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Chronology

1 The Brody-Hughston-Macrina (BHM) approach to
information-based asset pricing is developed (2006-2008). See,
e.g., Macrina (2006).

2 The gamma bridge information process is introduced for the
modelling of cumulative gains/losses (BHM (2008)).

3 The BHM approach is extended to a class of Lévy-bridge
information processes (H., Hughston and Macrina (2009)).

4 Lévy-bridge information is applied to non-life reserving
(H., Hughston and Macrina (2010)).

5 The work presented here is based on an example from 4 which, in
turn, is an example of 3.
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GIG processes I

We consider a class of increasing, stochastically-continuous
processes, with stationary increments, defined over a finite time
horizon [0, T ].

In general, the increments of the processes are not independent.

The a priori time-T distribution of the processes are generalized
inverse-Gaussian (GIG).

The processes are Markov.
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GIG distribution
The density of the GIG distribution is

fGIG(x ; λ, δ, γ) = 1{x>0}

(γ

δ

)λ xλ−1 exp
(

−1
2

(

δ2x−1 + γ2x2
))

Kλ[γδ]
,

where δ, γ > 0, λ ∈ R, and Kν [z] is the modified Bessel function.
The k th moment of GIG random variable X is

E[X k ] =
Kλ+k [γδ]

Kλ[γδ]

(

δ

γ

)k

.

The following identity is useful:

Kn+1/2[z] =

√

π

2z
e−z

n
∑

j=0

(n + 1
2 , j)(2z)−j ,

where (m, n) is Hankel’s symbol

(m, n) =
Γ[m + 1/2 + n]

n!Γ[m + 1/2 − n]
.
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GIG with λ = n − 1/2
Fix γ, c > 0 and define

q(k)
t (x) = fGIG(x ; , k − 1/2, ct , γ),

for k ∈ N0 and t > 0.

q(0)
t (x) is an inverse-Gaussian density and has k th moment

m(k)
t =

[

ct
γ

]k k−1
∑

j=0

(k − 1/2, j)(2ctγ)−j .

Fix n ∈ N0, then define the set of rational functions {w (k)
st (x)}n

k=0
by

w (k)
st (x) =

(n
k

)

m(n−k)
t−s

∑k
j=0

(k
j

)

m(k−j)
T−t x j

∑n
j=0

(n
j

)

m(n−j)
T−t x j

,

for 0 ≤ s < t < T .
It can be shown that

∑n
k=0 w (k)

st (x) = 1.
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Plot of w (k)
st
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Figure: The rational functions {w (k)
st } for n = 5, γ = 2, c = 2, s = 1, t = 3, and

T = 5.
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GIG processes II

Fix a probability space (Ω,F , Q).

We define the Markov process {ξt}0≤t≤T by

Q[ξt ∈ dy | ξs] =
n

∑

k=0

w (k)
st (ξs)q

(k)
t−s (y − ξs) ,

Q[ξT ∈ dy | ξs] =
ynq(0)

T−s (y − ξs)
∑n

k=0 ξk
s m(n−k)

T−s

,

for 0 ≤ s < t < T , and with initial condition ξ0 = 0.

Note that it is non-trivial to prove that {ξt} is well defined.

A priori, ξT has a GIG distribution with parameters δ = cT , γ > 0,
and λ = n − 1/2.

The increment ξt − ξs depends on the first n powers of ξs.
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Moments of the terminal value
The moments of ξT can be calculated as

E

[

ξk
T

∣

∣

∣
ξt

]

=

∑n+k
j=0

(n+k
j

)

m(n+k−j)
T−t ξj

t
∑n

j=0

(n
j

)

m(n−j)
T−t ξj

t

,

for k ∈ N+.
These moments form a class of martingales, and are rational
functions of an increasing Markov process.
The Laplace transform of ξT is

E

[

e
1
2 α2ξT

∣

∣

∣
ξt

]

=

∑n
k=0

(n
k

)

m̄(n−k)
T−t ξk

t
∑n

k=0

(n
k

)

m(n−k)
T−t ξk

t

exp
(

1
2α2ξt − (T − t)(γ̄ − γ)

)

,

for 0 < α < γ, where γ̄ =
√

γ2 − α2, and m̄(k)
t is the k th moment

of the IG distribution with parameters δ = ct and γ = γ̄.
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The Non-Life Reserving Problem

Consider a non-life insurance company that underwrites various
risks for a particular year in return for premiums.
The insurer incurs claims over the one year period. However:

◮ there may be a delay between the incurred date and the reported
date,

◮ the total size of the claim may not be known when the claim is
reported,

◮ the claim may not be paid by a single cash flow on a single date.

The insurer may be paying these claims for many years.
The problem is: how much money should the insurer reserve at a
given time to cover all future claim payments?

◮ This has implications for the insurer’s accounting, tax liability,
solvency, capital adequacy, and investment strategy.
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Preliminaries

We examine the problem of reserving for an insurance company.

We consider claims incurred from a single line of business during
some origin period [0, T̄ ] ⊂ [0, T ].

The ultimate loss UT is the total amount of claims paid.

The insurer needs to hold reserves to cover future losses, and so
wishes to estimate UT , and to quantify the estimation error.

The information used to estimate the reserves can be described
by a reserving filtration {Ft}0≤t≤T .

At time t < T , the best estimate (ultimate loss) is UtT = E [UT | Ft ].
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GIG-process model

We make the following assumptions:
1 All claims have been settled (paid) at time T .
2 UT is a GIG random variable with parameters δ = cT , γ, and

λ = n − 1/2.
3 The (cumulative) paid-claims process {ξt} is a GIG process with

ξT = UT .
4 The reserving filtration {Ft} is generated by {ξt}.
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Best-estimate process simulations
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Figure: Paid-claims process (blue) and best-estimate process (red) with
n = 2, T = 1, c = 5, γ = 5. The green lines give the best estimate ± one
standard deviation.
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VaR and CVaR
The Ft -conditional distribution function of the ultimate loss
UT = ξT is

Ft(u) =

∫ u
ξt

ynq(0)
T−t(y − ξt) du

∑n
k=0

(n
k

)

m(n−k)
T−t ξk

t

.

The value-at-risk at level α is defined as

VaRα = F−1
t (α), α ∈ (0, 1),

and can be found by numerical inversion.
At time t , the conditional value-at-risk at level α is defined as

CVaRα = E[UT |UT > VaRα, ξt ].

A short calculation yields

CVaRα =

∑n+1
k=0

(n+1
k

)

m(n−k+1)
T−t ξk

t −
∫ VaRα

ξt
un+1q(0)

T−t(u − ξt) du

(1 − α)
∑n

k=0

(n
k

)

m(n−k)
T−t ξk

t

.
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Tail-risk plots
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Figure: Paid-claims process (blue) and best-estimate process (red) with
n = 2, T = 1, c = 5, γ = 10. The solid green line is the 95% VaR, and the
dotted green line is the 95% CVaR.
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Extreme Events

For 0 < t < T we have

lim
x→∞

Q [UT > x | ξt ]

Q [UT > x ]
=

m(n)
T exp

{1
2γ2ξt − ctγ

}

∑n
k=0

(n
k

)

m(n−k)
T−t ξk

t

> 0.

This shows that the tail of the conditional distribution of UT is as
heavy as the tail of the a priori distribution.

This is a desirable property if the insurer is exposed to
catastrophic losses.

“The size of a catastrophe does not diminish with time.”

Note, on the other hand, that if {Xt} is a Brownian motion,
geometric Brownian motion, gamma process, or VG process then

lim
x→∞

Q[XT > x |Xt ]

Q[XT > x ]
= 0.
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Derivation of the GIG process

Let {St} be a stable-1/2 subordinator. That is, {St} is an
increasing Lévy process with Laplace transform

log E[e−αSt ] = −ct

√

α

2
, for c > 0.

Let X be a GIG random variable with parameters δ = cT , γ > 0,
and λ = n − 1/2.

Then the conditioned process

{St}
∣

∣

ST =X (0 ≤ t ≤ T ) (1)

is a Lévy random bridge (LRB).

LRBs are Markov processes, and analysis of the transition law of
(1) show that it is identical in law to the GIG process {ξt}.
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