Calibrating Financial Models Using Consistent Bayesian Estimators

Christoph Reisinger Joint work with Alok Gupta

June 25, 2010

1

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Example – model uncertainty

 \triangleright A local volatility model, jump diffusion model, and (Heston) stochastic volatility model calibrated to 60 observed European calls for different strike/maturity pairs within 3 basis points.

 \blacktriangleright The value of an up-and-out barrier call with strike 90% and barrier 110% of the spot varies by 177 basis points.

 299

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

Example – parameter uncertainty

 \blacktriangleright Three different local volatility models calibrated to 60 observed European calls for different strike/maturity pairs within 3 basis points. See also Hamida and Cont (2005).

 \blacktriangleright The value of an up-and-out barrier call with strike 90% and barrier 110% of the spot varies by 26 b[asi](#page-1-0)[s p](#page-3-0)[o](#page-1-0)[in](#page-2-0)[t](#page-3-0)[s.](#page-0-0)

Model choice:

- Assume a model θ ;
- **In** model value of a derivative $V(\theta)$.

Calibration:

Find θ^* s.t. $V(\theta^*) = V^*$ the market price of liquid contracts.

Pricing and hedging:

 \triangleright Solve a pricing equation for a new (exotic) derivative,

$$
A(\theta^*)\widehat{V}(\theta^*)=0;
$$

► hedge with sensitivities derived from $\widehat{V}(\theta^*)$.

K ロ > K @ > K 할 > K 할 > (할) > 9 Q @

Remidies for this model ambiguity.

\blacktriangleright Regularisation:

market fit $(\theta)\ +\ {\sf regularity\ measure}(\theta)\ \longrightarrow\ \min_\theta$

\triangleright Worst-case replication approach:

sup θ $A(\theta)V(\theta) = 0$, s.t. $V(\theta) = V^*$ for calibration products

- \blacktriangleright Bayesian framework:
	- **P** prior information encapsulated in $p(\theta)$
	- ► likelihood of market prices $p(V^* | \theta)$
	- ► posterior distribution $p(\theta|V^*)$

KORK@RKERKER E 1990

- \triangleright Model ambiguity and over-parametrisation lead to uncertainty in the pricing model and the need to quantify and risk-manage the resulting risk.
- \triangleright A Bayesian perspective seems well-suited to these objectives.
- It combines prior and historical information ('regularisation') with currently observed prices ('calibration').
- \triangleright Consistency guarantees that parameter estimates are not led astray by prior assumptions.

KO K K @ K K W B K W B W DA C

- \triangleright Calibration problems in financial engineering and their ill-posedness
- \triangleright Bayesian approach to the calibration problem
- \blacktriangleright Consistency of Bayesian estimators
- \blacktriangleright Practical construction of posteriors and examples
- \blacktriangleright Related work: measuring model uncertainty, robust hedging
- \triangleright Conclusions

イロト イ部 トイミト イミト ニヨー りんぺ

Assume price process $S = (S_t)_{t>0}$ s.t. (by abuse of notation)

$$
S_t = S(t, (Z_u)_{0 \le u \le t}, \theta)
$$

- a function of
	- \blacktriangleright time t.
	- **►** some 'standard' process $Z = (Z_t)_{t>0}$, and
	- **•** parameter(s) $\theta \in \Theta$.
- Assume henceforth that θ is a finite dimensional vector: $\Theta \subseteq \mathbb{R}^M$.
- \triangleright We are specifically interested in applications where this parameter is the discretisation of a functional parameter, for example representing a local volatility function.

K ロ > K 레 > K 할 > K 할 > 1 할 > 1 이익어

Now consider

- ightharpoontal and non-zon $[0, T]$ written on S and with payoff function h , and
- \triangleright the time t value of this option written as

$$
f_t(\theta) = \mathbb{E}^{\mathbb{Q}}[B(t, T)h(S(\theta)) | \mathcal{F}_t]
$$

with respect to some risk-neutral measure $\mathbb Q$, where

 $B(t, T)$ is the discount factor for the time interval $[t, T]$.

- ► Denote θ^* the 'true' parameter.
- ► Suppose at time $t \in [0, T]$ we observe a set of such option prices $\{f_t^{(i)}\}$ $t^{(i)}_t(\theta)$: $i \in I_t\}$, with additive noise $\{e^{(i)}_t\}$ $t_i^{(1)}$: $i \in I_t$, i.e. we observe

$$
V_t^{(i)} = f_t^{(i)}(\theta^*) + e_t^{(i)}.
$$

 \triangleright The calibration problem is to find the value of θ that best reproduces the observed prices

$$
V = \{V_t^{(i)} : i \in I_t, t \in \Upsilon_n([0, T])\}.
$$

Here $\Upsilon_n([0, T]) = \{t_1, \ldots, t_n : 0 = t_1 < t_2 < \ldots < t_n \leq T\}$ is a partition of the interval $[0, T]$ into *n* parts.

Bayesian framework

- Assume we have some prior information for θ , e.g. it
	- \triangleright belongs to a particular subspace of the parameter space, or
	- \blacktriangleright is positive, or
	- \blacktriangleright represents a smooth function,

summarised by a *prior* density $p(\theta)$ for θ .

- \blacktriangleright p(V| θ) is the likelihood of observing the data V given θ .
- \triangleright Bayes rule gives the *posterior* density of θ ,

$$
p(\theta | V) = \frac{p(V|\theta) p(\theta)}{p(V)},
$$

where $p(V)$ is given by

$$
p(V) = \int p(V|\theta) p(\theta) d\theta.
$$

11

K ロ > K 御 > K 著 > K 著 > 「著 」 の Q Q ^

Consistency of Bayesian estimators:

- \blacktriangleright Doob (1953), Schwartz (1965)
- \blacktriangleright Le Cam (1953): relation to maximum likelihood estimators
- \blacktriangleright Fitzpatrick (1991): relation to regularisation
- ▶ Wasserman (1998), Barron, Schervish, and Wasserman (1999), Shen and Wasserman (2001), Goshal (1998), Goshal, Gosh, and van der Vaart (2000): properties, convergence rates

All assume i.i.d. data.

 \blacktriangleright Here: observations of different functions of the parameter.

KO K K Ø K K E K K E K E K Y K O K O

- ► Black-Scholes model with $\sigma^* = 0.2$;
- \triangleright observe prices each week for the first 52 weeks of a two year at-the-money call option;
- ► $S_0 = 100$ and the interest rate $r = 0.05$, s.t. $f_0(\sigma^*) = 16.13$;
- **►** uniform prior $p(σ)$ on [0.18,0.22];
- **In** mean-zero Gaussian noise e_t of standard deviation 5% of the true option price, i.e.

$$
e_t \sim N(0, \tfrac{1}{20} f_t(\sigma^*)).
$$

 \triangleright See also Jacquier and Jarrow (2000).

KO K K @ K K W B K W B W DA C

Posterior densities after *n* observations. Notice that most of the probability measure collects around the true value of $\sigma^* = 0.2$.

Convergence in probability

Assumptions on the prior:

- \blacktriangleright The prior p has compact support Θ ,
- ► p is bounded, continuous at θ^* (true parameter) with $p(\theta^*) > 0.$

Assumptions on the observations:

- $\blacktriangleright \mathcal{F}_{t_n} \perp \!\!\! \perp \mathcal{G}_{t_m}$ for all (n,m) , i.e. the driving process of the underlying is independent from the market noise,
- \blacktriangleright Gaussian noise with variance ϵ_t^2 , and
- $\blacktriangleright \forall t, \theta \neq \theta' \in \Theta$ $\frac{1}{\epsilon}$ ε_t $|f_t(\theta)-f_t(\theta')|$ $\frac{\theta I - I_t(\theta I)}{\theta - \theta I} \geq k > 0.$

Then:

$$
\blacktriangleright \theta_{\mathsf{n}}(\mathsf{V}) := \theta | \mathcal{F}_{t_n} \vee \mathcal{G}_{t_n} \stackrel{\mathsf{P}}{\rightarrow} \theta^*.
$$

K ロ > K 레 > K 할 > K 할 > 1 할 > 1 이익어

A function $L : \mathbb{R}^{2M} \to \mathbb{R}$ is a loss function $L(\theta, \theta')$ iff

$$
\begin{cases}\nL(\theta, \theta') = 0 & \text{if } \theta' = \theta \in \mathbb{R}^M \\
L(\theta, \theta') > 0 & \text{if } \theta' \neq \theta.\n\end{cases}
$$

 \blacktriangleright The corresponding *Bayes estimator* $\theta_I(V)$ is

$$
\theta_L(V) = \arg \min_{\theta' \in \Theta} \left\{ \int_{\Theta} L(\theta, \theta') \, p(\theta|V) \, d\theta \right\}.
$$

\blacktriangleright Examples:

- ► $L_1(\theta, \theta') = \|\theta \theta'\|^2$ gives Bayes estimator $\theta_{L_1}(Y) = \mathbb{E}[\theta|V]$ (the *mean* value of θ with respect to the Bayesian posterior density $p(\theta|V)$)
- $\blacktriangleright \theta_{MAP}(V) = \arg \max \{p(\theta|V)\}\text{, the maximum a posteriori }$ (MAP) estimator

Consistency result

 \blacktriangleright $p(\theta_n(V))$, the posterior density of θ after *n* observations, is

$$
p(\theta_n(V)) = \frac{p_n(V|\theta) p(\theta)}{p_n(V)} = \frac{p(V_{t_1}|\theta) \cdot \ldots \cdot p(V_{t_n}|\theta) p(\theta)}{p_n(V)} = \prod_{t \in \Upsilon_n} \frac{1}{\sqrt{2\pi}\varepsilon_t} \exp \left\{-\frac{1}{2\varepsilon_t^2} (V_t - f_t(\theta))^2\right\} \frac{p(\theta)}{p_n(V)}.
$$

 \blacktriangleright Define the sequence of Bayes estimators $\hat{\theta}$ by,

$$
g(\theta_n(V), \theta') = \mathbb{E}[L(\theta_n(V), \theta')] = \int_{\Theta} L(\theta, \theta') p_n(\theta|V) d\theta
$$

$$
\hat{\theta}_n(V) = \arg \min_{\theta' \in \Theta} \{ g(\theta_n(V), \theta') \}.
$$

Then, under the assumptions from earlier, and

For L bounded and continuous on Θ , $\hat{\theta}_n(V)$ is consistent.

- ► Suppose multiple observations $f_t^{(i)}$ per time, $i \in I_t$, with similar assumptions as above for all i .
- ► Deduce the Bayes estimator $\hat{\theta}_n(V)$ is consistent.
- \blacktriangleright Speeds up convergence.
- \blacktriangleright Taken to the extreme, can construct a consistent estimator by gathering a large number of observations of different functions (options with different strikes, maturities) of θ at time 0.

18

KO K K Ø K K E K K E K E K Y K O K O

 \triangleright We give an example of this later.

- \triangleright Take the case when θ is not scalar but a **finite-dimensional** parameter, $\theta \in \mathbb{R}^M$.
- \blacktriangleright Replace the monotonicity assumption on the observations by:

$$
\exists K > k > 0 \ \forall \ \theta \in \Theta \quad K^2 \geq \frac{1}{n} \sum_{t \in \Upsilon_n} \frac{1}{\varepsilon_t^2} \frac{|f_t(\theta) - f_t(\theta^*)|^2}{\|\theta - \theta^*\|^2} \geq k^2
$$

 \triangleright For all L bounded and continuous on θ , the non-scalar Bayes estimator $\hat{\theta}_\mathit{n}(\mathit{V})$ is consistent.

KO K K @ K K W B K W B W DA C

- Let $f_t(\theta)$ be smooth in t and θ , and $\epsilon_t = \epsilon$ constant.
- \blacktriangleright Then the above assumption can only be violated if either

1.
$$
\exists \theta \neq \theta^* \forall t
$$
 $f_t(\theta) = f_t(\theta^*)$, or

2.
$$
\exists \theta \neq \theta^* \forall t \quad (\theta - \theta^*) \cdot \nabla_{\theta} f_t(\theta^*) = 0.
$$

- 1. Under [1.](#page-19-0), it is clearly impossible to identify which parameter gave rise to the observations.
- 2. Under [2.](#page-19-1), perturbations of the parameter in directions orthogonal to the gradient are overshadowed by the noise.

This confirms an intuitive rule for a good choice of observation variables (calibration products) as those which are most sensitive to the parameters.

K ロ X (日) X 제공 X 제공 X 1 공 : X 이익(N)

The (discretised) local volatility model is a good example:

- \blacktriangleright Complete market model.
- \blacktriangleright Used by traders in some markets.
- \blacktriangleright Large (infinite) number of parameters.
- \blacktriangleright III-conditioned (ill-posed) calibration.
- \blacktriangleright Dynamically inconsistent.

KO K K @ K K W B K W B W DA C

Identification of local volatility:

- \blacktriangleright [Dupire (1994)]
- ▶ Lagnado and Osher (1997)
- \blacktriangleright Jackson, Süli, and Howison (1999)
- ▶ Chiarella, Craddock, and El-Hassan (2000)
- ▶ Coleman, Li, and Verma (2001)
- ▶ Berestycki, Busca, and Florent (2002)
- \blacktriangleright Egger and Engl (2005)
- ▶ Achdou and Pironneau (2004)
- ▶ Zubelli, Scherzer, and De Cezaro (2010)

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

- \blacktriangleright We incorporate:
	- \blacktriangleright positivity
	- \blacktriangleright the a-t-m vol
	- \blacktriangleright smoothness
- \blacktriangleright Use the natural Gaussian prior

$$
\rho(\theta) \propto \exp\left\{-\tfrac{1}{2}\tilde{\lambda}\|\theta-\theta_0\|^2\right\}
$$

 \blacktriangleright 1/ $\tilde{\lambda}$ can be thought of as the prior variance of θ \blacktriangleright Example:

$$
p_{lv}(\sigma) \propto \exp\left\{-\frac{1}{2}\lambda_{p} \|\log(\sigma) - \log(\sigma_{atm})\|_{\kappa}^{2}\right\}
$$

where

$$
||u||_{\kappa}^{2} = (1 - \kappa)||u||_{2}^{2} + \kappa|||\nabla u|||_{2}^{2}
$$

イロト イ部 トイミト イミト ニヨー りんぺ

Likelihood

- Recall $V_t^{(i)}$ $t⁽¹⁾$ the market observed price at t of a European call with strike \mathcal{K}_i , maturity \mathcal{T}_i ;
- \blacktriangleright $f_t^{(i)}$ $\mathcal{C}_{t}^{(V)}(\theta)$ the theoretical price when the model parameter is θ ; \blacktriangleright define the basis point square-error function as

$$
G_t(\theta) = \frac{10^8}{S_t^2} \sum_{i \in I} w_i |f_t^{(i)}(\theta) - V_t^{(i)}|^2
$$

$$
V_t^{(i)} = \frac{1}{2} (V_t^{(i)bid} + V_t^{(i)ask});
$$

• define $\delta_i = \frac{10^4}{50}$ $\frac{10^4}{S_0} |V_t^{(i)$ ask — $V_t^{(i)$ bid $\left| \frac{f(t)_{\text{D}}}{t} \right|$ a basis point bid-ask spread. As in Hamida and Cont (2005) demand $G(\theta) \leq \delta^2$, then

$$
p(V|\theta) \propto 1_{G(\theta) \leq \delta^2} \exp \left\{-\frac{1}{2\delta^2} G(\theta)\right\}.
$$

KORK@RKERKER E 1990

 \blacktriangleright Then the posterior is

$$
p(\theta|V) \propto 1_{G(\theta) \leq \delta^2} \exp \left\{-\frac{1}{2\delta^2} \left[\lambda \|\theta - \theta_0\|^2 + G(\theta)\right]\right\}.
$$

Note: maximising the posterior is equivalent to specific Tikhonov regularisations (e.g. Fitzpatrick (1991)).

K ロ > K 御 > K 할 > K 할 > (할) - 9 Q Q ~

1. Simulated data-set:

- \triangleright We price European calls with 11 strikes and 6 maturities on the surface given in Jackson, Süli and Howison (1999).
- Similar to there, we take $S_0 = 5000$, $r = 0.05$, $d = 0.03$.
- \triangleright To each of the prices we add Gaussian noise with mean zero and standard deviation 0.1% as in Hamida and Cont (2005) and treat these as the observed prices.
- \triangleright We take the calibration error acceptance level as $\delta = 3$ basis points following the results of Jackson et al (1999).

2. Market data:

- \triangleright We take real S&P 500 implied volatility data used in Coleman, Li and Verma (2001) to price corresponding European calls.
- \triangleright 70 European call prices are calculated from implied volatilities with 10 strikes and 7 maturities.
- **In Spot price of the underlying at time 0 is** $S_0 = 590 **, interest** rate is $r = 0.060$ and dividend rate is $d = 0.026$.

1. For the first example, we take grid nodes

$$
s = 2500, 4500, 4750, 5000, 5250, 5500, 7000, 10000,
$$

$$
t = 0.0, 0.5, 1.0,
$$

so a total of $M = 27$ parameters (cf 66 calibration prices). 2. For the second example,

- $s = 300, 500, 560, 590, 620, 670, 800, 1200,$
- $t = 0.0, 0.5, 1.0, 2.0,$

so a total of $M = 32$ parameters (cf 70 calibration prices). Interpolate with cubic splines in S , linear in t .

K ロ X (日) X 제공 X 제공 X - 공 : X 이익(N)

Sample from the posterior using Markov Chain Monte Carlo, see e.g. Beskos and Stuart (2009):

- 1. Select a starting point θ_0 for which $g(\theta_0|V) > 0$.
- 2. For $r=1,\ldots,n$, sample a proposal $\theta ^{\#}$ from a *symmetric* jumping distribution $J(\theta ^{\#}|\theta _{r-1})$ and set

$$
\theta_r = \left\{ \begin{array}{cl} \theta^{\#} & \text{with probability } \min\left\{ \frac{g(\theta^{\#}|V)}{g(\theta_{r-1}|V)}, 1 \right\} \\ \theta_{r-1} & \text{otherwise.} \end{array} \right.
$$

Then the sequence of iterations $\theta_1, \ldots, \theta_n$ converges to the target distribution $g(\theta|V)$.

- \triangleright Speed up by thinning, and eliminate burn-in.
- \triangleright Monitor potential scale reduction factor for convergence.

KO K K @ K K W B K W B W DA C

Sampling the posterior

For the simulated dataset: 479 surfaces sampled from the posterior distribution, the true surface in opaque black.

不自主

 \overline{AB}) \overline{AB}) \overline{AB})

Pointwise confidence intervals

For the simulated dataset: 95% and 68% pointwise confidence intervals for volatility of paths, the true surface in opaque black.

K ロ ト K 何 ト K ヨ

 \rightarrow \Rightarrow \rightarrow

E

Re-calibration

Now a path is simulated on the true local volatility surface and the Bayesian posterior is updated using the newly observed prices each week for 12 weeks (plotted: weeks 3,6,9,12). The transparency of each surface reflects the Bayesian weight of [th](#page-29-0)[e s](#page-31-0)[u](#page-29-0)[rf](#page-30-0)[ac](#page-31-0)[e.](#page-0-0)

 \blacktriangleright , \blacktriangleleft , Ξ , \blacktriangleright , \blacktriangleleft

Pricing a barrier option

For simulated dataset: prices for up-and-out barrier calls with strike 5000 ($S_0 = 5000$), barrier 5500, maturity 3 months. Included are the 'true' price with its bid-ask spread, the MAP price, and the Bayes price with its associated p[ost](#page-30-0)[eri](#page-32-0)[o](#page-30-0)[r](#page-31-0) [pd](#page-32-0)[f.](#page-0-0)

Pricing an American option

For the simulated dataset: prices for American puts with strike 5000 ($S_0 = 5000$) and maturity 1 year. Included are the 'true' price with its bid-ask spread, the MAP price, an[d th](#page-32-0)[e](#page-33-0) [B](#page-0-0)[ay](#page-36-0)[es](#page-0-0) [pr](#page-36-0)[ic](#page-0-0)[e](#page-36-0) with its associated posterior $pdf \rightarrow \exists x \rightarrow \exists y \rightarrow \exists z \rightarrow 333$ $pdf \rightarrow \exists x \rightarrow \exists y \rightarrow \exists z \rightarrow 333$ $pdf \rightarrow \exists x \rightarrow \exists y \rightarrow \exists z \rightarrow 333$

For S&P 500 dataset: using Metropolis sampling, 600 surfaces from the posterior distrib[utio](#page-32-0)[n.](#page-34-0)

경기 ÷,

Pricing an American option

For S&P 500 dataset: prices for American put option with strike \$590 ($S_0 =$ \$590) and maturity 1 year. Included are the MAP price and the Bayes price with its associated p[ost](#page-33-0)e[ri](#page-35-0)[o](#page-33-0)[r p](#page-34-0)[d](#page-35-0)[f o](#page-0-0)[f](#page-36-0) [pri](#page-0-0)[ce](#page-36-0)[s.](#page-0-0) Þ

'Bayesian' model uncertainty measures:

- ► Branger and Schlag (2004)
- Gupta and R. (2010)

This is in contrast to 'worst-case' measures:

- ▶ 'Price-based': Cont (2006)
- ▶ 'Risk-differencing': Kerkhof, Melenberg, Schumacher (2002)
- \blacktriangleright 'Hedging-based': uncertain parameter models, e.g. Avellaneda, Lévy, and Paras (1995)

- \triangleright Construction of Bayesian posteriors using prior information and market data
- \triangleright Consistency would also like 'negative' result
- \blacktriangleright Gives model uncertainty measures
- \triangleright Potentially useful for robust hedging

KO K K @ K K W B K W B W DA C