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Setting the problem

I Hedging a contingent claim H with maturity T with a
strategy ϑtk , k = 0, . . . ,N − 1 in a risky asset S .

I Start from a value c to hedge the payoff H. The hedging error
of the strategy is

ε(ϑ, c) = H − c/P(0,T )−
N∑

k=1

ϑtk ∆S̄tk .

I The goal is to compute mean and variance of ε(ϑ, c) for given
H, c , ϑ

Example

Literature
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General Setting

I Let (Ω,F , (Ft)0≤t<∞,P) be a probability space. X = (Xt) is
a time-homogeneous affine process with state space D ⊂ Rd

I y = ln(S) is one component of X .
I Other possible components of X

I ... stochastic volatility
I ... stochastic interest rate
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Affine Processes

I A time - homogeneous Markov process X is affine if

Et [exp (u · XT )] = exp (α(u, t,T ) + β(u, t,T ) · Xt)

where α(u, t,T ), β(u, t,T ) satisfy a set of Riccati equations
and are analytic on a domain U ⊂ Cd , for t ∈ [0,T ]

I SV model: X = (y , v), u = (u1, u2) and β = (u1, β2) (
Heston)

I Levy: X = (y), β = u. ( BS and ...)

I SIR model: X = (r), β solves Riccati ( Vasicek, CIR)

I SV + SIR: X = (y , v , r)

I Technical Conditions
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Integral representation of payoffs

I Write the payoff of a contingent claim written on S , maturity
T , as

H =

∫ R+i∞

R−i∞
ezyT p(z)dz

where y = ln(S)

I

H = (ST − K )+ =
1

2πi

∫ R+i∞

R−i∞
ezyT

K 1−z

z(z − 1)
dz

European call if R > 1, put if R < 0
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Hedging Strategies

I If Q is a pricing measure, Pt the price at time t of a
contingent claim is

Pt = EQ
t [H]

(assume here r = 0 deterministic)
I If the payoff H has an integral representation

Pt = EQ
t [

∫ R+i∞

R−i∞
ezyT p(z)dz ]

I Using Fubini

Pt =

∫ R+i∞

R−i∞
EQ

t [ez1y ·XT ]p(z)dz

=

∫ R+i∞

R−i∞
exp

(
ᾱ(z1y , t,T ) + β̄(z1y , t,T ) · Xt

)
p(z)dz
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Hedging Strategies in SV

I Consider hedging strategy ϑ of the form

ϑtk =

∫ R+i∞

R−i∞
ϑtk (z)p(z)dz ,

with

ϑtk (z) = exp (A(z , tk) + B1(z , tk)ytk + B2(z , tk)vtk )
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Examples for Heston Model

I Model Delta ∆H
t : A = ln(z) + ᾱ(z1y , t,T ), B1 = z − 1

B2 = β̄2(z1y , t,T ) Why?

I Continuous Time Local Optimal Strategy

Θ∗t = ∆H
t +

ρσ

St
VH

t

A = ln(z + ρσβ2(z1y , t,T )) + α(z1y , t,T ), B1 = z − 1
B2 = β2(z1y , t,T )

I BS Delta, with constant volatility σ
A = ln(z) + ᾱbs(z1y , t,T ), B1 = z − 1, B2 = 0

I BS Delta, with volatility σt

σ2
t =

1

T − t
Et

∫ T

t
vsds

A = ln(z) + something , B1 = z − 1, B2

Stefano Herzel Dynamic Strategies in Affine Models
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Hedging error

I The hedging error of such a strategy for a claim w.i.r. can be
written as

ε(ϑ, c) = H − c −
N∑

k=1

ϑtk ∆Sk =

=

∫ R+i∞

R−i∞

(
ezyT −

N∑
k=1

ϑtk (z)∆Sk

)
p(z)dz − c

I Under technical conditions, can use Fubini
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Expected value of hedging error

I

E [ezyT ] = φ(z1y ,X0, 0,T )

I

E [ϑtk (z)∆Sk ] = eAE
[
e(z−1)ytk−1

+B2vtk−1 (eytk − eytk−1 )
]

= eA (φ2((z − 1,B2), (1, 0),X0, 0, tk−1, tk)−
φ2((z ,B2),X0, 0, tk−1))

k = 1, . . . ,N
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Main results

I Semi-explicit formulas for expected value and variance of
hedging error, for any number of trading dates, for any claim
w.i.r. and any hedging strategy of the described form in affine
models

I

E [ε(ϑ, 0)] =

∫ R+i∞

R−i∞
e(z)p(z)dz

E [ε(ϑ, 0)2] =

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞
V (y , z)p(y)p(z)dydz ,
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Heston model

dyt = (µ− 1

2
vt)dt +

√
vtdW 1

t

dvt = κ(θ − vt)dt + σ
√

vtdW 2
t

with d < W 1
t ,W

2
t >= ρdt

v0 = 0.05, µ = 0, θ = 0.05, κ = 3, σ = 0.5
y0 = log(S0) = log(100).
Feller condition 2κθ > σ2 does not hold!
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Heston model

I European ATM call options with maturity T = 0.5

I model Delta (delta),

I Black-Scholes Delta with expected volatility (deltabsev),

I variance-optimal in continuous time (θ?),

I local optimal (beta).
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Hedge ratios as functions of ρ

Back to Intro
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Moments in Heston model

M(T ) =
{

(u1, u2) ∈ R2 | E
[
eu1yT +u2vT

]
<∞

}
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M(1) and ρ
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Variances of hedging strategies as functions of ρ
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Sensitiveness of variance as functions of ρ
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Sensitiveness of variance as functions of ρ
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Variances as functions of the number of hedging intervals
N
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Conclusions

I An efficient way to compute moments of hedging errors of
different type of strategies for claims w.i.r. and for a wide
class of models

I A measure for the performances of hedging strategies in
different settings, for instance under model mispecification

I In the paper: Proofs, formulas, CIR, comparisons to Monte
Carlo...

I F. Angelini, S. Herzel, Evaluating Discrete Dynamic Strategies
in Affine Models

I stefano.herzel@uniroma2.it
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Technical Conditions

I

21y ∈ U ∩ Rd ⇒ S̄t ∈ L2(P)

DFS (2003)

I

2R1y ∈ U ∩ Rd

⇒ E
[
e2RyT

]
<∞

⇒ H ∈ L2(P)

Back
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Previous results

I Hubalek, Kallsen and Krawczyk (2006), compute optimal
variance in Levy case, discrete and continuous time

I Cerny, Kallsen (2008), Kalssen, Pauwels (2009) and Kallsen,
Vierthauer (2009) compute optimal variance in SV models
(Heston) in continuous time

I Angelini, Herzel (2009) compute variance for sub-optimal
strategies in Levy processes in discrete time

I Kalssen et al. (2009) compute variance for sub-optimal
strategies in Levy processes in continuous time
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Delta

I The price at time t

Pt =

∫ R+i∞

R−i∞
exp

(
ᾱ(z1y , t,T ) + β̄(z1y , t,T ) · Xt

)
p(z)dz

SV model β̄(z1y , t,T ) = (z , β̄2(z1y , t,T ))

I The Delta at time t

∆t =

∫ R+i∞

R−i∞
ze−yt exp

(
ᾱ(z1y , t,T ) + β̄(z1y , t,T ) · Xt

)
p(z)dz

=

∫ R+i∞

R−i∞
z exp

(
ᾱ(z1y , t,T ) + (β̄(z1y , t,T )− 1y ) · Xt

)
p(z)dz
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