Calibrating Financial Models Using Consistent Bayesian Estimators

Christoph Reisinger Joint work with Alok Gupta

June 25, 2010

Example – model uncertainty

A local volatility model, jump diffusion model, and (Heston) stochastic volatility model calibrated to 60 observed European calls for different strike/maturity pairs within 3 basis points.

The value of an up-and-out barrier call with strike 90% and barrier 110% of the spot varies by 177 basis points.

Example – parameter uncertainty

Three different local volatility models calibrated to 60 observed European calls for different strike/maturity pairs within 3 basis points. See also Hamida and Cont (2005).

The value of an up-and-out barrier call with strike 90% and barrier 110% of the spot varies by 26 basis points.

Model choice:

- Assume a model θ;
- model value of a derivative $V(\theta)$.

Calibration:

Find θ^* s.t. $V(\theta^*) = V^*$ the market price of liquid contracts.

Pricing and hedging:

Solve a pricing equation for a new (exotic) derivative,

$$A(heta^*)\widehat{V}(heta^*)=0;$$

• hedge with sensitivities derived from $\widehat{V}(\theta^*)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ● ● ● ●

Remidies for this model ambiguity.

► Regularisation:

market fit(θ) + regularity measure(θ) \longrightarrow min $_{a}$

Worst-case replication approach:

 $\sup_{\theta} A(\theta) V(\theta) = 0, \quad \text{s.t.} \quad V(\theta) = V^* \ \text{for calibration products}$

- Bayesian framework:
 - prior information encapsulated in $p(\theta)$
 - likelihood of market prices $p(V^*|\theta)$
 - posterior distribution $p(\theta|V^*)$

- Model ambiguity and over-parametrisation lead to uncertainty in the pricing model and the need to quantify and risk-manage the resulting risk.
- ► A Bayesian perspective seems well-suited to these objectives.
- It combines prior and historical information ('regularisation') with currently observed prices ('calibration').
- Consistency guarantees that parameter estimates are not led astray by prior assumptions.

- Calibration problems in financial engineering and their ill-posedness
- Bayesian approach to the calibration problem
- Consistency of Bayesian estimators
- Practical construction of posteriors and examples
- Related work: measuring model uncertainty, robust hedging
- Conclusions

▶ Assume price process $S = (S_t)_{t \ge 0}$ s.t. (by abuse of notation)

$$S_t = S(t, (Z_u)_{0 \le u \le t}, \theta)$$

- a function of
 - ▶ time t,
 - ▶ some 'standard' process $Z = (Z_t)_{t \ge 0}$, and
 - Parameter(s) θ ∈ Θ.
- Assume henceforth that θ is a finite dimensional vector: $\Theta \subseteq \mathbb{R}^{M}$.
- We are specifically interested in applications where this parameter is the discretisation of a functional parameter, for example representing a local volatility function.

Now consider

- ▶ an option over a finite time horizon [0, T] written on S and with payoff function h, and
- the time t value of this option written as

$$f_t(\theta) = \mathbb{E}^{\mathbb{Q}}[B(t, T)h(S(\theta))|\mathcal{F}_t]$$

with respect to some risk-neutral measure \mathbb{Q} , where

• B(t, T) is the discount factor for the time interval [t, T].

- Denote θ^* the 'true' parameter.
- Suppose at time t ∈ [0, T] we observe a set of such option prices {f_t⁽ⁱ⁾(θ) : i ∈ I_t}, with additive noise {e_t⁽ⁱ⁾ : i ∈ I_t}, i.e. we observe

$$V_t^{(i)} = f_t^{(i)}(\theta^*) + e_t^{(i)}.$$

The calibration problem is to find the value of θ that best reproduces the observed prices

$$V = \{V_t^{(i)} : i \in I_t, t \in \Upsilon_n([0, T])\}.$$

Here \u03c0_n([0, T]) = {t₁,..., t_n : 0 = t₁ < t₂ < ... < t_n ≤ T} is a partition of the interval [0, T] into n parts.

Bayesian framework

- Assume we have some prior information for θ , e.g. it
 - belongs to a particular subspace of the parameter space, or
 - is positive, or
 - represents a smooth function,

summarised by a *prior* density $p(\theta)$ for θ .

- $p(V|\theta)$ is the *likelihood* of observing the data V given θ .
- Bayes rule gives the *posterior* density of θ ,

$$p(\theta \mid V) = rac{p(V| heta) p(heta)}{p(V)},$$

where p(V) is given by

$$p(V) = \int p(V|\theta) p(\theta) d\theta.$$

Consistency of Bayesian estimators:

- Doob (1953), Schwartz (1965)
- ▶ Le Cam (1953): relation to maximum likelihood estimators
- Fitzpatrick (1991): relation to regularisation
- Wasserman (1998), Barron, Schervish, and Wasserman (1999), Shen and Wasserman (2001), Goshal (1998), Goshal, Gosh, and van der Vaart (2000): properties, convergence rates

All assume i.i.d. data.

► Here: observations of different functions of the parameter.

- Black-Scholes model with $\sigma^* = 0.2$;
- observe prices each week for the first 52 weeks of a two year at-the-money call option;
- ▶ $S_0 = 100$ and the interest rate r = 0.05, s.t. $f_0(\sigma^*) = 16.13$;
- uniform prior $p(\sigma)$ on [0.18,0.22];
- mean-zero Gaussian noise et of standard deviation 5% of the true option price, i.e.

$$e_t \sim N(0, \frac{1}{20}f_t(\sigma^*)).$$

► See also Jacquier and Jarrow (2000).

Posterior densities after *n* observations. Notice that most of the probability measure collects around the true value of $\sigma^* = 0.2$.

Convergence in probability

Assumptions on the prior:

- The prior p has compact support Θ ,
- ▶ p is bounded, continuous at θ^* (true parameter) with $p(\theta^*) > 0$.

Assumptions on the **observations**:

- ▶ $\mathcal{F}_{t_n} \perp \mathcal{G}_{t_m}$ for all (n, m), i.e. the driving process of the underlying is independent from the market noise,
- Gaussian noise with variance ϵ_t^2 , and
- $\blacktriangleright \ \forall t, \ \theta \neq \theta' \in \Theta \qquad \frac{1}{\varepsilon_t} \frac{|f_t(\theta) f_t(\theta')|}{|\theta \theta'|} \geq k > 0.$

Then:

$$\triangleright \ \theta_{\mathbf{n}}(\mathbf{V}) := \theta | \mathcal{F}_{t_n} \vee \mathcal{G}_{t_n} \xrightarrow{\mathbf{P}} \theta^*.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ A function $L : \mathbb{R}^{2M} \to \mathbb{R}$ is a *loss function* $L(\theta, \theta')$ iff

$$\left\{ \begin{array}{ll} L(\theta, \theta') = 0 & \text{if } \theta' = \theta \in \mathbb{R}^{M} \\ L(\theta, \theta') > 0 & \text{if } \theta' \neq \theta. \end{array} \right.$$

• The corresponding *Bayes estimator* $\theta_L(V)$ is

$$\theta_L(V) = \arg \min_{\theta' \in \Theta} \left\{ \int_{\Theta} L(\theta, \theta') \, p(\theta | V) \, \mathrm{d}\theta \right\}.$$

Examples:

- L₁(θ, θ') = ||θ − θ'||² gives Bayes estimator θ_{L1}(Y) = E[θ|V] (the mean value of θ with respect to the Bayesian posterior density p(θ|V))
- θ_{MAP}(V) = arg max{p(θ|V)}, the maximum a posteriori (MAP) estimator

Consistency result

▶ $p(\theta_n(V))$, the posterior density of θ after *n* observations, is

$$p(\theta_n(V)) = \frac{p_n(V|\theta) p(\theta)}{p_n(V)} = \frac{p(V_{t_1}|\theta) \cdots p(V_{t_n}|\theta) p(\theta)}{p_n(V)}$$
$$= \prod_{t \in \Upsilon_n} \frac{1}{\sqrt{2\pi\varepsilon_t}} \exp\left\{-\frac{1}{2\varepsilon_t^2} (V_t - f_t(\theta))^2\right\} \frac{p(\theta)}{p_n(V)}.$$

• Define the sequence of Bayes estimators $\hat{\theta}$ by,

$$g(\theta_n(V), \theta') = \mathbb{E}[L(\theta_n(V), \theta')] = \int_{\Theta} L(\theta, \theta') p_n(\theta | V) d\theta$$
$$\hat{\theta}_n(V) = \arg \min_{\theta' \in \Theta} \{g(\theta_n(V), \theta')\}.$$

Then, under the assumptions from earlier, and

• for *L* bounded and continuous on Θ , $\hat{\theta}_n(V)$ is consistent.

- Suppose multiple observations $f_t^{(i)}$ per time, $i \in I_t$, with similar assumptions as above for all *i*.
- Deduce the Bayes estimator $\hat{\theta}_n(V)$ is consistent.
- Speeds up convergence.
- Taken to the extreme, can construct a consistent estimator by gathering a large number of observations of different functions (options with different strikes, maturities) of θ at time 0.
- We give an example of this later.

- ► Take the case when θ is not scalar but a finite-dimensional parameter, θ ∈ ℝ^M.
- Replace the monotonicity assumption on the observations by:

$$\exists K > k > 0 \ \forall \theta \in \Theta \quad K^2 \ge \frac{1}{n} \sum_{t \in \Upsilon_n} \frac{1}{\varepsilon_t^2} \frac{|f_t(\theta) - f_t(\theta^*)|^2}{\|\theta - \theta^*\|^2} \ge k^2$$

For all *L* bounded and continuous on θ , the non-scalar Bayes estimator $\hat{\theta}_n(V)$ is consistent.

- Let $f_t(\theta)$ be smooth in t and θ , and $\epsilon_t = \epsilon$ constant.
- Then the above assumption can only be violated if either

1.
$$\exists \theta \neq \theta^* \, \forall t \quad f_t(\theta) = f_t(\theta^*)$$
, or

2.
$$\exists \theta \neq \theta^* \, \forall t \quad (\theta - \theta^*) \cdot \nabla_{\theta} f_t(\theta^*) = 0.$$

- 1. Under 1., it is clearly impossible to identify which parameter gave rise to the observations.
- 2. Under 2., perturbations of the parameter in directions orthogonal to the gradient are overshadowed by the noise.

This confirms an intuitive rule for a good choice of observation variables (calibration products) as those which are most sensitive to the parameters.

The (discretised) local volatility model is a good example:

- Complete market model.
- Used by traders in some markets.
- Large (infinite) number of parameters.
- Ill-conditioned (ill-posed) calibration.
- Dynamically inconsistent.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Identification of local volatility:

- [Dupire (1994)]
- Lagnado and Osher (1997)
- Jackson, Süli, and Howison (1999)
- Chiarella, Craddock, and El-Hassan (2000)
- Coleman, Li, and Verma (2001)
- Berestycki, Busca, and Florent (2002)
- Egger and Engl (2005)
- Achdou and Pironneau (2004)
- Zubelli, Scherzer, and De Cezaro (2010)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- We incorporate:
 - positivity
 - the a-t-m vol
 - smoothness
- Use the natural Gaussian prior

$$p(heta) \propto \exp\left\{-rac{1}{2} ilde{\lambda} \| heta - heta_0\|^2
ight\}$$

1/λ̃ can be thought of as the prior variance of θ
Example:

$$p_{l\nu}(\sigma) \propto \exp\left\{-\frac{1}{2}\lambda_{\rho}\|\log(\sigma) - \log(\sigma_{atm})\|_{\kappa}^{2}
ight\}$$

where

$$||u||_{\kappa}^{2} = (1 - \kappa)||u||_{2}^{2} + \kappa ||\nabla u||_{2}^{2}$$

Likelihood

- Recall V_t⁽ⁱ⁾ the market observed price at t of a European call with strike K_i, maturity T_i;
- $f_t^{(i)}(\theta)$ the theoretical price when the model parameter is θ ;
- define the basis point square-error function as

$$\begin{array}{lll} {\cal G}_t(\theta) & = & \frac{10^8}{S_t^2} \sum_{i \in I} w_i \, |f_t^{(i)}(\theta) - V_t^{(i)}|^2 \\ V_t^{(i)} & = & \frac{1}{2} (V_t^{(i)bid} + V_t^{(i)ask}); \end{array}$$

▶ define δ_i = 10⁴/S₀ |V_t^{(i)ask} - V_t^{(i)bid}| a basis point bid-ask spread.
 ▶ As in Hamida and Cont (2005) demand G(θ) ≤ δ², then

$$p(V|\theta) \propto 1_{G(\theta) \leq \delta^2} \exp\left\{-\frac{1}{2\delta^2}G(\theta)\right\}.$$

Then the posterior is

$$p(\theta|V) \propto 1_{G(\theta) \leq \delta^2} \exp\left\{-\frac{1}{2\delta^2} \left[\lambda \|\theta - \theta_0\|^2 + G(\theta)\right]\right\}.$$

Note: maximising the posterior is equivalent to specific Tikhonov regularisations (e.g. Fitzpatrick (1991)).

1. Simulated data-set:

- ▶ We price European calls with 11 strikes and 6 maturities on the surface given in Jackson, Süli and Howison (1999).
- Similar to there, we take $S_0 = 5000$, r = 0.05, d = 0.03.
- ► To each of the prices we add Gaussian noise with mean zero and standard deviation 0.1% as in Hamida and Cont (2005) and treat these as the observed prices.
- We take the calibration error acceptance level as δ = 3 basis points following the results of Jackson et al (1999).

2. Market data:

- We take real S&P 500 implied volatility data used in Coleman, Li and Verma (2001) to price corresponding European calls.
- 70 European call prices are calculated from implied volatilities with 10 strikes and 7 maturities.
- Spot price of the underlying at time 0 is S₀ = \$590, interest rate is r = 0.060 and dividend rate is d = 0.026.

26

1. For the first example, we take grid nodes

$$s = 2500, 4500, 4750, 5000, 5250, 5500, 7000, 10000,$$

$$t = 0.0, 0.5, 1.0,$$

so a total of M = 27 parameters (cf 66 calibration prices). 2. For the second example,

- s = 300, 500, 560, 590, 620, 670, 800, 1200,
- t = 0.0, 0.5, 1.0, 2.0,

so a total of M = 32 parameters (cf 70 calibration prices). Interpolate with cubic splines in *S*, linear in *t*.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Sample from the posterior using *Markov Chain Monte Carlo*, see e.g. Beskos and Stuart (2009):

- 1. Select a starting point θ_0 for which $g(\theta_0|V) > 0$.
- 2. For r = 1, ..., n, sample a proposal $\theta^{\#}$ from a symmetric jumping distribution $J(\theta^{\#}|\theta_{r-1})$ and set

$$\theta_r = \begin{cases} \theta^{\#} & \text{with probability } \min\left\{\frac{g(\theta^{\#}|V)}{g(\theta_{r-1}|V)}, 1\right\}\\ \theta_{r-1} & \text{otherwise.} \end{cases}$$

Then the sequence of iterations $\theta_1, \ldots, \theta_n$ converges to the target distribution $g(\theta|V)$.

- Speed up by *thinning*, and eliminate *burn-in*.
- ► Monitor *potential scale reduction factor* for convergence.

Sampling the posterior

For the simulated dataset: 479 surfaces sampled from the posterior distribution, the true surface in opaque black.

Pointwise confidence intervals

For the simulated dataset: 95% and 68% pointwise confidence intervals for volatility of paths, the true surface in opaque black.

Re-calibration

Now a path is simulated on the true local volatility surface and the Bayesian posterior is updated using the newly observed prices each week for 12 weeks (plotted: weeks 3,6,9,12). The transparency of each surface reflects the Bayesian weight of the surface.

► < Ξ > <</p>

14 N

Pricing a barrier option

For simulated dataset: prices for up-and-out barrier calls with strike 5000 ($S_0 = 5000$), barrier 5500, maturity 3 months. Included are the 'true' price with its bid-ask spread, the MAP price, and the Bayes price with its associated posterior pdf.

Pricing an American option

For the simulated dataset: prices for American puts with strike 5000 ($S_0 = 5000$) and maturity 1 year. Included are the 'true' price with its bid-ask spread, the MAP price, and the Bayes price with its associated posterior pdf.

For S&P 500 dataset: using Metropolis sampling, 600 surfaces from the posterior distribution.

Pricing an American option

For S&P 500 dataset: prices for American put option with strike \$590 ($S_0 =$ \$590) and maturity 1 year. Included are the MAP price and the Bayes price with its associated posterior pdf of prices.

'Bayesian' model uncertainty measures:

- Branger and Schlag (2004)
- Gupta and R. (2010)

This is in contrast to 'worst-case' measures:

- 'Price-based': Cont (2006)
- 'Risk-differencing': Kerkhof, Melenberg, Schumacher (2002)
- 'Hedging-based': uncertain parameter models, e.g. Avellaneda, Lévy, and Paras (1995)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

- Construction of Bayesian posteriors using prior information and market data
- Consistency would also like 'negative' result
- Gives model uncertainty measures
- Potentially useful for robust hedging