
Risk management, Arbitrage and Scenario generation for interest rates

Risk management, Arbitrage and Scenario
generation for interest rates

Josef Teichmann

ETH Zürich

Toronto, June 2010



Risk management, Arbitrage and Scenario generation for interest rates

Introduction

Motivation

I Scenarios of risk factors are needed for the daily risk analysis
(1D and 10D ahead) due to Basel II legislation.

I Generated scenarios should share the most important stylized
facts of the respective time series of risk factor (mean,
covariance, skewness, kurtosis, heavy tails, stochastic
volatility, etc) in order to reflect the market’s information.

I The actual generation of scenarios must be quick (up to one
hour) and flexible (changes of markets should be directly
implemented into the scenario generator).
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Introduction

Proposed approach

I Dynamize the simulation (continuous time instead of discrete
time).

I Control the generation of scenarios by stochastic differential
equations, which describe the local dynamics of the
respective risk factors and which are standard models in
finance.

I Impose no arbitrage conditions.

I a robust and quick calibration method (no optimization!).
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Why No Arbitrage?

Example

I consider the time series of two stock price processes X and Y .

I calculate the returns of the log prices and estimate the
covariance matrix.

I suppose that to the best of your knowledge you observe
Gaussian returns with perfect correlation ρ = 1 and standard
deviations 0.2 and 0.1.

I simulate those distributions and reconstruct a trajectory.
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Introduction

Simulated stock price processes
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Introduction

P & L of portfolio σY /σX long in X and short in Y
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Introduction

Simulated stock price processes without arbitrage
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Introduction

P & L for the same portfolio with or without arbitrage
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Introduction

Risk management, Arbitrage and scenario generation

In terms of stochastic analysis the implemented example is

dXt = 0.02Xtdt + 0.2XtdBt , dYt = 0.005Ytdt + 0.1YtdBt ,

where we see a clear violation of the no arbitrage condition.
The example is not artificial since risk factor models of high
dimension are likely to have singular covariance matrices, hence the
appropriate drift conditon matters.
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Introduction

An example: Interest Rate Markets

I Risk factors are yield curves.

I The yield curves evolves according to (jump diffusion) HJM or
BH equations.

I A robust calibration method of the HJM equation is needed.

I Numerics of SPDEs (Euler, Ninomiya-Victoir).
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Modelling

Interest Rate mechanics

Prices of T -bonds are denoted by P(t,T ). Interest rates are
governed by a market of (default free) zero-coupon bonds
modelled by stochastic processes (P(t,T ))0≤t≤T for T ≥ 0. We
assume the normalization P(T ,T ) = 1.

I T denotes the maturity of the bond, P(t,T ) its price at a
time t before maturity T .

I The yield

Y (t,T ) = − 1

T − t
log P(t,T )

describes the compound interest rate p.a. for maturity T .
I f is called the forward rate curve of the bond market

P(t,T ) = exp(−
∫ T

t
f (t, s)ds)

for 0 ≤ t ≤ T .
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Modelling

Interest Rate mechanics

I The short rate process is given through Rt = f (t, t) for t ≥ 0
defining the “bank account process”

(exp(

∫ t

0
Rsds))t≥0.

I No arbitrage is guaranteed if on the filtered probability space
(Ω,F ,Q) with filtration (Ft)t≥0,

E (exp(−
∫ T

t
Rsds)|Ft) = P(t,T )

holds true for 0 ≤ t ≤ T for some equivalent (martingale)
measure P ∼ Q. We write E = EP .
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Modelling

HJM-drift condition

The forward rates (f (t,T ))0≤t≤T are best parametrized through

r(t, x) := f (t, t + x)

for t, x ≥ 0 (Musiela parametrization). No-Arbitrage is guaranteed
in a diffusion setting if the HJM-equation

drt = (
d

dx
rt +

d∑
i=1

σi (rt)

∫ .

0
σi (rt))dt +

d∑
i=1

σi (rt)dB i
t

describes the time-evolution of the term structure of interest rates
with respect to a martingale measure P.
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Modelling

HJM equation as SPDE

We take a Hilbert space of foward rate curves, where point
evaluation is possible and where the shift acts as strongly
continuous semigroup, then we can understand the HJM equation
as SPDE

drt = (
d

dx
rt +

d∑
i=1

σi (rt)

∫ .

0
σi (rt))dt +

d∑
i=1

σi (rt)dB i
t

with state space H and initial values r0 ∈ H.
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Modelling

A conceptual problem

I Usually the short rate process rt(0) is not a Markov process!

I Controlling positivity of the short rate proces is therefore the
infinite dimensional problem of leaving the set {r(0) ≥ 0}.

I Even if the one solves the problem of positivity the numerical
implementation might lead to negative rates.
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Modelling

The Brody-Hughston (BH) approach

We consider a different state space for the time evolution of
interest rates. Observe that a positive short rate should lead to the
following two stylized facts

I The prices P(t,T ) are decreasing in T .

I The limit for T →∞ should be 0.

I This suggests to parametrize

P(t,T ) =

∫ ∞
T−t

ρ(t, u)du,

where u 7→ ρ(t, u) is a probability density on R≥0.
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Modelling

The BH equation

We can guarantee no arbitrage in a diffusion setting if the BH
equation holds

dρt = (ρt(0)ρt +
d

dx
ρt)dt +

d∑
i=1

(σi (ρt)− σi (ρt))ρtdW i
t

describes the time evolution of densities ρt with respect to a
martingale measure P. Here we apply the geometric notation

σi (ρ) =

∫ ∞
0

σi (ρ)(u)ρ(u)du

such that we can guarantee that the vector fields

ρ 7→ (σi (ρ)− σi (ρ))ρ

lie in the tangent space of “Wasserstein space”.
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Modelling

HJM versus BH

I The short rate is always positive for solutions of the BH
equation.

I It is much (sic!) easier to incorporate jumps in the BH
equation than in the HJM equation.

I The BH equation is “more” non-linear since the tangent
spaces are ρ-dependent.
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Calibration

Basic situation

On a filtered probability space (Ω,F , (Ft)t≥0,P) we consider a
d-dimensional standard Brownian motion B. Let H denote a
Hilbert space of risk factors, then we consider

dYt = (µ1(Yt) + µ2(Yt))dt +
d∑

i=1

σ(Yt) • λidB i
t , (1)

Y0 ∈ H, (2)

where
σ(Y ) : H0 → H0

is an invertible, linear map on the set of return directions
depending in a Lipschitz way on Y .
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Calibration

The vector fields µ1 corresponds to the volatility free situation
(deterministic drift). The vector field µ2 corresponds to the no
arbitrage drift condtion due to the presence of stochastics and
possibly to some change of measure term. The “(stochastic)
volatility factor” σ is chosen appropriately for the respective risk
factors.
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Calibration

Robust calibration technique

We assume a time series, i.e. an observation of equation (4), on
equidistant grid points of distance ∆, denoted by Y1, . . . ,YK and
we ask the simple question if we can estimate the volatility
directions λ1, . . . , λd out of the observations Y1, . . . ,YK in a
simple way – given the geometric factor σ?
We announce now an equation of type (4) “calibrated” to the time
series

dX
(K)
t =(µ

(K)
1 (X

(K)
t ) + µ2(X

(K)
t ))dt+ (3)

+
1√

∆(K − 1)

K−1∑
i=1

σ(X
(K)
t ) • (σ(Yi )

−1(Yi+1 − Yi )) dW i
t ,

where σ is a the known, non-vanishing geometric factor on the risk
factors describing the local dynamics.
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Calibration

Theorem

Let equation (4) be given in the sense that σ and Y0 ∈ dom(A)
are given maps, but λ1, . . . , λd are unknown. We collect a time
series of observations Y1, . . . ,YK on an equi-distant grid of time
distance ∆ on an interval of length T = K ∆. Refining the
observations through ∆ = T

K leads to the following limit theorem

lim
K→∞

X
(K)
t = Yt

in distribution for any t ≥ 0 if X0 = Y0.
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Calibration

Theorem

The underlying limit theorem is the following Gaussian one,

lim
K→∞

∫ t

0
σ(X

(K)
t )

−1
dX

(K)
t −

−
∫ t

0
σ(X

(K)
s )

−1
(µ

(K)
1 (X

(K)
s ) + µ2(X

(K)
s )ds

= lim
K→∞

1√
∆(K − 1)

K−1∑
i=1

(σ(Yi )
−1(Yi+1 − Yi ))W i

t

=

∫ t

0
σ(Yt)

−1dYt −
∫ t

0
σ(Ys)−1(µ1(Ys) + µ2(Ys)ds.
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Numerics of SPDEs

Basic situation

On a filtered probability space (Ω,F , (Ft)t≥0,P) we consider a
d-dimensional standard Brownian motion B. Let H denote a
Hilbert space of risk factors, then we consider

dYt = (µ1(Yt) + µ̃2(Yt))dt +
d∑

i=1

σ(Yt) • λi ◦ dB i
t , (4)

Y0 ∈ H, (5)

where
σ(Y ) : H0 → H0

is an invertible, linear map on the set of return directions
depending in a Lipschitz way on Y . Notice the Stratonovich form.
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Numerics of SPDEs

Geometric integrators

We name the following geometric integrators of the SPDEs 4:

I Evolution in the volatility free direction µ1 is denoted by Fl1.

I Evolution in directions given by Stratonovich corrected
NA-drift terms is denoted by Fl2.

I Evolution along volatilities is denoted by Σi .
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Numerics of SPDEs

Euler scheme

In this setting the local step for the Euler scheme reads like

Y 7→ Fl1(∆) ◦ Fl2(∆)(Y )

and
Y 7→ Σi (∆B i )(Y )

for each volatility direciton i . This step is of weak order 2.
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Numerics of SPDEs

Ninomiya-Victoir scheme

The local step is the arithmetic mean of

Y 7→ Fl1(∆/2)◦Fl2(∆/2)◦Σ1(∆B1) . . .Σd(∆Bd)◦Fl1(∆/2)◦Fl2(∆/2)

and

Y 7→ Fl1(∆/2)◦Fl2(∆/2)◦Σd(∆Bd) . . .Σ1(∆B1)◦Fl1(∆/2)◦Fl2(∆/2).

This step is of weak order 3.
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Numerics of SPDEs

Then the BH-equation

dρt =

(
ρt(0)ρt +

d

dx
ρt

)
dt +

d∑
i=1

(
σi (ρt)− σi (ρt)

)
ρtdW i

t

ρ0 ∈ H,

has a unique mild solution for all times in H, which leaves the set
of densities invariant. Remark the simplicity of the equation with
respect to added jumps.
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Numerics of SPDEs

The Stratonovich formulation of the previous equation is

dρt =

(
ρt(0)ρt +

d

dx
ρt

)
dt+

− 1

2

d∑
i=1

(
σi (ρt)

2 − σi (ρt)2
)
ρtdt −

− 1

2

d∑
i=1

(
ηi (ρt)− Dηi (ρt)

)
ρtdt+

+
d∑

i=1

(
σi (ρt)− σi (ρt)

)
ρtdW i

t ,

ρ0 ∈ H,
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Numerics of SPDEs

where we applied the notation

ηi (ρ) := Dσi (ρ) • ((σi (ρ)− σi (ρ))ρ).
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Numerics of SPDEs

The flow Fl1 without volatility

First we solve the SPDE without any noise, which corresponds to a
non-homegenous term structure. Assume that all volatility vector
fields vanish, then

Fl1(t)(ρ)(x) =
ρ(t + x)∫∞
t ρ0(u)du

(6)

as long as
∫∞
t ρ0(u)du > 0, otherwise the solution vanishes.
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Numerics of SPDEs

Flows in volatility directions

Then we solve the SPDE along noise directions: Let ξ ∈ H, then
we can solve

dρt = (ξ − ξ)ρtdt (7)

explicitly on the space of densities through

ρt(x) =
exp(ξ(x)t)ρ0(x)∫∞

0 exp(ξ(u)t)ρ0(u)du
(8)

for x ≥ 0 and t ∈ R.
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Conclusion

We have presented the full solution of a scenario generation
problem for (multi-currency) interest rates markets

I with arbitrage-free underlying models.

I a robust calibration method to time series data.

I (high-order) numerical schemes for the numerical evaluation.

I easy extensions towards more risk factors, stochastic volatility,
jump diffusion, etc.
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Bayer, C., Teichmann, J., Cubature on Wiener space in infinite
dimension, Proceedings of the Royal Society London A, to
appear, 2008.

Ortega, J.-P. , Pullirsch, R., Teichmann, J. and Wergieluk, J.,
A new approach for scenario generation in risk management,
arXiv, 2009.
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