Option pricing by Recursive Projection

Antonio Cosma¹, Stefano Galluccio² and Olivier Scaillet ³

 1 Université du Luxembourg . 2 BNP Paribas, London 3 HEC Genève and Swiss Finance Institute, Genève, Suisse

> 6th World Congress of the Bachelier Finance Society, Toronto, June 22-26, 2010

Getting Started

- \triangleright Goal of our project: build precise and fast algorithms to price a large class of complex derivatives;
- \triangleright Type of complexity: the value of the asset depends on events that take place in successive moments in time;
- \triangleright Example: Bermudan options, discrete dividends for American options (increasing the number of potential exercise dates)
- \triangleright Allow pricing of contingent claims written on bundles of several assets, or that depend on several variables, e.g. price and volatility for stochastic volatility models:
	- **>** Jump-diffusion;
	- \blacktriangleright Levy processes.

Goals

- \blacktriangleright Definition of the problem;
- \blacktriangleright Intuition underlying the recursive projection;
- \triangleright Application of recursive projection to option pricing;
- \triangleright Application to Bermudan options;
- \triangleright Application to discrete dividends.

Example: 2 Steps

x : value of the underlying, $H(x, t)$: payoff function, $V(x, t)$: value function

How much?

- \blacktriangleright How much are we willing to pay for this contract?
- \triangleright In the European case, the price of the option is the (risk neutral) expectation of the future cash flow:

$$
V(x,t) = \mathbb{E}^Q \left\{ e^{-r(T-t)} H(y) \middle| \mathcal{F}_t \right\}
$$

=
$$
\int_{-\infty}^{\infty} G(t, T; x, y) H(y) dy,
$$

y : value of the underlying at T,

H(*y*) : payoff of the option at T.

 \triangleright We have to make some assumptions on how the underlying asset evolves.

Pricing as a linear operator

 \triangleright Consider a Riemann sum equivalent of the integral

$$
V(x,t)=\int H(y,T)G(t,T;x,y)dy\sim \sum_{j=1}^{N-1}H(\xi_j,T)G(t,T;x,\xi_j)\Delta y;
$$

! Project the payoff function on an orthogonal basis *ei*:

$$
\int_{-\infty}^{\infty} G(T-t; x-y) \sum_{i} a_i(T) e_i(y) dy =
$$

=
$$
\sum_{i} G(x, T-t)_{i} a_i(T).
$$

We substituted again an integral with a summation.

 \triangleright Sampling of functions can be seen as a form of functional projection, in our case on a localized base.

Integrals and projections

! We can compute the *price* of the option, or the *value* of the option as function of $x = \ln(S_t)$:

$$
a(t)_{[1\times 1]}=G_x(T-t)_{[1\times n]} \cdot A(T)_{[n\times 1]},
$$

we disentangled the time and the space component of the problem.

! For *m* different values of *x*, we obtain a transition matrix:

$$
A(t)_{[m\times 1]} = G(X, T-t)_{[m\times n]} \cdot A(T)_{[n\times 1]},
$$

X : vector (x_1, \ldots, x_m) of *conditioning* values of the transition density.

Heston model

 \blacktriangleright What if

$$
\int_{-\infty}^{\infty} \widetilde{G}(t, T; x, y) H(y) dy = \sum_{i} a_{i}(T) \int_{-\infty}^{\infty} \widetilde{G}(t, T; x, y) e_{i}(y) dy =
$$

$$
\sum_{i} \frac{a_{i}(T)}{2\pi} \int_{-\infty}^{\infty} \widetilde{e}^{-iky} e_{i}(y) dy \int_{-\infty}^{\infty} \widehat{G}(t, T; x, k) dk =
$$

$$
\sum_{i} \frac{a_{i}(T)}{2\pi} \int_{-\infty}^{\infty} \widehat{G}(t, T; x, k) \widehat{e}_{i}(-k) dk.
$$

- \triangleright Choosing the appropriate (flexible) basis function makes the inner product easy enough; for instance, using a numerical routine.
- \triangleright So that again

$$
A(t)_{[m\times 1]} = G(X, T-t)_{[m\times n]} \cdot A(T)_{[n\times 1]},
$$

Bermudan Options

- \triangleright Bermudan options are options that can be exercised at usually equally spaced - fixed times before maturity $\{t_1, t_2, \ldots, t_i, t_{i+1}, \ldots, t_n\}$;
- \blacktriangleright Example : swaptions.
- \triangleright Even for very simple dynamics of the underlying asset, like B&S, PDE's (let's keep it simple: a tree) have to be used, and intrinsic and time values have to be compared at every exercice date.
- \triangleright Still, the dynamics between exercice dates is always the same, can we take advantage of this translational invariancy?

Bermudan Options

 \blacktriangleright The matrix form of the linear operator:

$$
A(t) = G(X, T - t) \cdot A(T),
$$

- \blacktriangleright *A(T)* and *A(t)* allow us to build the shape of the value function, and there are no constraints on these coefficients.
- \triangleright Any kind of function can be send back in time.
- \triangleright At each t_n continuation value $a_i(t)$ and intrinsic value $h_i(x, t_n) = (X_i - K)_+$ are compared.
- ► As long as $T t$ is constant, the matrix $G(T t)$ is fixed.

Intermediate Cash Flows

 $\delta(x)$ can be whatever function.

Bermudan Put, Heston model

 \blacktriangleright Using the notation

$$
dX = \left(r - \frac{1}{2}v(t)\right)dt + \sqrt{v(t)} \cdot dW_1
$$

$$
dv(t) = \left(a - bv(t)\right)dt + \alpha \sqrt{v(t)} \cdot dW_2.
$$

\blacktriangleright Parameters of the simulation

Bermudan Put, Heston model

Value function sampled at n = 2^J *points* Space discretization parameter $m_s = 400$,

time discretization parameter LT

Dividends

American Call with dividend, BS model

 $S_0 = 100, K = 100, \sigma = 0.2, r = 0, T = 3, \tau_1 = 1, \tau_2 = 2, d = 2$

Recursive Projection

Binomial Tree

Price	sec	N	Price	sec
12.144284	0.001	<i>200</i>	12.095077	0.2
12.121988	0.002	<i>500</i>	12.115218	3
12.120374	0.007	<i>1000</i>	12.116011	44
12.120875	0.03	2000	12.119153	687
12.1205		True (10000)	12.1205	$(> 6 \text{ days})$
errors (bp)			errors (bp)	
20		<i>200</i>	21	
		500	4	
0.1		<i>1000</i>	4	
0.3		<i>2000</i>		

Price with constant dividend yield *y* = 0.02 : 12.075062 (∼ 40*bp*)

American Call with dividend, BS model

 $S_0 = 100, K = 100, \sigma = 0.2, r = 0, T = 3, \tau_1 = 1, \tau_2 = 2, d = 2$

Price with constant dividend yield *y* = 0.02 : 12.075062 (∼ 40*bp*)

American Call with dividend, BS model

 $S_0 = 100, K = 100, \sigma = 0.2, r = 0, T = 3, \tau_1 = 1, \tau_2 = 2, d = 2$

Recursive Projection

Binomial Tree

Price	sec	N	Price	sec
12.144284	0.001	<i>200</i>	12.095077	0.2
12.121988	0.002	<i>500</i>	12.115218	3
12.120374	0.007	1000	12.116011	44
12.120875	0.03	2000	12.119153	687
12.1205		True (10000)	12.1205	$(> 6 \text{ days})$
errors (bp)		errors (bp)		
20		<i>200</i>	21	
		500	4	
0.1		1000	4	
0.3		2000		

Price with constant dividend yield *y* = 0.02 : 12.075062 (∼ 40*bp*)

Conclusions + Todos

- ! *Why does it work?*
	- \blacktriangleright Functional transforms are obtained by simple sampling of the relevant functions
	- ! Only variables *actually* appearing in the payoff contribute to the dimensionality of the problem
- \triangleright Other forms of functional projection (faster convergence)
- \blacktriangleright Reduction of dimensionality: projections matrices are sparse, nonzero coefficients are all around the strike. Reduces computation in high dimension
- \blacktriangleright Happy of what we have seen so far: simple algorithms, fast and accurate implementation

Theoretical Background

- ▶ Garman, M. B., (1985) : "Towards a semingroup Pricing Theory", Journal of Finance
- ▶ Chiarella, C., El-Hassan, N. and A. Kucera (1999) : "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions", Journal of Economic Dynamics and Control
- ▶ Darolles, S. and J.-P. Laurent (2000): "Approximating payoffs and pricing formulas", Journal of Economic Dynamics and Control
- ▶ Duffie, D., Pan J. and K. Singleton (2000): "Transform analysis and asset pricing for affine jump-diffusions", Econometrica
- ▶ Andricopoulos, A., Widdicks, M., Duck, P. and D. Newton (2003): "Universal option pricing using quadrature", Journal of Financial Economics (extension to a multi asset framework in 2007)
- ▶ Hansen, L. P. and J. A. Scheinkman (2009) : "Long-term risk: an operator approach", Econometrica

Bermudan Put, Heston model

