Optimal Investment and Consumption Decision of Family with Life Insurance

Minsuk Kwak¹² Yong Hyun Shin³ U Jin Choi⁴

6th World Congress of the Bachelier Finance Society Toronto, Canada June 25, 2010

¹Speaker

²Department of Mathematical Sciences, KAIST

³School of Computational Sciences, KIAS

⁴Department of Mathematical Sciences, KAIST

 Ω

Table of Contents

- [The Economy](#page-4-0)
- ³ [The Optimization Problem](#page-10-0)
- [Properties of Optimal Solutions and Numerical Examples](#page-21-0)
- ⁵ [Concluding Remarks](#page-27-0)

 $2Q$

化重新润滑脂

◂**◻▸ ◂╓▸**

Introduction

- **•** Two economic agents in family: Parents and Children.
- **Parents' lifetime is uncertain.**
- We assume that parents represent children's father or mother with labor income, and that children have no labor income.
- While alive, parents receive deterministic labor income until *T* > 0.
- \bullet If parents die before T, the children have no income until T and they choose the optimal consumption and portfolio with remaining wealth combining the insurance benefit.
- Consider utility functions of parents and children separately.
- Maximize the weighted average of utility of parents and utility of children.
- Using the martingale method, analytic solutions for the value function and the optimal policies are derived.
- We analyze how the changes of the weight of parents' utility function and other factors, such as family's current wealth level and the fair discounted value of future labor income, affect the optimal policies and also illustrate some numerical examples.

Literature review(Selected)

- **•** Yaari (1965)
- \bullet Richard (1975)
- Pliska and Ye (2007): studied optimal life insurance and consumption for a income earner whose lifetime is random and unbounded.
- Ye (2007): considerd optimal life insurance, consumption and portfolio choice problem under uncertain lifetime using martingale method as we used to solve our problem.
- Bayraktar and Young (2008): solved the problem of maximizing utility of consumption with a constraint on the probability of lifetime ruin, which can be interpreted as a risk measure on the whole path of the wealth process.
- **Huang** *et al.* (2008): investigated optimal life insurance, consumption and portfolio choice problem under uncertain lifetime with stochastic income process. They focussed on the effect of correlation between the dynamics of financial capital and human capital.

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

Financial market composed by two assets

Financial market

It is assumed that there are one risk-free asset and one risky asset.

• Risk-free asset:

$$
dS_t^0 = rS_t^0 dt \tag{1}
$$

• Risky asset:

$$
dS_t^1 = \mu S_t^1 dt + \sigma S_t^1 dW_t \qquad (2)
$$

- *W^t* : a standard Brownian motion on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- $\{\mathcal{F}_t\}_{t=0}^T$ is the P-augmentation of the natural filtration generated by W_t .
- r, μ, σ : constants

 Ω

Definitions

Control variables

- $\pi(t)$: amount invested in the risky asset S^1_t at time *t*
- \bullet $c_p(t)$: consumption rate of parents at time *t*
- \bullet $c_c(t)$: consumption rate of children at time *t*
- *I*(*t*): life insurance premium rate at time *t*

Notations

- *wt* : deterministic labor income of parents
- $\theta \triangleq \frac{\mu-r}{\sigma}$: market-price-of-risk:
- ζ*^t* , *e* − R *t* 0 (λ*y*+*s*+*^r*)*ds*: discount process
- $Z_t \triangleq e^{-\theta W_t \frac{1}{2}\theta^2 t}$: exponential martingale process
- $H_t \triangleq \zeta_t Z_t$: pricing kernel(state-price-density) process

 Ω

K ロ ⊁ K 倒 ≯ K 走 ⊁ K 走 ⊁

Uncertain life time

Law of mortality λ_{v+t}

Let λ_{v+t} be an instantaneous force of mortality curve (hazard rate), where y is the age of the breadwinner at initial time of the model. Then the conditional probability of survival, from age y to $y + t$, under the law of mortality defined by λ_{v+t} can be computed by

$$
{}_{t}\mathbf{p}_{y}\triangleq\mathbf{e}^{-\int_{0}^{t}(\lambda_{y+s})ds}.\tag{3}
$$

つひつ

Family's wealth dynamics

Life insurance benefit

- Family's insurance premium rate at time *t* is *I*(*t*)
- Receive lump sum payment $\frac{l(\tau)}{\lambda_{y+\tau}}$ at the parents' death time τ .
- X_t : family's wealth at time *t* until $\tau_m \triangleq \min[\tau, T]$
- Define $M(t) \triangleq X_t + \frac{I(t)}{\lambda_{\nu+1}}$ λ*y*+*^t* : total legacy when the parents die at time *t* with wealth *X^t*

Family's wealth dynamics

The family's wealth dynamics X_t satisfies the following SDE:

$$
dX_t = [rX_t + (\mu - r)\pi(t) - c_p(t) - c_c(t) - l(t) + w_t]dt + \sigma\pi(t)dW_t
$$

= [(r + \lambda_{y+t})X_t + (\mu - r)\pi(t) - c_p(t) - c_c(t) - \lambda_{y+t}M(t) + w_t]dt + \sigma\pi(t)dW_t,

for $0 \leq t < \tau_m$.

 QQ

K ロ ⊁ K 伊 ⊁ K ミ ⊁ K ミ ⊁

Family's wealth dynamics

Equivalent martingale measure

For a given *T*, we define the equivalent martingale measure

$$
\widetilde{\mathbb{P}}(\mathcal{A})\triangleq \mathbb{E}[Z_T\mathbf{1}_{\mathcal{A}}], \quad \text{for} \quad \mathcal{A}\in\mathcal{F}_T.
$$

By Girsanov's theorem, $\tilde{W}_t \triangleq W_t + \theta t$, $0 \le t \le T$, is a standard Brownian motion under the new measure \mathbb{P} .

Family's wealth dynamics under $\mathbb P$

The wealth process [\(4\)](#page-7-0) before τ_m can be rewritten as

$$
dX_t = [rX_t - c_p(t) - c_c(t) - l(t) + w_t]dt + \sigma \pi(t) dW_t
$$

= [(r + \lambda_{y+t})X_t - c_p(t) - c_c(t) - \lambda_{y+t}M(t) + w_t]dt + \sigma \pi(t) dW_t, (5)

for $0 \leq t \leq \tau_m$.

 Ω

K ロメ K 御 メ K ヨ メ キ

Budget constraint

Budget constraint

We have the following budget constraint

$$
\mathbb{E}_{t}\left[\int_{t}^{T}H_{s}c_{p}(s)ds+\int_{t}^{T}H_{s}c_{c}(s)ds+\int_{t}^{T}\lambda_{y+s}H_{s}M(s)ds+H_{T}X_{T}\right]
$$
\n
$$
\leq H_{t}(X_{t}+b_{t}), \text{ for } 0 \leq t < \tau_{m}, \quad (6)
$$

where

$$
b_t \triangleq \int_t^T w_s \frac{\zeta_s}{\zeta_t} ds^a.
$$

abt is the fair discounted value of the parents' future labor income from *t* to τ*m*.

 QQQ

化重新分量

(□) (f)

Optimization problem of family

Expected utility at time *t*

Family's expected utility function $\mathit{U}(\mathit{t},X_{t};c_{p},c_{c},\pi,I)$ with an initial endowment *X_t* at time *t*, $t < \tau_m$:

$$
U(t, X_t; c_p, c_c, \pi, I)
$$

= $\mathbb{E}_t \left[\alpha_1 \int_t^{\tau_m} e^{-\delta(s-t)} u_p(c_p(s)) ds + \alpha_2 \int_t^T e^{-\delta(s-t)} u_c(c_c(s)) ds \right].$ (7)

- \bullet $u_p(c)$: utility function of parents
- $\bullet u_c(c)$: utility function of children
- $\delta > 0$: constant subjective discount rate
- \bullet α_1 > 0: constant weights of utility function of parents
- α_2 > 0: constant weights of utility function of children
- \bullet α_1 and α_2 satisfies

$$
\alpha_1+\alpha_2=1.
$$

Optimization problem of family

Power utility functions with lower bound of consumption rate Utility function of parents *up*(*c*):

$$
u_p(c) \triangleq \frac{(c - R_p)^{1 - \gamma_p}}{1 - \gamma_p} \tag{8}
$$

Utility function of children *uc*(*c*):

$$
u_c(c) \triangleq \frac{(c - R_c)^{1 - \gamma_c}}{1 - \gamma_c}.
$$
 (9)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 $\gamma_p > 0(\gamma_p \neq 1)$: parents' coefficient of relative risk aversion

- $\gamma_c > 0(\gamma_c \neq 1)$: children's coefficient of relative risk aversion
- \bullet $R_p \geq 0$: lower bound of parents' consumption rate
- \bullet $R_c \geq 0$: lower bound of children's consumption rate

 Ω

Merton's constant

Assumption 1

We define the Merton's constant Kⁱ , *i* = *p*, *c, and assume that it is always positive, that is,*

$$
K_i\triangleq r+\frac{\delta-r}{\gamma_i}+\frac{\gamma_i-1}{2\gamma_i^2}\theta^2>0, \quad i=p, \, c.
$$

∢ ロ ▶ ィ 何

4 B F 4 B F

 QQ

Steps to find the value function

Step1

We first solve the optimization problem after τ_m , $t \geq \tau_m$,

and then solve the problem before τ_m , $t < \tau_m$, using martingale methods.

 QQ

イロト イ母 トイラト イラト

Steps to find the value function

Step1

We first solve the optimization problem after τ_m , $t > \tau_m$,

Step2

and then solve the problem before τ_m , $t < \tau_m$, using martingale methods.

∢ ロ ▶ ィ 何

 Ω

化重新化重新

Step1: Optimization problem after τ*^m*

Optimization problem for $\tau_m < t < T$

- **•** If parents die before T, that is, $\tau < T$, then $w_t = 0$ for $\tau < t < T$.
- **•** If $\tau < T$, $I(t) = 0$ for $\tau < t < T$.
- Therefore, children have only two control variables: their consumption $c_c(t)$, and investment $\pi(t)$.
- Family's expected utility function $\mathit{U_{c}}(t, X_{t}; c_{c}, \pi)$ with an initial endowment *X_t* at time *t*, $\tau_m < t < T$:

$$
U_c(t, X_t; c_c, \pi) = \mathbb{E}_t \left[\int_t^T e^{-\delta(s-t)} u_c(c_c(s)) ds \right]. \tag{10}
$$

 \bullet For $\tau_m < t < T$, let $\mathcal{A}_c(t, X_t)$ be the admissible class of the pair (c_c, π) at time *t* for which the family's expected utility function [\(10\)](#page-15-0) is well-defined.

 Ω

イロメ イ母メ イヨメ イヨメ

Optimization problem for $\tau_m \leq t \leq T$

Lemma 1

For $\tau_m < t < T$, the value function is

$$
V_c(t,X_t) \triangleq \sup_{(c_c,\pi)\in\mathcal{A}_c(t,X_t)} U_c(t,X_t;c_c,\pi) = e^{\delta t} \Phi(t,X_t),
$$

where

$$
\Phi(t, X_t) \triangleq e^{-\delta t} \frac{g(t)^{\gamma_c}}{1-\gamma_c} \left\{ X_t - \frac{R_c}{r} \left(1 - e^{-r(T-t)} \right) \right\}^{1-\gamma_c}
$$

and

$$
g(t) \triangleq \frac{1-e^{-K_c(T-t)}}{K_c}.
$$

 QQ

メロトメ 倒 トメ ミトメ ミト

Optimization problem for $\tau_m \leq t \leq T$

Lemma [1\(](#page-16-0)Continued)

And the optimal policies are given by

$$
c_c^*(t) = \frac{1}{g(t)} \left\{ X_t - \frac{R_c}{r} \left(1 - e^{-r(T-t)} \right) \right\} + R_c
$$

and

$$
\pi^*(t) = \frac{\theta}{\sigma \gamma_c} \left\{ X_t - \frac{R_c}{r} \left(1 - e^{-r(T-t)} \right) \right\}.
$$

in the second property

 QQ

K ロ ト K 何 ト

Optimization problem for *t* < τ*^m*

Value function for *t* < τ*^m*

The value function of the family at time $t < \tau_m$, $V(t, X_t)$, is defined as follows:

$$
V(t, X_t) \triangleq \sup_{(c_p, c_c, \pi, I) \in \mathcal{A}(t, X_t)} \mathbb{E}_t \left[\int_t^{\tau_m} e^{-\delta(s-t)} \left\{ \alpha_1 u_p(c_p(s)) + \alpha_2 u_c(c_c(s)) \right\} ds + \alpha_2 \mathbf{1}_{\{\tau < T\}} e^{\delta t} \Phi(\tau, M(\tau)) \right]
$$
(11)

subject to the budget constraint [\(6\)](#page-9-0), where $A(t, X_t)$ is the admissible class of the quadruple (c_p, c_c, π, I) at time $t < \tau_m$ for which the family's expected utility function [\(7\)](#page-10-1) is well-defined.

つひひ

Value function for *t* < τ*^m*

Theorem 1

The value function $V(t, X_t)$ *is given by*

$$
V(t, X_t) = Y_t^{\nu^*} \left\{ X_t + b_t - R_p \int_t^T e^{-\int_t^s (\lambda_{y+u} + r) du} ds - \frac{R_c}{r} \left(1 - e^{-r(T-t)} \right) \right\} + \alpha_1^{\frac{1}{\gamma_p}} \frac{\gamma_p}{1 - \gamma_p} \left(Y_t^{\nu^*} \right)^{\frac{\gamma_p - 1}{\gamma_p}} \int_t^T e^{-\int_t^s (\lambda_{y+u} + K_p) du} ds + \alpha_2^{\frac{1}{\gamma_c}} \frac{\gamma_c}{1 - \gamma_c} \left(Y_t^{\nu^*} \right)^{\frac{\gamma_c - 1}{\gamma_c}} g(t),
$$

where $Y_t^{\nu^*}$ satisfies the following equation:^{*a*}

$$
X_{t} = \alpha_{1}^{\frac{1}{\gamma_{p}}} \left(Y_{t}^{v^{*}}\right)^{-\frac{1}{\gamma_{p}}} \int_{t}^{T} e^{-\int_{t}^{s} (\lambda_{y+u} + K_{p}) du} ds + \alpha_{2}^{\frac{1}{\gamma_{c}}} \left(Y_{t}^{v^{*}}\right)^{-\frac{1}{\gamma_{c}}} g(t)
$$

+
$$
R_{p} \int_{t}^{T} e^{-\int_{t}^{s} (\lambda_{y+u} + r) du} ds + \frac{R_{c}}{r} \left(1 - e^{-r(T-t)}\right) - b_{t}.
$$
 (12)

*a*Given *t* and X_t , $Y_t^{\nu^*}$ is uniquely determined by the equation [\(12\)](#page-19-0).

Theorem [1\(](#page-19-1)Continued)

For $0 \le t < \tau_m$, the *optimal policies are given by*

$$
c_p^*(t) = \alpha_1^{\frac{1}{\gamma_p}} \left(Y_t^{\nu^*} \right)^{-\frac{1}{\gamma_p}} + R_p, \quad c_c^*(t) = \alpha_2^{\frac{1}{\gamma_c}} \left(Y_t^{\nu^*} \right)^{-\frac{1}{\gamma_c}} + R_c,
$$

$$
\pi^*(t) = \frac{\theta}{\sigma \gamma_c} \left\{ X_t + b_t - R_\rho \int_t^T e^{-\int_t^s (\lambda_{y+u} + r) du} ds - \frac{R_c}{r} \left(1 - e^{-r(T-t)} \right) \right\} + \frac{\theta}{\sigma} \frac{\gamma_c - \gamma_\rho}{\gamma_\rho \gamma_c} \alpha_1^{\frac{1}{\gamma_\rho}} \left(Y_t^{\nu^*} \right)^{-\frac{1}{\gamma_\rho}} \int_t^T e^{-\int_t^s (\lambda_{y+u} + K_\rho) du} ds,
$$
(13)

and

$$
\frac{f^*(t)}{\lambda_{y+t}} = M^*(t) - X_t
$$
\n
$$
= b_t - R_p \int_t^T e^{-\int_t^s (\lambda_{y+u} + r) du} ds - \alpha_1^{\frac{1}{\gamma_p}} \left(Y_t^{\nu^*} \right)^{-\frac{1}{\gamma_p}} \int_t^T e^{-\int_t^s (\lambda_{y+u} + K_p) du} ds. \tag{14}
$$

Proposition 1

If $\alpha_1 \in (0, 1]$, the optimal life insurance premium rate $I^*(t)$ decreases as the *wealth level* X_t *increases. If* $\alpha_1 =$ 0, the optimal life insurance premium rate *I* ∗ (*t*) *is not affected by X^t .*

Proposition 2

If $\alpha_1 \in [0, 1)$, the optimal life insurance premium rate $I^*(t)$ increases as the fair *discounted value of future labor income* b_t *increases. If* $\alpha_1 = 1$, *the optimal life insurance premium rate I*[∗] (*t*) *is not affected by b^t .*

 Ω

イロト イ母ト イヨト イヨト

Figure 1: Relations between the optimal policies and $X_t + b_t$.($t = 0, R_p = 2, R_c = 1$, $\delta = 0.03$, $r = 0.04$, $\mu = 0.06$, $\sigma = 0.3$, $A_l = 0.005$, $B_l = 0.001125$, $T = 30$)

Remarks about Figure [1](#page-22-0)

- Solid lines represent the relations between the optimal policies and X_t , whereas dotted lines represent the relations between the optimal policies and *b^t* .
- We can observe that the optimal policies except the optimal life insurance premium rate *I* ∗ (*t*) are determined by $X_t + b_t$.

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

つひひ

Figure 2: Relations between the optimal policies and $X_t + b_t$.($t = 0, R_p = 2, R_c = 1$, $\delta = 0.03$, $r = 0.04$, $\mu = 0.06$, $\sigma = 0.3$, $A_l = 0.005$, $B_l = 0.001125$, $T = 30$)

Remarks about Figure [2](#page-23-0)

- Unlike other optimal policies, *I* ∗ (*t*) is not determined by $X_t + b_t$.
- **It can be seen that the current** wealth level *X^t* has a negative effect on the optimal life insurance premium rate *I* ∗ (*t*).
- On the other hand, *b_t* has a positive effect on *I* ∗ (*t*).
- Therefore, the optimal life insurance premium rate *I* ∗ (*t*) is determined not by $X_t + b_t$, but by both X_t and b_t .

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐

 Ω

Proposition 3

The optimal life insurance premium rate I ∗ (*t*) *decreases as the weight of the utility function of parents* α_1 *increases from 0 to 1.*

Proposition 4

The optimal investment $\pi(t)^*$ *decreases as* α_1 *increases from 0 to 1 if* $\gamma_p > \gamma_c$ *. The optimal investment* $\pi(t)^*$ *increases as* α_1 *increases from 0 to 1 if* $\gamma_p < \gamma_c$ *. If* $\gamma_p = \gamma_c$, $\pi(t)^*$ *is not affected by* α_1 *.*

 Ω

in the second property of the second

Figure 3: Relations between α_1 and the optimal policies.

 $(t = 0, X_0 = 10, R_p = 2, R_c = 1, \delta = 0.03,$ $r = 0.04$, $\mu = 0.06$, $\sigma = 0.3$, $C_W = 5.0$, $k_w = 0.03$, $A_l = 0.005$, $B_l = 0.001125$, $T = 30$

Remarks about Figure [3](#page-25-0)

- Figure [3](#page-25-0) illustrate the relations between α_1 and the optimal policies for different risk aversion.
- Since α_1 is the weight of the utility function of parents, it is obvious that the optimal consumption of parents $c_p^*(t)$ increases and the optimal consumption of children $c_c^*(t)$ decreases as α_1 increases.
- The optimal life insurance premium rate *I* ∗ (*t*) decreases as α_1 increases. This is because bequest motive is weak when α_1 is larg[e.](#page-24-0)

Figure 4: Relations between α_1 and the optimal policies.

 $(t = 0, X_0 = 10, R_p = 2, R_c = 1, \delta = 0.03,$ $r = 0.04$, $\mu = 0.06$, $\sigma = 0.3$, $C_W = 5.0$, $k_w = 0.03$, $A_l = 0.005$, $B_l = 0.001125$, $T = 30$

Remarks about Figure [4](#page-26-0)

- Unlike other optimal policies, the effect of α_1 on the optimal investment π ∗ (*t*) depends on risk aversion.
- If $\gamma_p > \gamma_c$, $\pi^*(t)$ decreases as α_1 increases, and $\pi^*(t)$ increases as α_1 increases when $\gamma_p < \gamma_c$.
- In other words, if the risk aversion coefficients of parents and children are different, $\pi^*(t)$ increases when the relative importance of less risk averse family member's utility increases.

If
$$
\gamma_p = \gamma_c
$$
, $\pi^*(t)$ is not affected by α_1 .

Concluding Remarks

- We investigate an optimal portfolio, consumption and life insurance premium choice problem of family.
- Analytic solutions for the value function and the optimal policies are derived by the martingale method.
- We analyze the properties of the optimal policies, where the emphasis is placed on the role of α_1 which is the weight of parents' utility function.

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

Concluding Remarks

- We investigate an optimal portfolio, consumption and life insurance premium choice problem of family.
- Analytic solutions for the value function and the optimal policies are derived by the martingale method.
- We analyze the properties of the optimal policies, where the emphasis is placed on the role of α_1 which is the weight of parents' utility function.

 Ω

イロト イ母 トイラト イラト

Concluding Remarks

- We investigate an optimal portfolio, consumption and life insurance premium choice problem of family.
- Analytic solutions for the value function and the optimal policies are derived by the martingale method.
- We analyze the properties of the optimal policies, where the emphasis is placed on the role of α_1 which is the weight of parents' utility function.

つひひ

イロト イ母ト イヨト イヨト

Thank you!

 2990

メロメメ 御 メメ 君 メメ 君 メ