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Getting Started

! Goal of our project: build precise and fast algorithms to
price a large class of complex derivatives;

! Type of complexity: the value of the asset depends on
events that take place in successive moments in time;

! Example: Bermudan options, discrete dividends for
American options (increasing the number of potential
exercise dates)

! Allow pricing of contingent claims written on bundles of
several assets, or that depend on several variables, e.g.
price and volatility for stochastic volatility models:

! Jump-diffusion;
! Levy processes.



Goals

! Definition of the problem;

! Intuition underlying the recursive projection;

! Application of recursive projection to option pricing;

! Application to Bermudan options;

! Application to discrete dividends.



Example: 2 Steps

t1 t2 t3

x y

Xi

F(y|xi)

V (s, t1) ←− V (X , t2) ←− H(Y , t3)

x : value of the underlying, H(x , t): payoff function, V (x , t): value function



How much?

! How much are we willing to pay for this contract?
! In the European case, the price of the option is the (risk

neutral) expectation of the future cash flow:

V (x , t) = EQ
{

e−r(T−t)H(y)
∣∣∣Ft

}

=

∫ ∞

−∞
G(t ,T ; x , y)H(y) dy ,

y : value of the underlying at T,

H(y) : payoff of the option at T.

! We have to make some assumptions on how the
underlying asset evolves.



Pricing as a linear operator

! Consider a Riemann sum equivalent of the integral

V (x , t) =
∫

H(y ,T )G(t ,T ; x , y)dy ∼
N−1∑

j=1

H(ξj ,T )G(t ,T ; x , ξj)∆y ;

! Project the payoff function on an orthogonal basis ei :
∫ ∞

−∞
G(T − t ; x − y)

∑

i

ai(T )ei(y) dy =

=
∑

i

G(x ,T − t)i ai(T ).

We substituted again an integral with a summation.
! Sampling of functions can be seen as a form of functional

projection, in our case on a localized base.



Integrals and projections

! We can compute the price of the option, or the value of the
option as function of x = ln(St):

a(t)[1×1] = Gx(T − t)[1×n] · A(T )[n×1],

we disentangled the time and the space component of the
problem.

! For m different values of x , we obtain a transition matrix:

A(t)[m×1] = G(X ,T − t)[m×n] · A(T )[n×1],

X : vector (x1, . . . , xm) of conditioning values of the transition
density.



Heston model
! What if

∫ ∞

−∞
G(t ,T ; x , y)H(y) dy =

∑

i

ai(T )

∫ ∞

−∞
G(t ,T ; x , y)ei(y) dy =

∑

i

ai(T )

2π

∫ ∞

−∞
e−ikyei(y) dy

∫ ∞

−∞
Ĝ(t ,T ; x , k)dk =

∑

i

ai(T )

2π

∫ ∞

−∞
Ĝ(t ,T ; x , k)êi(−k)dk .

! Choosing the appropriate (flexible) basis function makes
the inner product easy enough; for instance, using a
numerical routine.

! So that again

A(t)[m×1] = G(X ,T − t)[m×n] · A(T )[n×1],



Bermudan Options

! Bermudan options are options that can be exercised at -
usually equally spaced - fixed times before maturity
{t1, t2, . . . , ti , ti+1, . . . , tn};

! Example : swaptions.
! Even for very simple dynamics of the underlying asset, like

B&S, PDE’s (let’s keep it simple: a tree) have to be used,
and intrinsic and time values have to be compared at every
exercice date.

! Still, the dynamics between exercice dates is always the
same, can we take advantage of this translational
invariancy?



Bermudan Options

! The matrix form of the linear operator:

A(t) = G(X ,T − t) · A(T ),

! A(T ) and A(t) allow us to build the shape of the value
function, and there are no constraints on these coefficients.

! Any kind of function can be send back in time.
! At each tn continuation value ai(t) and intrinsic value

hi(x , tn) = (Xi − K )+ are compared.
! As long as T − t is constant, the matrix G(T − t) is fixed.



Intermediate Cash Flows

t1 t2 t3

x y

Xi

F(y|xi)Xi - !

V (S, t1) ←− max
(
(X − K )+,G(X − δ(x), t3 − t2)A(t3)

)
︸ ︷︷ ︸

A(t2)

←− H(Y , t3)

δ(x) can be whatever function.



Bermudan Put, Heston model

! Using the notation

dX =
(

r − 1
2

v(t)
)

dt +
√

v(t) · dW1

dv(t) =
(
a − bv(t)

)
dt + α

√
v(t) · dW2.

! Parameters of the simulation
K 100 r 0
v0 0.04 T 10 (τ =1)
ρ (= 〈dW1, dW2〉 ) 0.0 α 0.2
b 2 a 0.08



Bermudan Put, Heston model
Recursive projection

St 80 100 120

J Prices sec

8 33.601 24.761 18.337 0.2
9 33.600 24.759 18.334 0.8

10 33.600 24.758 18.333 2.0

True 33.608 24.760 18.341

errors (bp)

8 2 0 2
9 2 0 4

10 2 1 4

Finite-Difference (FD)

St 80.143 100 120.893

LT Prices sec

20 33.529 24.731 18.092 13
50 33.529 24.751 18.091 30

100 33.529 24.751 18.090 60
200 33.529 24.751 18.090 121

True 33.535 24.760 18.100

errors (bp)

20 2 12 5
50 2 4 5

100 2 4 5
200 2 4 5

Value function sampled at n = 2J points Space discretization parameter ms = 400,
time discretization parameter LT



Dividends

Recombining tree :

# knots = N(N+1)
2

Non Recombining:

∼ N/2 N/2(N/2+1)
2

t0 τ T

V (S, t0) ←− max
(
(X − K )+,G(X − D,T − τ)A(T )

)
︸ ︷︷ ︸

A(τ)

←− H(Y ,T )



American Call with dividend, BS model
S0 = 100,K = 100,σ = 0.2, r = 0,T = 3, τ1 = 1, τ2 = 2, d = 2

Recursive Projection

J Price sec

6 12.144284 0.001
7 12.121988 0.002
8 12.120374 0.007
9 12.120875 0.03

True 12.1205

errors (bp)

6 20
7 1
8 0.1
9 0.3

Binomial Tree

N Price sec

200 12.095077 0.2
500 12.115218 3

1000 12.116011 44
2000 12.119153 687

True (10000) 12.1205 (>6 days)

errors (bp)

200 21
500 4

1000 4
2000 1

Price with constant dividend yield y = 0.02 : 12.075062 (∼ 40bp)
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Price with constant dividend yield y = 0.02 : 12.075062 (∼ 40bp)
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American Call with dividend, BS model
S0 = 100,K = 100,σ = 0.2, r = 0,T = 3, τ1 = 1, τ2 = 2, d = 2

Recursive Projection

J Price sec

6 12.144284 0.001
7 12.121988 0.002
8 12.120374 0.007
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errors (bp)
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7 1
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Binomial Tree

N Price sec

200 12.095077 0.2
500 12.115218 3

1000 12.116011 44
2000 12.119153 687

True (10000) 12.1205 (>6 days)

errors (bp)

200 21
500 4

1000 4
2000 1

Price with constant dividend yield y = 0.02 : 12.075062 (∼ 40bp)
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Conclusions + Todos

! Why does it work?
! Functional transforms are obtained by simple sampling of

the relevant functions
! Only variables actually appearing in the payoff contribute to

the dimensionality of the problem

! Other forms of functional projection (faster convergence)
! Reduction of dimensionality: projections matrices are

sparse, nonzero coefficients are all around the strike.
Reduces computation in high dimension

! Happy of what we have seen so far: simple algorithms, fast
and accurate implementation
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Bermudan Put, Heston model

Finite Difference (ADI)
St 100

Nb. Spatial Steps Prices time (sec)

200 24.725 4
300 24.744 12
400 24.751 30
800 24.758 486

True Price 24.760

200 14
300 6
400 4
800 1


