Default Clustering and Valuation of CDOs

Xianhua Peng¹ Steven Kou²

¹Fields Institute Department of Mathematics and Statistics York University

²Department of Industrial Engineering and Operations Research Columbia University

Bachelier 2010

4 0 8

Outline

1 [CDO and Review of Pricing Models](#page-2-0)

- [What is a CDO?](#page-3-0)
- [Review of Existing Pricing Models](#page-8-0)

[The Conditional Survival \(CS\) Model for CDO Pricing](#page-17-0)

- [Motivation and Default Clustering](#page-18-0)
- [Conditional Survival \(CS\) Model](#page-23-0)

[Calibration Results](#page-39-0)

Outline

1 [CDO and Review of Pricing Models](#page-2-0)

- [What is a CDO?](#page-3-0)
- [Review of Existing Pricing Models](#page-8-0)

[The Conditional Survival \(CS\) Model for CDO Pricing](#page-17-0)

- [Motivation and Default Clustering](#page-18-0)
- \bullet [Conditional Survival \(CS\) Model](#page-23-0)

[Calibration Results](#page-39-0)

- Banks suffered tens of billion dollar losses due to subprime CDOs at the end of 2007
- What is a CDO?

 QQ

4 0 8

Collateralized Debt Obligation (CDO)

A CDO is a debt security that is constructed from a portfolio of collateral (assets).

 Ω

4 0 8

Morgan Stanley

 299

→ 重

D

K ロ ⊁ K 倒 ≯ K ミ ≯

What is a CDO?

重

 299

K ロ > K 個 > K 差 > K 差 >

What is a CDO?

 299

- τ_i : default time of the *i*-th name, $i=1,\ldots,n$
- \bullet Cumulative portfolio loss at time t:

$$
L_t = \sum_{i=1}^n c_i \cdot 1_{\{\tau_i \leq t\}}
$$

- CDO tranche valuation reduces to calculation of $E[(L_t K)^+]$
- Objective of CDO pricing model
	- calibrate to single name marginal default probability
	- calibrate to CDO tranche spreads

Two Approaches for CDO Modeling

- Top-down approach builds models for the portfolio cumulative loss process directly
	- Good fit for standard CDO portfolios
	- CANNOT calibrate to single name marginal default probability
	- Longstaff & Rajan, 2007, Giesecke, et al., 2007, Halperin, 2007, Cont & Minca, 2007
- Bottom-up approach builds models for single name default times
	- Consistent with single name marginal default probability
	- Has more difficulty in calibrating CDO tranche spreads
	- Examples: Static bottom-up models, e.g. copula models, dynamic intensity models

 QQ

イロト イ押 トイヨ トイヨト

- Top-down approach builds models for the portfolio cumulative loss process directly
	- Good fit for standard CDO portfolios
	- CANNOT calibrate to single name marginal default probability
	- Longstaff & Rajan, 2007, Giesecke, et al., 2007, Halperin, 2007, Cont & Minca, 2007
- Bottom-up approach builds models for single name default times
	- Consistent with single name marginal default probability
	- Has more difficulty in calibrating CDO tranche spreads
	- Examples: Static bottom-up models, e.g. copula models, dynamic intensity models

 Ω

A BAKEN

4 ロ ト ィ *同* ト

- Idea: using copula functions to model default time correlation \bullet
- Literature: Gaussian copula model (Li, 2000)
- What is wrong with Gaussian copula?
	- Gaussian copula cannot generate tail dependence

$$
\lim_{q\to 0} P(\tau_2 < F_2^{-1}(q)|\tau_1 < F_1^{-1}(q)) = 0
$$

 \bullet Gaussian copula does not work during crisis, when the default correlation is strong.

Gaussian Copula Does Not Work During Crisis

- General idea
	- Single name default intensity $\lambda_i(t)$: (Jarrow & Turnbull, 1995)

$$
P(\tau_i \leq t + \Delta t | \mathcal{F}_t) = \lambda_i(t) \Delta t + o(\Delta t), \text{ on } \{\tau_i > t\}
$$

- Building correlation among default intensities $\lambda_1(t), \ldots, \lambda_n(t)$
- Dynamic intensity model for CDO pricing (Duffie & Gârleanu, 2001, Mortensen, 2006)

$$
\bullet \;\; \lambda_i(t) = a_i \lambda^M(t) + \lambda^{id}_i(t), \, i=1,\ldots,n
$$

 $\lambda^{M}(t)$ and $\lambda^{id}_{i}(t)$ are independent affine jump diffusion processes

4 0 8

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

- Drawback: cannot incorporate strong default correlation
- Other dynamic models: Hull & White (2008), Hurd & Kuznetsov \bullet (2006), Joshi & Stacey (2006), Papageorgiou & Sircar (2007), Schönbucher (2007), Tsui (2010)

- General idea
	- Single name default intensity $\lambda_i(t)$: (Jarrow & Turnbull, 1995)

$$
P(\tau_i \leq t + \Delta t | \mathcal{F}_t) = \lambda_i(t) \Delta t + o(\Delta t), \text{ on } \{\tau_i > t\}
$$

- Building correlation among default intensities $\lambda_1(t), \ldots, \lambda_n(t)$
- Dynamic intensity model for CDO pricing (Duffie & Gârleanu, 2001, Mortensen, 2006)
	- $\lambda_i(t) = a_i \lambda^M(t) + \lambda_i^{id}(t)$, $i = 1, \ldots, n$
	- $\lambda^{\sf M}(t)$ and $\lambda^{\sf id}_i(t)$ are independent affine jump diffusion processes

4 0 8

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

- Drawback: cannot incorporate strong default correlation
- Other dynamic models: Hull & White (2008), Hurd & Kuznetsov \bullet (2006), Joshi & Stacey (2006), Papageorgiou & Sircar (2007), Schönbucher (2007), Tsui (2010)

- General idea
	- Single name default intensity $\lambda_i(t)$: (Jarrow & Turnbull, 1995)

$$
P(\tau_i \leq t + \Delta t | \mathcal{F}_t) = \lambda_i(t) \Delta t + o(\Delta t), \text{ on } \{\tau_i > t\}
$$

- Building correlation among default intensities $\lambda_1(t), \ldots, \lambda_n(t)$
- Dynamic intensity model for CDO pricing (Duffie & Gârleanu, 2001, Mortensen, 2006)
	- $\lambda_i(t) = a_i \lambda^M(t) + \lambda_i^{id}(t)$, $i = 1, \ldots, n$
	- $\lambda^{\sf M}(t)$ and $\lambda^{\sf id}_i(t)$ are independent affine jump diffusion processes

Drawback: cannot incorporate strong default correlation

Other dynamic models: Hull & White (2008), Hurd & Kuznetsov \bullet (2006), Joshi & Stacey (2006), Papageorgiou & Sircar (2007), Schönbucher (2007), Tsui (2010)

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

4 D.K.

- General idea
	- Single name default intensity $\lambda_i(t)$: (Jarrow & Turnbull, 1995)

$$
P(\tau_i \leq t + \Delta t | \mathcal{F}_t) = \lambda_i(t) \Delta t + o(\Delta t), \text{ on } \{\tau_i > t\}
$$

- Building correlation among default intensities $\lambda_1(t), \ldots, \lambda_n(t)$
- Dynamic intensity model for CDO pricing (Duffie & Gârleanu, 2001, Mortensen, 2006)
	- $\lambda_i(t) = a_i \lambda^M(t) + \lambda_i^{id}(t)$, $i = 1, \ldots, n$
	- $\lambda^{\sf M}(t)$ and $\lambda^{\sf id}_i(t)$ are independent affine jump diffusion processes
- Drawback: cannot incorporate strong default correlation
- Other dynamic models: Hull & White (2008), Hurd & Kuznetsov (2006), Joshi & Stacey (2006), Papageorgiou & Sircar (2007), Schönbucher (2007), Tsui (2010)

 Ω

イ押 トイヨ トイヨ ト

1 [CDO and Review of Pricing Models](#page-2-0)

- [What is a CDO?](#page-3-0)
- [Review of Existing Pricing Models](#page-8-0)

[The Conditional Survival \(CS\) Model for CDO Pricing](#page-17-0)

- [Motivation and Default Clustering](#page-18-0)
- ● [Conditional Survival \(CS\) Model](#page-23-0)

[Calibration Results](#page-39-0)

Default clustering effect: cross-sectional and dynamic (across time)

- The recent demise of major financial institutions
- The iTraxx 5Y index tranche spreads

Empirical evidence of default clustering (Das, Duffie, Kapadia, & Saita, 2007, Longstaff & Rajan, 2007, Azizpour & Giesecke, 2008)

$$
\tau_i = \inf \{ t \ge 0 : \Lambda_i(t) \ge E_i \}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \int_0^t \lambda_i(s) ds \quad (\Lambda_i(t) \text{ is continuous!})
$$

- \bullet Drawback: It cannot generate simultaneous defaults of several names.
- Empirical observation of simultaneous default: 24 railway firms defaulted on June 21, 1970 (Azizpour & Giesecke, 2008)
- Empirical evidence of default clustering exceeding that implied by the doubly stochastic model (Das, Duffie, Kapadia, & Saita, 2007)

 Ω

化重压 不重

$$
\tau_i = \inf \{ t \ge 0 : \Lambda_i(t) \ge E_i \}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \int_0^t \lambda_i(s) ds \quad (\Lambda_i(t) \text{ is continuous!})
$$

- Drawback: It cannot generate simultaneous defaults of several names.
- Empirical observation of simultaneous default: 24 railway firms defaulted on June 21, 1970 (Azizpour & Giesecke, 2008)
- Empirical evidence of default clustering exceeding that implied by the doubly stochastic model (Das, Duffie, Kapadia, & Saita, 2007)

 Ω

化重压 不重

$$
\tau_i = \inf \{ t \ge 0 : \Lambda_i(t) \ge E_i \}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \int_0^t \lambda_i(s) ds \quad (\Lambda_i(t) \text{ is continuous!})
$$

- Drawback: It cannot generate simultaneous defaults of several names.
- Empirical observation of simultaneous default: 24 railway firms defaulted on June 21, 1970 (Azizpour & Giesecke, 2008)
- Empirical evidence of default clustering exceeding that implied by the doubly stochastic model (Das, Duffie, Kapadia, & Saita, 2007)

 Ω

化重压 化重

$$
\tau_i = \inf \{ t \ge 0 : \Lambda_i(t) \ge E_i \}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \int_0^t \lambda_i(s) ds \quad (\Lambda_i(t) \text{ is continuous!})
$$

- Drawback: It cannot generate simultaneous defaults of several names.
- Empirical observation of simultaneous default: 24 railway firms defaulted on June 21, 1970 (Azizpour & Giesecke, 2008)
- Empirical evidence of default clustering exceeding that implied by the doubly stochastic model (Das, Duffie, Kapadia, & Saita, 2007)

Our new model: conditional survival (CS) model is based on cumulative default intensity

$$
\tau_i = \inf\{t \geq 0 : \Lambda_i(t) \geq E_i\}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \sum_{j=1}^J a_{i,j} M_j(t) + X_i^{id}(t), i = 1, \dots, n.
$$

 \bullet $M(t) = (M_1(t), \ldots, M_J(t))$: market factor processes that may have

 $X_i^{id}(t)$ $X_i^{id}(t)$ $X_i^{id}(t)$: idiosyncratic part of the cumulativ[e d](#page-22-0)[ef](#page-24-0)[a](#page-22-0)[u](#page-23-0)[lt](#page-26-0) [i](#page-27-0)[n](#page-39-0)t[e](#page-38-0)n[s](#page-16-0)[it](#page-17-0)[y](#page-38-0)

Our new model: conditional survival (CS) model is based on cumulative default intensity

$$
\tau_i = \inf\{t \geq 0 : \Lambda_i(t) \geq E_i\}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \sum_{j=1}^J a_{i,j} M_j(t) + X_i^{id}(t), i = 1, \ldots, n.
$$

 \bullet $M(t) = (M_1(t), \ldots, M_J(t))$: market factor processes that may have

 $X_i^{id}(t)$ $X_i^{id}(t)$ $X_i^{id}(t)$: idiosyncratic part of the cumulativ[e d](#page-23-0)[ef](#page-25-0)[a](#page-22-0)[u](#page-23-0)[lt](#page-26-0) [i](#page-27-0)[n](#page-39-0)t[e](#page-38-0)n[s](#page-16-0)[it](#page-17-0)[y](#page-38-0)

Our new model: conditional survival (CS) model is based on cumulative default intensity

$$
\tau_i = \inf\{t \geq 0 : \Lambda_i(t) \geq E_i\}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \sum_{j=1}^J a_{i,j} M_j(t) + X_i^{id}(t), i = 1, \ldots, n.
$$

 $M(t) = (M_1(t), \ldots, M_J(t))$: market factor processes that may have jumps

 $X_i^{id}(t)$ $X_i^{id}(t)$ $X_i^{id}(t)$: idiosyncratic part of the cumulativ[e d](#page-24-0)[ef](#page-26-0)[a](#page-22-0)[u](#page-23-0)[lt](#page-26-0) [i](#page-27-0)[n](#page-39-0)t[e](#page-38-0)n[s](#page-16-0)[it](#page-17-0)[y](#page-38-0)

Our new model: conditional survival (CS) model is based on cumulative default intensity

$$
\tau_i = \inf\{t \geq 0 : \Lambda_i(t) \geq E_i\}, E_i \stackrel{d}{\sim} \exp(1), i.i.d.
$$

$$
\Lambda_i(t) = \sum_{j=1}^J a_{i,j} M_j(t) + X_i^{id}(t), i = 1, \ldots, n.
$$

- $M(t) = (M_1(t), \ldots, M_J(t))$: market factor processes that may have jumps
- $X_i^{id}(t)$ $X_i^{id}(t)$ $X_i^{id}(t)$: idiosyncratic part of the cumulativ[e d](#page-25-0)[ef](#page-27-0)[a](#page-22-0)[u](#page-23-0)[lt](#page-26-0) [i](#page-27-0)[n](#page-39-0)t[e](#page-38-0)n[s](#page-16-0)[it](#page-17-0)[y](#page-38-0)

Conditional survival probability

$$
q_i^c(t) := P(\tau_i > t | M(t)) = E\left[e^{-X_i^{id}(t)}\right] e^{-\sum_{j=1}^J a_{i,j}M_j(t)}
$$

Survival probability

$$
q_i(t) := P(\tau_i > t) = E\left[e^{-X_i^{id}(t)}\right]E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]
$$

• Conditional survival probability is the building block

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

4 0 8

- \bullet Use $q_i(t)$ as input: the model automatically calibrates to single name default probability
- No dynamics for $X_i^{id}(t)$

Conditional survival probability

$$
q_i^c(t) := P(\tau_i > t | M(t)) = E\left[e^{-X_i^{id}(t)}\right] e^{-\sum_{j=1}^J a_{i,j}M_j(t)}
$$

Survival probability

$$
q_i(t) := P(\tau_i > t) = E\left[e^{-X_i^{id}(t)}\right]E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]
$$

• Conditional survival probability is the building block

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

4 0 8

 \bullet Use $q_i(t)$ as input: the model automatically calibrates to single name default probability

No dynamics for $X_i^{id}(t)$

Conditional survival probability

$$
q_i^c(t) := P(\tau_i > t | M(t)) = E\left[e^{-X_i^{id}(t)}\right] e^{-\sum_{j=1}^J a_{i,j}M_j(t)}
$$

Survival probability

$$
q_i(t) := P(\tau_i > t) = E\left[e^{-X_i^{id}(t)}\right]E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]
$$

• Conditional survival probability is the building block

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

- \bullet Use $q_i(t)$ as input: the model automatically calibrates to single name default probability
- No dynamics for $X_i^{id}(t)$

Conditional survival probability

$$
q_i^c(t) := P(\tau_i > t | M(t)) = E\left[e^{-X_i^{id}(t)}\right] e^{-\sum_{j=1}^J a_{i,j}M_j(t)}
$$

Survival probability

$$
q_i(t) := P(\tau_i > t) = E\left[e^{-X_i^{id}(t)}\right]E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]
$$

• Conditional survival probability is the building block

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

4 0 8

- \bullet Use $q_i(t)$ as input: the model automatically calibrates to single name default probability
- No dynamics for $X_i^{id}(t)$

Specifying Dynamics of Market Factors

\bullet Pólya process $M(t)$

- A Pólya process is a mixed Poisson process
- Clustering jumps: a Pólya process has positive correlation between increments

 $Cov(M(t), M(t + h) - M(t)) > 0$

Discrete integral of CIR process: $M(t) = \int_0^t V(s) ds$ \bullet

$$
dV(t) = \kappa(\theta - V(t))dt + \sigma \sqrt{V(t)}dW(t)
$$

Laplace transforms of both processes have closed form.

Specifying Dynamics of Market Factors

- \bullet Pólya process $M(t)$
	- A Pólya process is a mixed Poisson process
	- Clustering jumps: a Pólya process has positive correlation between increments

 $Cov(M(t), M(t + h) - M(t)) > 0$

Discrete integral of CIR process: $M(t) = \int_0^t V(s) ds$

$$
dV(t) = \kappa(\theta - V(t))dt + \sigma \sqrt{V(t)}dW(t)
$$

Laplace transforms of both processes have closed form.

- Simulation is fast: only need to simulate market factor processes and Bernoulli r.v.s
- Key fact: conditional on $M(t)$, default events
	- $I_i = 1_{\{\tau_i \leq t\}}, i = 1, \ldots, n$ are independent Bernoulli $(1 q_i^c(t))$ r.v.
- Exact simulation of L_t at given time t:
	- Generate market factors $M_1(t)$, $M_2(t)$, ..., $M_J(t)$.
	- ² Calculate the conditional survival probability analytically

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

- **3** Generate independent $I_i \stackrel{d}{\sim}$ Bernoulli $(1 q_i^c(t)), i = 1, ..., n$. 4 Calculate $L_t = \sum_{i=1}^n c_i \cdot l_i$.
- $E[(L_t K)^+]$: leads to CDO tranche spreads
- \bullet Control variants: L_t

- Simulation is fast: only need to simulate market factor processes and Bernoulli r.v.s
- Key fact: conditional on $M(t)$, default events
	- $I_i = 1_{\{\tau_i \leq t\}}, i = 1, \ldots, n$ are independent Bernoulli $(1 q_i^c(t))$ r.v.
- \bullet Exact simulation of L_t at given time t:
	- **1** Generate market factors $M_1(t), M_2(t), \ldots, M_J(t)$.
	- ² Calculate the conditional survival probability analytically

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

- **3** Generate independent $I_i \stackrel{d}{\sim}$ Bernoulli $(1 q_i^c(t)), i = 1, ..., n$. 4 Calculate $L_t = \sum_{i=1}^n c_i \cdot l_i$.
- $E[(L_t K)^+]$: leads to CDO tranche spreads
- \bullet Control variants: L_t

- Simulation is fast: only need to simulate market factor processes and Bernoulli r.v.s
- Key fact: conditional on $M(t)$, default events
	- $I_i = 1_{\{\tau_i \leq t\}}, i = 1, \ldots, n$ are independent Bernoulli $(1 q_i^c(t))$ r.v.
- Exact simulation of L_t at given time t:
	- **1** Generate market factors $M_1(t), M_2(t), \ldots, M_J(t)$.
	- ² Calculate the conditional survival probability analytically

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

- **3** Generate independent $I_i \stackrel{d}{\sim}$ Bernoulli $(1 q_i^c(t)), i = 1, ..., n$. 4 Calculate $L_t = \sum_{i=1}^n c_i \cdot l_i$.
- $E[(L_t K)^+]$: leads to CDO tranche spreads
- \bullet Control variants: L_t

- Simulation is fast: only need to simulate market factor processes and Bernoulli r.v.s
- Key fact: conditional on $M(t)$, default events
	- $I_i = 1_{\{\tau_i \leq t\}}, i = 1, \ldots, n$ are independent Bernoulli $(1 q_i^c(t))$ r.v.
- \bullet Exact simulation of L_t at given time t:
	- **1** Generate market factors $M_1(t), M_2(t), \ldots, M_J(t)$.
	- ² Calculate the conditional survival probability analytically

$$
q_i^c(t) = q_i(t) \cdot \frac{e^{-\sum_{j=1}^J a_{i,j}M_j(t)}}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

- **3** Generate independent $I_i \stackrel{d}{\sim}$ Bernoulli $(1 q_i^c(t)), i = 1, ..., n$. 4 Calculate $L_t = \sum_{i=1}^n c_i \cdot l_i$.
- $E[(L_t K)^+]$: leads to CDO tranche spreads
- \bullet Control variants: L_t

• Sensitivity w.r.t. to single name survival probability

$$
E[(L_t - K)^+] = E[A_i(t)q_i(t) + B_i(t)]
$$

$$
\frac{\partial E[(L_t - K)^+] }{\partial q_i(t)} = E[A_i(t)]
$$

- $A_i(t)$ can be obtained as a byproduct in each simulation of $L_t.$
- The sensitivities w.r.t. each of the *n* single name CDS are obtained concurrently with CDO tranche pricing.

• Sensitivity w.r.t. to single name survival probability

$$
E[(L_t - K)^+] = E[A_i(t)q_i(t) + B_i(t)]
$$

$$
\frac{\partial E[(L_t - K)^+] }{\partial q_i(t)} = E[A_i(t)]
$$

- $A_i(t)$ can be obtained as a byproduct in each simulation of $L_t.$
- The sensitivities w.r.t. each of the *n* single name CDS are obtained concurrently with CDO tranche pricing.

1 [CDO and Review of Pricing Models](#page-2-0)

- [What is a CDO?](#page-3-0)
- [Review of Existing Pricing Models](#page-8-0)

[The Conditional Survival \(CS\) Model for CDO Pricing](#page-17-0)

- [Motivation and Default Clustering](#page-18-0)
- [Conditional Survival \(CS\) Model](#page-23-0) \bullet

[Calibration Results](#page-39-0)

Calibration to iTraxx 5Y Tranche Spreads on 03/14/08

- CDO and CDS data on March 14, 2008, right before the collapse of Bear Stern
- Calibration results by using 2 Polya process and 1 discrete integral of CIR process

Pricing error: Chi-square = 6.48 (p-value = 0.26), RMSE = 1.11 \bullet

CHISA =
$$
\sum_{k=1}^{6} \frac{(s_k - s_k^o)^2}{s_k}
$$
, RMSE = $\sqrt{\frac{1}{6} \sum_{k=1}^{6} \left(\frac{s_k - s_k^o}{s_k^{o,a} - s_k^{o,b}} \right)^2}$

Model and Market Implied Correlation on 03/14/08

 \curvearrowright

- CDO and CDS data on September 16, 2008, right after Lehman Brothers went bankruptcy
- Calibration results by using 2 Polya process and 1 discrete integral of CIR processes

Pricing error: Chi-square = 9.25 (p-value = 0.10), RMSE = 2.55 \bullet

Model and Market Implied Correlation on 09/16/08

 \curvearrowright

- It is based on cumulative default intensities instead of intensities.
- **•** It is able to generate a substantially high degree of default clustering.
- **If does not specify any dynamics for idiosyncratic default risk** component.
- **•** It automatically calibrates to single name marginal default probability.

 Ω

4 0 8

- It is based on cumulative default intensities instead of intensities.
- It is able to generate a substantially high degree of default \bullet clustering.
- **If does not specify any dynamics for idiosyncratic default risk** component.
- **•** It automatically calibrates to single name marginal default probability.

 Ω

4 0 8

- It is based on cumulative default intensities instead of intensities.
- It is able to generate a substantially high degree of default \bullet clustering.
- **It does not specify any dynamics for idiosyncratic default risk** component.
- **•** It automatically calibrates to single name marginal default probability.

- It is based on cumulative default intensities instead of intensities.
- It is able to generate a substantially high degree of default \bullet clustering.
- **It does not specify any dynamics for idiosyncratic default risk** component.
- It automatically calibrates to single name marginal default probability.

Thank you!

E

 299

4 0 8 \mathcal{A} 画 \sim ∍

Table: Compare parameters for 03/14/08 and 09/16/08

∍

 299

医下半面

4 0 8

 \leftarrow \leftarrow \leftarrow

Implicit Constraints on Model Parameters

The idiosyncratic cumulative intensities $X_i^{id}(t) \geq 0$ and increasing

$$
E\left[e^{-X_i^{id}(T_m)}\right] \leq E\left[e^{-X_i^{id}(T_{m-1})}\right] \leq \cdots \leq E\left[e^{-X_i^{id}(T_1)}\right] \leq 1, \forall 1 \leq i \leq n
$$

• Recall that

$$
E\left[e^{-X_i^{id}(t)}\right] = \frac{q_i(t)}{E\left[e^{-\sum_{j=1}^J a_{i,j}M_j(t)}\right]}
$$

• This imposes parameter constraints:

$$
\frac{q_i(T_m)}{E\left[e^{-\sum_{j=1}^j a_{i,j}M_j(T_m)}\right]}\leq\cdots\leq\frac{q_i(T_1)}{E\left[e^{-\sum_{j=1}^j a_{i,j}M_j(T_1)}\right]}\leq 1, \forall 1\leq i\leq n
$$

 QQ

Pricing error function: F(Θ)

- Initialization: set market factor parameter Θ_0 , and set $s = 0$.
- (2) Iteration: $s \rightarrow s + 1$
	- For given Θ_s , determine loading coefficients $a_{i,j}$ by solving a constrained optimization problem:

$$
\begin{array}{ll}\n\text{min} & E\left[e^{-\sum_{j=1}^{J} a_{i,j}M_j(T_m)}\right] - q_i(T_m) \\
\text{s.t.} & \frac{q_i(T_m)}{E\left[e^{-\sum_{j=1}^{J} a_{i,j}M_j(T_m)}\right]} \leq \cdots \leq \frac{q_i(T_1)}{E\left[e^{-\sum_{j=1}^{J} a_{i,j}M_j(T_1)}\right]} \leq 1 \\
0 \leq a_{i,j}\n\end{array}
$$

4 m k

- Calculate the tranche spreads and pricing error $F(\Theta_s)$
- Update the market factor parameter $\Theta_s \rightarrow \Theta_{s+1}$ by some optimization routine, e.g. Powell's direction-set algorithm
- Repeat

3 B X 3 B