3 Dynamic							
\triangleright properties							
Eigenvectors/level							
Eigenvectors/alpha							
Eigenvectors/alpha							
Stochastic							
Coefficients							
Conclusion							

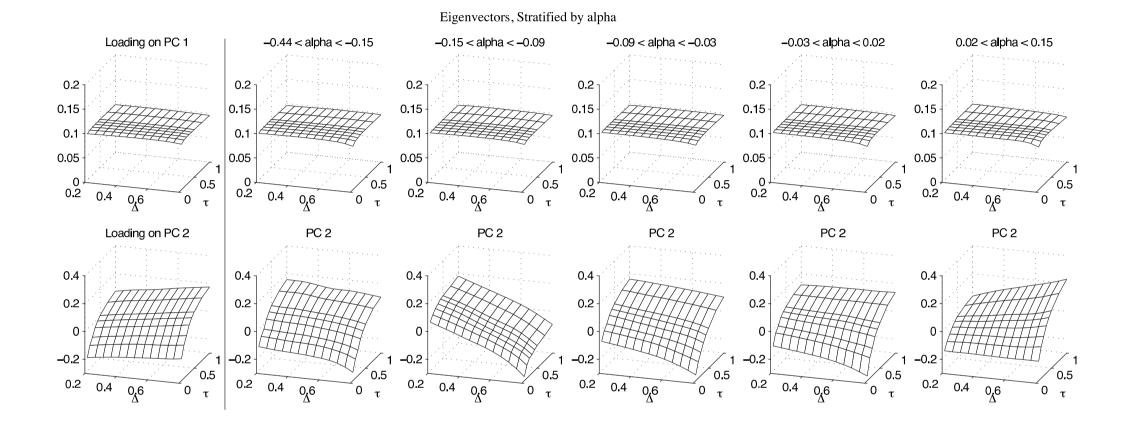
Dynamic properties

Introduction		l	PC 1	PC 2	PC 3	PC 4	
Empirical evidence	Unconditional	2	97.0	1.9	0.8	0.1	T = 3206
Model	$-0.44 < \alpha/\pi \le -0.15$	2	96.0	2.1	1.0	0.3	T = 641
Performance	$-0.15 < \alpha/\pi \le -0.09$	1	97.1	1.3	1.0	0.2	T = 641
Pricing Improvements 1	$-0.09 < \alpha/\pi \le -0.03$	1	97.1	1.7	0.7	0.2	T = 641
Improvements 2	$-0.03 < \alpha/\pi \le 0.02$	1	97.0	1.7	0.9	0.1	T = 641
Improvements 3 Dynamic ▷ properties	$0.02 < \alpha/\pi \le 0.15$	2	96.2	1.9	1.3	0.2	T = 641
Eigenvectors/level Eigenvectors/alpha	l = significant component		•	to mea	n eigenv	alue crit	erion.
Eigenvectors/alpha	$(N = 56, \text{ threshold} = \frac{1}{56})$	1.79	9%)				
Stochastic Coefficients							
Conclusion							

Eigenvectors/level



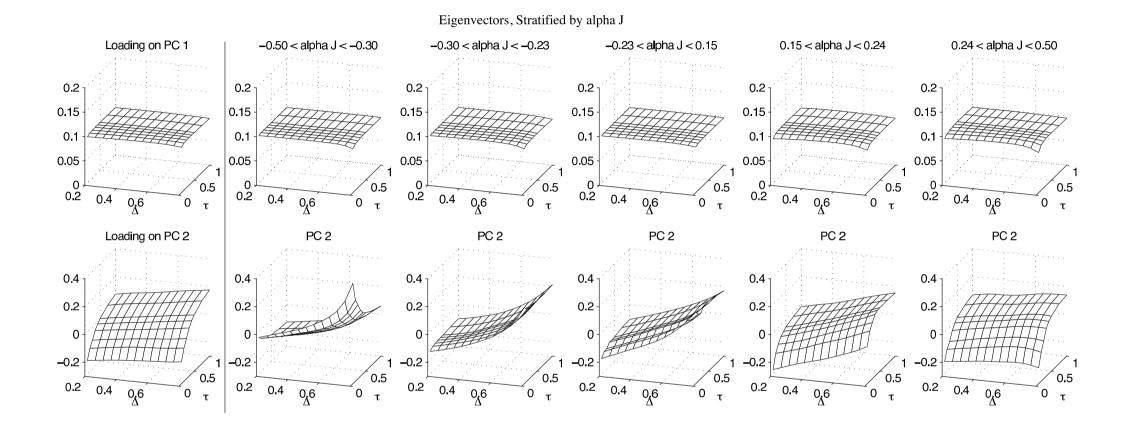
Eigenvectors/alpha ($SV_{3,1}$)



P. Gruber: Three make a dynamic smile

27 / 39

Eigenvectors/alpha (*SVJ*_{3,1})



Introduction

Empirical evidence

Model

Performance

Stochastic

 \triangleright Coefficients

Stochastic

Coefficients

Regime shift

Conclusion

Stochastic Coefficient Interpretation

Stochastic Coefficients

Interpret eigenvalues of X_t as two volatility factors:

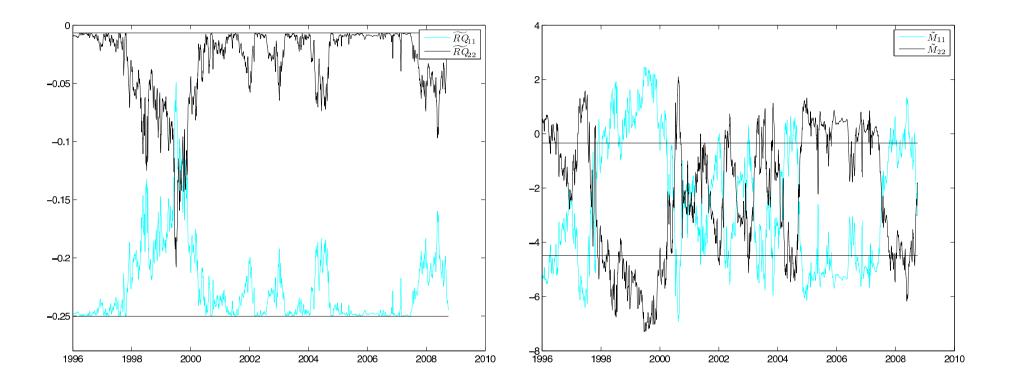
$$d\mathcal{V}_{1t} = \left(\beta (\tilde{Q}_t'\tilde{Q}_t)^{11} + 2(\tilde{M}_t)^{11}\mathcal{V}_{1t} + \frac{\mathcal{V}_{1t}(\tilde{Q}_t'\tilde{Q}_t)^{22} + \mathcal{V}_{2t}(\tilde{Q}_t'\tilde{Q}_t)^{11}}{\mathcal{V}_{1t} - \mathcal{V}_{2t}}\right)dt + 2\sqrt{\mathcal{V}_{1t}(\tilde{Q}_t'\tilde{Q}_t)^{11}}d\nu_{1t}$$
$$d\mathcal{V}_{2t} = \left(\beta (\tilde{Q}_t'\tilde{Q}_t)^{22} + 2(\tilde{M}_t)^{22}\mathcal{V}_{2t} - \frac{\mathcal{V}_{1t}(\tilde{Q}_t'\tilde{Q}_t)^{22} + \mathcal{V}_{2t}(\tilde{Q}_t'\tilde{Q}_t)^{11}}{\mathcal{V}_{1t} - \mathcal{V}_{2t}}\right)dt + 2\sqrt{\mathcal{V}_{2t}(\tilde{Q}_t'\tilde{Q}_t)^{22}}d\nu_{2t}$$

 $(
u_1,
u_2)'$ standard Brownian motion in \mathbb{R}^2

$$\tilde{M}_t = \mathcal{O}'_t M \mathcal{O}_t$$
 and $\tilde{Q}_t = \mathcal{O}'_t Q \mathcal{O}_t$.

$$\mathcal{O}_t = \begin{pmatrix} \cos(\alpha_t) & -\sin(\alpha_t) \\ \sin(\alpha_t) & \cos(\alpha_t) \end{pmatrix}$$

Continuous regime shift



Factors V_{1t} and V_{2t} cannot cross (Wishart property), **but** mean-reversion and vol-of vol *can*

Introd	uction
muou	uction

Empirical evidence

Model

Performance

Stochastic

Coefficients

 \triangleright Conclusion

Conclusion

Conclusion

Empirical evidence

Model

Performance

Stochastic

Coefficients

Conclusion

- $\hfill\square$ Identified interacting + unspanned components in the volatility surface of S&P 500 index options.
- □ Matrix jump diffusion is a convenient framework for modeling interacting + unspanned factors.
- □ Estimated full matrix jump-diffusion model and nested models

\Box Find:

- Three factors are indeed needed
- Better in and out-of sample fit
- Third factor should be interaction factor (α)
- Largest improvements where 2 factor models are weak and $\alpha \neq 0$
- \Box Appropriate conditioning provides evidence for a conditional two-factor structure \longrightarrow stochastic coefficient model.

Future

□ Use insights for more parsimonious models
 □ Apply to other fields of finance + economics

Introd	uction
muou	uction

Empirical evidence

Model

Performance

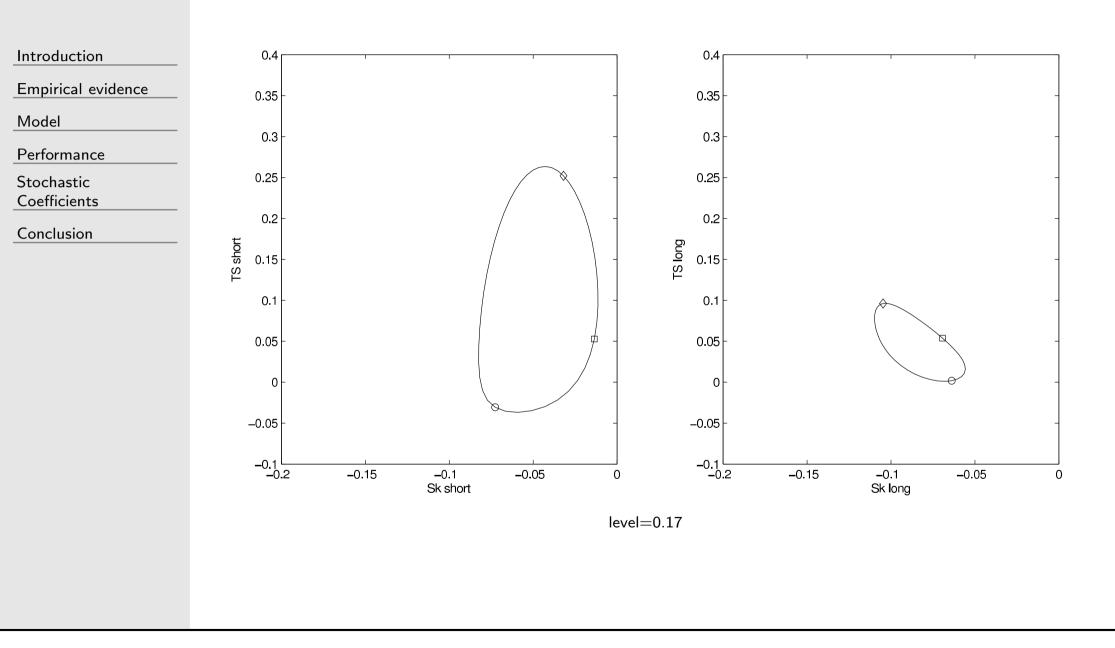
Stochastic

Coefficients

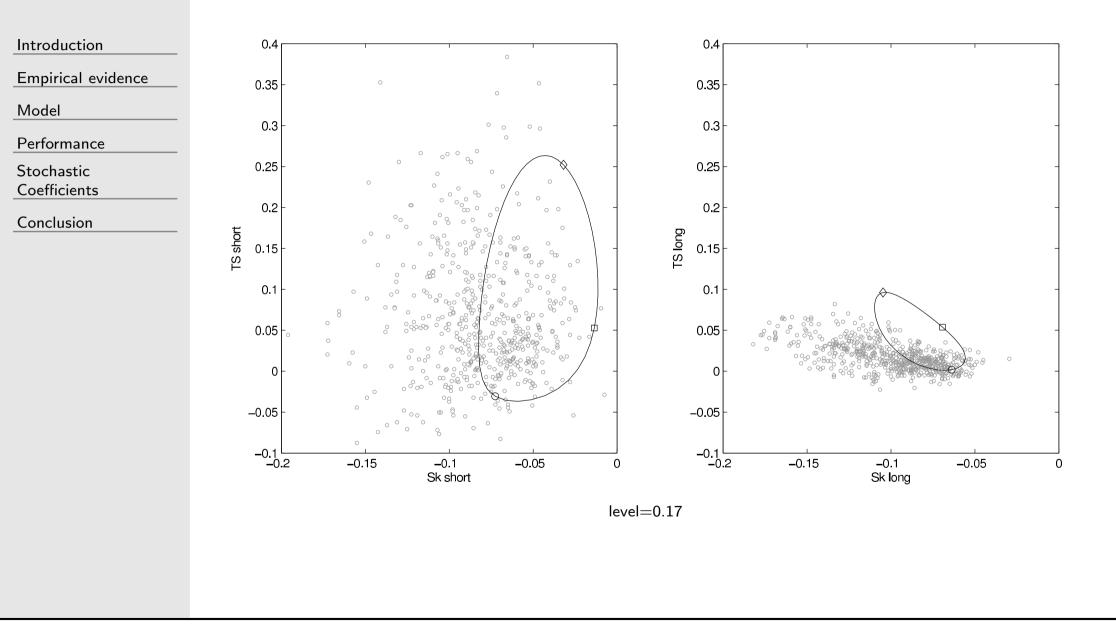
Conclusion

Spare slides

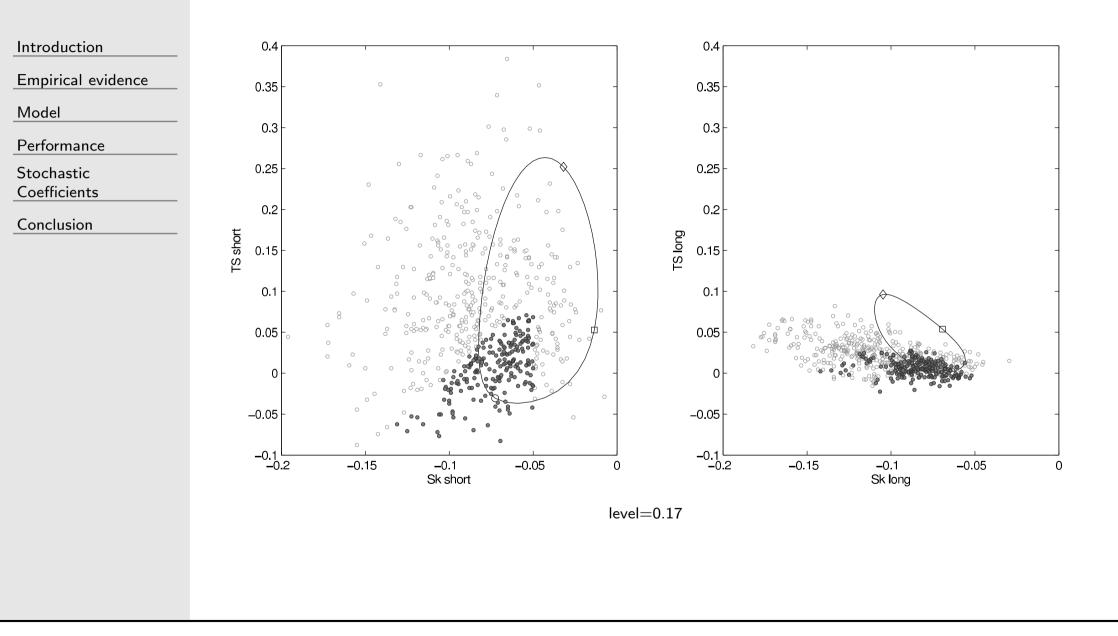
Short and long term expansion



Short and long term expansion



Short and long term expansion



Numerical aspects

Introduction	Nested optimization: very heavy computation
Empirical evidence Model Performance	 Major load: calculating the Laplace transform (not performing the Fourier inversion)
Stochastic Coefficients	Matrix logarithm – use matrix rotation count algorithm
Conclusion	Improve speed
	Optimized MATLAB code on a MATLAB cluster (32 cores)
	\Box Genetic optimization permits parallelizing parameter estimation
	\Box Cos-FFT (250 instead of 4096 evaluations of Laplace transform)
	 Separate evaluation of state-dependent and maturity-dependent parts of Laplace transform
	 Select a sample with few distinct maturities (monthly data, all Wednesdays)
	\Box Estimation still takes 1 week

Jumps

Introduction

Empirical evidence

Model

Performance

Stochastic Coefficients

Conclusion

□ Jump size like Bates: iid jumps

$$\ln(1+k) \sim N(\ln(1+\bar{k}) - \frac{\delta^2}{2}, \, \delta^2)$$

 $\hfill\square$ Jump intensity: extend Bates to matrix case

 $\lambda_{t} = \lambda_{0} + \Lambda_{11}X_{11} + \Lambda_{12}X_{12} + \Lambda_{22}X_{22} = \lambda_{0} + tr[\Lambda X_{t}]$

 $\Box \ \mbox{Identification} \rightarrow \Lambda \ \mbox{upper triangular}$

□ Ensure positive jump intensity:

 $\Lambda_{11} > 0$ $\Lambda_{22} > 0$ $|\Lambda_{12}| < 2\sqrt{\Lambda_{11}\Lambda_{22}}$

□ Unspanned jump intensity component