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Lifetime Ruin Problem

Introduction

An optimal investment problem:

Individual can invest in a market with

Risk less account: dBt = rBtdt;
Risky asset /stock: dSt = µStdt + σtStdBt

She earns income A and has a minimal consumption c;

Her future lifetime is random.

Question: How should she invest in order to minimize the probability of
outliving her wealth, i.e, the probability of lifetime ruin?

Wealth dynamic: dWt = [µπt + r(Wt − πt) + A− c]dt + σtπtdBt ,
with investing strategy πt denoting the amount of money invested in risky
asset at time t.
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Lifetime Ruin Problem

Lifetime Ruin Problem

Ruin level: wa = 0

Safe level: ws = c−A
r

Ruin time: τ0 = inf {t : Wt ≤ wa}
Death time: τd , random, depends on the hazard rate λ

Minimum probability of ruin:

ψ(w , t) = inf
πt∈A

P(τ0 < τd |Wt = w , t < τd)

= inf
πt∈A

Ew [e−
∫ τ0
t λds ]

(1)

Boundary conditions:

ψ(w , t) = 1, for w ≤ wa,

ψ(w , t) = 0, for w ≥ ws ,
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Lifetime Ruin Problem

Motivation

Young [2004] obtained explicit formula for the optimal strategy and
minimum lifetime ruin probability, when the stock price follows
standard Black-Scholes model;

Bayraktar et al. [2008] modeled the consumption as an increasing
function of wealth, and considers random consumption;

Young and Moore [2006] considered varying hazard rate.

However, all the above work model the stock as a geometric
Brownian motion with constant volatility.

More realistic stock model: Stochastic Volatility Model.

Xueying Hu ( University of Michigan) Toronto, BFS 2010 5 / 20



Stochastic Volatility Model

Stochastic Volatility Model

Stock price:

dSt = µStdt + σtStdB
0
t

σt = f (Yt ,Zt),

dYt =
1

ε
(m − Yt)dt +

√
2ν√
ε
dB1

t , 0 < ε << 1,

dZt = δc(Zt)dt +
√
δd(Zt)dB

2
t , 0 < δ << 1.

(2)

Two volatility factors

Yt : fast volatility factor
Zt : slow volatility factor

Reasons to use this model

can fit the implied volatility smile well;
we can obtain analytical approximation using multi-scale analysis
(Fouque et al. [2000])).
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Stochastic Volatility Model

Minimizing Probability of Ruin Under Stochastic Volatility

Minimum probability of ruin: ψ(w , y , z) = infπt Ew ,y ,z [e−λτ0 ].
Ito’s formula and Dynamic Programming Principle give HJB equation
for ψ:

inf
π∈A
Dπψ = 0

where

Dπψ = −λψ + (rw − c)ψw +
1

ε
(m − y)ψy + δc(z)ψz

+
1

ε
ν2ψyy +

1

2
δg 2(z)ψzz + ρ23

√
2ν

√
δg(z)√
ε

ψyz

+

[
π(µ− r)ψw +

1

2
f 2(y , z)π2ψww +

ρ12f (y , z)πν
√
2√

ε
ψwy +

√
δρ13πf (y , z)g(z)ψwz

]

Xueying Hu ( University of Michigan) Toronto, BFS 2010 7 / 20



Mathematical Tools

Mathematical Tools

Verification Theorem: to validate a candidate solution.

Legendre Transform: to obtain duality relationship between ψ and a
concave function ψ̂ satisfying a PDE with free boundary condition.

Asymptotic Analysis (Fouque et al. [2000]): to asymptotically expand
ψ̂ in power of

√
ε and

√
δ, then compute explicit formula for each

component.

Markov Chain Approximation Method (MCAM) (Kushner and Dupuis
[2001]): alternatively, we can approach the original problem directly
and obtain numerical approximation.
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Main Results with Numerical Examples

Verification Theorem

Theorem 3.1. Suppose v : D→ R is a bounded, continuous function that
satisfies the following conditions:

1 v(·, y , z) ∈ C 2 is a non-increasing, convex function;

2 v(w , ·, ·) ∈ C 2,2;

3 v(0, y , z) = 1;

4 v(c/r , y , z) = 0;

5 Dβv ≥ 0 for all β ∈ R.

Then, v ≤ ψ on D.
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Main Results with Numerical Examples

Dual of ψ

A related optimal controller-stopper problem:

dX γ
t = −(r − λ)X γ

t dt −
µ− r

f (Yt ,Zt)
X γ
t dB̃

(0)
t + γ

(1)
t dB̃

(1)
t + γ

(2)
t dB̃

(2)
t

Define

ψ̂(x , y , z) = inf
τ

sup
γ

Ex,y ,z

[∫ τ

0

e−λtc X γ
t dt + e−λτ min ((c/r)X γ

τ , 1)

]
. (3)

Convex Legendre Dual:

Ψ(w , y , z) = max
x

(
ψ̂(x , y , z)− wx

)
. (4)

Theorem 4.1. Ψ equals the minimum prob of lifetime ruin ψ, and the
optimal strategy π∗ is given by the first order condition.
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Main Results with Numerical Examples

Asymptotic Approximation

Asymptotic approximation result for ψ̂:

ψ̂(x , z) = ψ̂0,0(x , z) +
√
ε ψ̂0,1(x , z) +

√
δ ψ̂1,0(x , z) +O(ε, δ,

√
ε δ)

= −
1

B1(z)− 1

(
c

r
·
B1(z)− 1

B1(z)
· x
)B1(z)

+
c

r
x

+
√
εA(z) xB1(z) log

(
x ·

B1(z)− 1

B1(z)
·
c

r

)
+
√
δ xB1(z) log

(
x ·

B1(z)− 1

B1(z)
·
c

r

) [
A1(z) + A2(z) log

(
x ·

B1(z)

B1(z)− 1
·
r

c

)]
+O(ε, δ,

√
ε δ),

(5)

Asymptotic approximation result for optimal strategy

π̂∗(x , y , z) = −
µ− r

f 2(y , z)
x ψ̂0,0,xx +

√
ε

(
−

µ− r

f 2(y , z)
x ψ̂0,1,xx + ρ12

ν
√
2

f (y , z)
ψ̂0,2,xy

)

+
√
δ

(
−

µ− r

f 2(y , z)
x ψ̂1,0,xx + ρ13

h(z)

f (y , z)
ψ̂0,0,xz

)
+O(ε, δ,

√
ε δ).

(6)
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Main Results with Numerical Examples

Numerical Example

Question 1: What do the optimal solutions look like?

Question 2: How does the stochastic environment affect our strategy?

Question 3: How do different strategies perform in stochastic
environment?
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Main Results with Numerical Examples

Q1: Minimum Ruin Probability

(a) Fast volatility factor ε = 0.004
(reverting speed = 1/ε = 250)

(b) Slow volatility factor δ = 0.02
(reverting speed = δ = 0.02)

Figure 1: Minimum Probability of Ruin
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Main Results with Numerical Examples

Q1: Optimal Strategy

(a) Fast volatility factor ε = 0.004 (b) Slow volatility factor δ = 0.02

Figure 2: Optimal Strategy
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Main Results with Numerical Examples

Q2: Stochastic Environment

Question 2: How does the stochastic environment affect our strategy?

Recall that in constant volatility environment, (Young[2004]),

Optimal strategy π̃(w ;σ) = µ−r
σ2

c−wr
(p−1)r ;

Minimum ruin probability ψ̃(w) = (1− rw
c )p.

where p = 1
2r [(r + λ+ s) +

√
(r + λ+ s)2 − 4rλ],

and s = 1
2

(
µ−r
σ

)2
.

Xueying Hu ( University of Michigan) Toronto, BFS 2010 15 / 20



Main Results with Numerical Examples

Q2: Stochastic Environment

Question 2: How does the stochastic environment affect our strategy?

Recall that in constant volatility environment, (Young[2004]),

Optimal strategy π̃(w ;σ) = µ−r
σ2

c−wr
(p−1)r ;

Minimum ruin probability ψ̃(w) = (1− rw
c )p.

where p = 1
2r [(r + λ+ s) +

√
(r + λ+ s)2 − 4rλ],

and s = 1
2

(
µ−r
σ

)2
.

Xueying Hu ( University of Michigan) Toronto, BFS 2010 15 / 20



Main Results with Numerical Examples

Q2: Stochastic Environment

Optimal Strategy:

(a) Fast volatility factor ε = 0.004
(reverting speed = 1/ε = 250)

(b) Slow volatility factor δ = 0.02
(reverting speed = δ = 0.02)

Figure 3: Minimum Probability of Ruin
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Main Results with Numerical Examples

Q2: Stochastic Environment

Optimal Strategy(Cont):

(a) Medium reverting speed = 0.2

Figure 4: Minimum Probability of Ruin
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Main Results with Numerical Examples

Q3: Performance of Different Strategies

Question 3: How do different strategies perform in stochastic
environment?

Consider the following strategies:

πa: πa(w) = π̃(w ;σ0);
πb: πa(w) = π̃(w ;σm);
πc : πa(w) = π̃(w ; f (y , z));
πM : invest only in money market.
πε,πδ : strategy obtained by asymptotic approximation.
π∗: optimal strategy;
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Main Results with Numerical Examples

Q3: Performance of Different Strategies

Ruin Probability: (volatility factor reverts with medium speed 0.2)

Figure 3.1: σ0=0.6;

Figure 3.2: σ0=
σm=0.25;

Figure 3.3: σ0=0.1.
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Conclusion

Conclusion

We obtained

closed-form asymptotic approximation to optimal investment strategy
and minimum probability of ruin;

effects of the stochastic volatility environment;

an easy-to-implement rule for nearly optimal lifetime ruin probability.

Thanks for your attention!

Questions?

Xueying Hu ( University of Michigan) Toronto, BFS 2010 20 / 20



Conclusion

Conclusion

We obtained

closed-form asymptotic approximation to optimal investment strategy
and minimum probability of ruin;

effects of the stochastic volatility environment;

an easy-to-implement rule for nearly optimal lifetime ruin probability.

Thanks for your attention!

Questions?

Xueying Hu ( University of Michigan) Toronto, BFS 2010 20 / 20



Conclusion

Conclusion

We obtained

closed-form asymptotic approximation to optimal investment strategy
and minimum probability of ruin;

effects of the stochastic volatility environment;

an easy-to-implement rule for nearly optimal lifetime ruin probability.

Thanks for your attention!

Questions?

Xueying Hu ( University of Michigan) Toronto, BFS 2010 20 / 20


	Lifetime Ruin Problem
	Stochastic Volatility Model
	Mathematical Tools
	Main Results with Numerical Examples
	Conclusion

