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Example – model uncertainty

I A local volatility model, jump diffusion model, and (Heston)
stochastic volatility model calibrated to 60 observed European
calls for different strike/maturity pairs within 3 basis points.
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reversion variance volatility variance

Value 0.0745 0.1415 0.1038 -0.2127 0.0167

I The value of an up-and-out barrier call with strike 90% and
barrier 110% of the spot varies by 177 basis points.
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Example – parameter uncertainty

I Three different local volatility models calibrated to 60
observed European calls for different strike/maturity pairs
within 3 basis points. See also Hamida and Cont (2005).
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I The value of an up-and-out barrier call with strike 90% and
barrier 110% of the spot varies by 26 basis points.
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Derivative pricing models

Model choice:

I Assume a model θ;

I model value of a derivative V (θ).

Calibration:

I Find θ∗ s.t. V (θ∗) = V ∗ the market price of liquid contracts.

Pricing and hedging:

I Solve a pricing equation for a new (exotic) derivative,

A(θ∗)V̂ (θ∗) = 0;

I hedge with sensitivities derived from V̂ (θ∗).
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An ‘ill-posed’ problem

Remidies for this model ambiguity.

I Regularisation:

market fit(θ) + regularity measure(θ) −→ min
θ

I Worst-case replication approach:

sup
θ

A(θ)V (θ) = 0, s.t. V (θ) = V ∗ for calibration products

I Bayesian framework:
I prior information encapsulated in p(θ)
I likelihood of market prices p(V ∗|θ)
I posterior distribution p(θ|V ∗)
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Motivation

I Model ambiguity and over-parametrisation lead to uncertainty
in the pricing model and the need to quantify and risk-manage
the resulting risk.

I A Bayesian perspective seems well-suited to these objectives.

I It combines prior and historical information (‘regularisation’)
with currently observed prices (‘calibration’).

I Consistency guarantees that parameter estimates are not led
astray by prior assumptions.
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Outline

I Calibration problems in financial engineering and their
ill-posedness

I Bayesian approach to the calibration problem

I Consistency of Bayesian estimators

I Practical construction of posteriors and examples

I Related work: measuring model uncertainty, robust hedging

I Conclusions
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Model for underlying

I Assume price process S = (St)t≥0 s.t. (by abuse of notation)

St = S(t, (Zu)0≤u≤t , θ)

a function of
I time t,
I some ‘standard’ process Z = (Zt)t≥0, and
I parameter(s) θ ∈ Θ.

I Assume henceforth that θ is a finite dimensional vector:
Θ ⊆ RM .

I We are specifically interested in applications where this
parameter is the discretisation of a functional parameter, for
example representing a local volatility function.
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Model price

Now consider

I an option over a finite time horizon [0,T ] written on S and
with payoff function h, and

I the time t value of this option written as

ft(θ) = EQ[B(t,T )h(S(θ))|Ft ]

with respect to some risk-neutral measure Q, where

I B(t,T ) is the discount factor for the time interval [t,T ].
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Observations

I Denote θ∗ the ‘true’ parameter.

I Suppose at time t ∈ [0,T ] we observe a set of such option

prices {f (i)
t (θ) : i ∈ It}, with additive noise {e(i)

t : i ∈ It}, i.e.
we observe

V
(i)
t = f

(i)
t (θ∗) + e

(i)
t .

I The calibration problem is to find the value of θ that best
reproduces the observed prices

V = {V (i)
t : i ∈ It , t ∈ Υn([0,T ])}.

I Here Υn([0,T ]) = {t1, . . . , tn : 0 = t1 < t2 < . . . < tn ≤ T}
is a partition of the interval [0,T ] into n parts.
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Bayesian framework

I Assume we have some prior information for θ, e.g. it
I belongs to a particular subspace of the parameter space, or
I is positive, or
I represents a smooth function,

summarised by a prior density p(θ) for θ.

I p(V |θ) is the likelihood of observing the data V given θ.

I Bayes rule gives the posterior density of θ,

p(θ | V ) =
p(V |θ) p(θ)

p(V )
,

where p(V ) is given by

p(V ) =

∫
p(V |θ) p(θ) dθ.

11



Bayesian literature

Consistency of Bayesian estimators:

I Doob (1953), Schwartz (1965)

I Le Cam (1953): relation to maximum likelihood estimators

I Fitzpatrick (1991): relation to regularisation

I Wasserman (1998 ), Barron, Schervish, and Wasserman
(1999), Shen and Wasserman (2001), Goshal (1998), Goshal,
Gosh, and van der Vaart (2000): properties, convergence rates

All assume i.i.d. data.

I Here: observations of different functions of the parameter.
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Example

I Black-Scholes model with σ∗ = 0.2;

I observe prices each week for the first 52 weeks of a two year
at-the-money call option;

I S0 = 100 and the interest rate r = 0.05, s.t. f0(σ
∗) = 16.13;

I uniform prior p(σ) on [0.18,0.22];

I mean-zero Gaussian noise et of standard deviation 5% of the
true option price, i.e.

et ∼ N(0, 1
20 ft(σ

∗)).

I See also Jacquier and Jarrow (2000).
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Example
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Posterior densities after n observations. Notice that most of the
probability measure collects around the true value of σ∗ = 0.2.
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Convergence in probability

Assumptions on the prior:

I The prior p has compact support Θ,

I p is bounded, continuous at θ∗ (true parameter) with
p(θ∗) > 0.

Assumptions on the observations:

I Ftn ⊥⊥ Gtm for all (n,m), i.e. the driving process of the
underlying is independent from the market noise,

I Gaussian noise with variance ε2t , and

I ∀t, θ 6= θ′ ∈ Θ 1
εt

|ft(θ)−ft(θ′)|
|θ−θ′| ≥ k > 0.

Then:

I θn(V) := θ|Ftn ∨ Gtn
P→ θ∗.
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Estimators

I A function L : R2M → R is a loss function L(θ, θ′) iff{
L(θ, θ′) = 0 if θ′ = θ ∈ RM

L(θ, θ′) > 0 if θ′ 6= θ.

I The corresponding Bayes estimator θL(V ) is

θL(V ) = arg min
θ′∈Θ

{∫
Θ

L(θ, θ′) p(θ|V ) dθ

}
.

I Examples:
I L1(θ, θ

′) = ‖θ − θ′‖2 gives Bayes estimator θL1(Y ) = E[θ|V ]
(the mean value of θ with respect to the Bayesian posterior
density p(θ|V ))

I θMAP(V ) = arg max{p(θ|V )}, the maximum a posteriori
(MAP) estimator
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Consistency result

I p(θn(V )), the posterior density of θ after n observations, is

p(θn(V )) =
pn(V |θ) p(θ)

pn(V )
=

p(Vt1 |θ) · . . . · p(Vtn |θ) p(θ)

pn(V )

=
∏

t∈Υn

1√
2πεt

exp
{
− 1

2ε2
t
(Vt − ft(θ))

2
}

p(θ)
pn(V ) .

I Define the sequence of Bayes estimators θ̂ by,

g(θn(V ), θ′) = E[L(θn(V ), θ′)] =

∫
Θ

L(θ, θ′) pn(θ|V ) dθ

θ̂n(V ) = arg min
θ′∈Θ

{g(θn(V ), θ′)}.

Then, under the assumptions from earlier, and

I for L bounded and continuous on Θ, θ̂n(V ) is consistent.
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Multiple observations

I Suppose multiple observations f
(i)
t per time, i ∈ It , with

similar assumptions as above for all i .

I Deduce the Bayes estimator θ̂n(V ) is consistent.

I Speeds up convergence.

I Taken to the extreme, can construct a consistent estimator by
gathering a large number of observations of different functions
(options with different strikes, maturities) of θ at time 0.

I We give an example of this later.
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Non-scalar parameter

I Take the case when θ is not scalar but a finite-dimensional
parameter, θ ∈ RM .

I Replace the monotonicity assumption on the observations by:

∃ K > k > 0 ∀ θ ∈ Θ K 2 ≥ 1

n

∑
t∈Υn

1

ε2
t

|ft(θ)− ft(θ
∗)|2

‖θ − θ∗‖2
≥ k2

I For all L bounded and continuous on θ, the non-scalar Bayes
estimator θ̂n(V ) is consistent.
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Discussion of assumptions

I Let ft(θ) be smooth in t and θ, and εt = ε constant.
I Then the above assumption can only be violated if either

1. ∃θ 6= θ∗ ∀t ft(θ) = ft(θ
∗), or

2. ∃θ 6= θ∗ ∀t (θ − θ∗) · ∇θft(θ
∗) = 0.

1. Under 1., it is clearly impossible to identify which parameter
gave rise to the observations.

2. Under 2., perturbations of the parameter in directions
orthogonal to the gradient are overshadowed by the noise.

This confirms an intuitive rule for a good choice of observation
variables (calibration products) as those which are most sensitive
to the parameters.
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Local volatility

The (discretised) local volatility model is a good example:

I Complete market model.

I Used by traders in some markets.

I Large (infinite) number of parameters.

I Ill-conditioned (ill-posed) calibration.

I Dynamically inconsistent.
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Inverse problems literature

Identification of local volatility:

I [Dupire (1994)]

I Lagnado and Osher (1997)

I Jackson, Süli, and Howison (1999)

I Chiarella, Craddock, and El-Hassan (2000)

I Coleman, Li, and Verma (2001)

I Berestycki, Busca, and Florent (2002)

I Egger and Engl (2005)

I Achdou and Pironneau (2004)

I Zubelli, Scherzer, and De Cezaro (2010)
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Bayesian prior

I We incorporate:
I positivity
I the a-t-m vol
I smoothness

I Use the natural Gaussian prior

p(θ) ∝ exp
{
−1

2 λ̃‖θ − θ0‖2
}

I 1/λ̃ can be thought of as the prior variance of θ

I Example:

plv (σ) ∝ exp
{
−1

2λp‖ log(σ)− log(σatm)‖2
κ

}
where

‖u‖2
κ = (1− κ)‖u‖2

2 + κ‖|∇u|‖2
2
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Likelihood

I Recall V
(i)
t the market observed price at t of a European call

with strike Ki , maturity Ti ;

I f
(i)
t (θ) the theoretical price when the model parameter is θ;

I define the basis point square-error function as

Gt(θ) = 108

S2
t

∑
i∈I

wi |f
(i)
t (θ)− V

(i)
t |2

V
(i)
t = 1

2(V
(i)bid
t + V

(i)ask
t );

I define δi = 104

S0
|V (i)ask

t − V
(i)bid
t | a basis point bid-ask spread.

I As in Hamida and Cont (2005) demand G (θ) ≤ δ2, then

p(V |θ) ∝ 1G(θ)≤δ2 exp
{
− 1

2δ2 G (θ)
}

.
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Construction of posterior

I Then the posterior is

p(θ|V ) ∝ 1G(θ)≤δ2 exp
{
− 1

2δ2

[
λ‖θ − θ0‖2 + G (θ)

]}
.

Note: maximising the posterior is equivalent to specific Tikhonov
regularisations (e.g. Fitzpatrick (1991)).
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Two datasets

1. Simulated data-set:
I We price European calls with 11 strikes and 6 maturities on

the surface given in Jackson, Süli and Howison (1999).
I Similar to there, we take S0 = 5000, r = 0.05, d = 0.03.
I To each of the prices we add Gaussian noise with mean zero

and standard deviation 0.1% as in Hamida and Cont (2005)
and treat these as the observed prices.

I We take the calibration error acceptance level as δ = 3 basis
points following the results of Jackson et al (1999).

2. Market data:
I We take real S&P 500 implied volatility data used in Coleman,

Li and Verma (2001) to price corresponding European calls.
I 70 European call prices are calculated from implied volatilities

with 10 strikes and 7 maturities.
I Spot price of the underlying at time 0 is S0 = $590, interest

rate is r = 0.060 and dividend rate is d = 0.026.
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Parameter discretisation

1. For the first example, we take grid nodes

s = 2500, 4500, 4750, 5000, 5250, 5500, 7000, 10000,

t = 0.0, 0.5, 1.0,

so a total of M = 27 parameters (cf 66 calibration prices).

2. For the second example,

s = 300, 500, 560, 590, 620, 670, 800, 1200,

t = 0.0, 0.5, 1.0, 2.0,

so a total of M = 32 parameters (cf 70 calibration prices).

Interpolate with cubic splines in S , linear in t.
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Computational issues

Sample from the posterior using Markov Chain Monte Carlo, see
e.g. Beskos and Stuart (2009):

1. Select a starting point θ0 for which g(θ0|V ) > 0.

2. For r = 1, . . . , n, sample a proposal θ# from a symmetric
jumping distribution J(θ#|θr−1) and set

θr =

{
θ# with probability min

{
g(θ#|V )

g(θr−1|V ) , 1
}

θr−1 otherwise.

Then the sequence of iterations θ1, . . . , θn converges to the target
distribution g(θ|V ).

I Speed up by thinning, and eliminate burn-in.

I Monitor potential scale reduction factor for convergence.
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Sampling the posterior

For the simulated dataset: 479 surfaces sampled from the
posterior distribution, the true surface in opaque black.
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Pointwise confidence intervals

For the simulated dataset: 95% and 68% pointwise confidence
intervals for volatility of paths, the true surface in opaque black.
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Re-calibration

Now a path is simulated on the true local volatility surface and the
Bayesian posterior is updated using the newly observed prices each
week for 12 weeks (plotted: weeks 3,6,9,12). The transparency of
each surface reflects the Bayesian weight of the surface.
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Pricing a barrier option

80 82 84 86 88 90 92 94 96 98 100 102
0

0.05

0.1

0.15

0.2

0.25
po

st
er

io
r p

ro
ba

bi
lity

price

 

 

pdf
Bayes
MAP
true
bid
ask

For simulated dataset: prices for up-and-out barrier calls with
strike 5000 (S0 = 5000), barrier 5500, maturity 3 months. Included
are the ‘true’ price with its bid-ask spread, the MAP price, and the

Bayes price with its associated posterior pdf.
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Pricing an American option
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For the simulated dataset: prices for American puts with strike
5000 (S0 = 5000) and maturity 1 year. Included are the ‘true’

price with its bid-ask spread, the MAP price, and the Bayes price
with its associated posterior pdf.
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Market data

For S&P 500 dataset: using Metropolis sampling, 600 surfaces
from the posterior distribution.
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Pricing an American option
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For S&P 500 dataset: prices for American put option with strike
$590 (S0 = $590) and maturity 1 year. Included are the MAP price

and the Bayes price with its associated posterior pdf of prices.
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Model uncertainty measures

‘Bayesian’ model uncertainty measures:

I Branger and Schlag (2004)

I Gupta and R. (2010)

This is in contrast to ‘worst-case’ measures:

I ‘Price-based’: Cont (2006)

I ‘Risk-differencing’: Kerkhof, Melenberg, Schumacher (2002)

I ‘Hedging-based’: uncertain parameter models, e.g.
Avellaneda, Lévy, and Paras (1995)
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Discussion and extensions

I Construction of Bayesian posteriors using prior information
and market data

I Consistency – would also like ‘negative’ result

I Gives model uncertainty measures

I Potentially useful for robust hedging
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