BACHELIER WORLD CONGRESS, TORONTO 2010

A CDO OPTION MARKET MODEL FOR STANDARDIZED CDS INDEX TRANCHES

Jochen DORN

Finance Research Group ASB, Aarhus University

June 25th 2010

DORN J. INDEX TRANCHE MARKET MODEL

イロト イポト イヨト イヨト

ECONOMIC MOTIVATION

MARKET CONTEXT

- CDO is a OTC Product \Rightarrow High Transaction Costs
- "Liquidity Gap" costs precious Basis Points

 \Rightarrow Initialization of a standardized synthetic CDO Market (CDX/iTraXX)

MODELING CONSTRAINTS

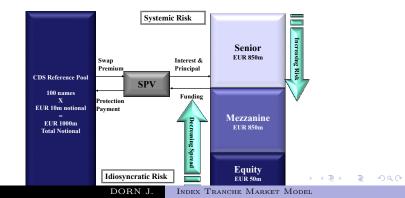
- Credit Derivatives : "Static" Models \Rightarrow The investor does not pay for the Véga !
- Pricing of CDO tranches with option alike pay-offs (Deal Spread, Cumulative Loss as underlying)
- "Maturity Trap"
- \rightarrow need for Spread Dynamics !

Preliminaries	Motivation
The Model	Recall : CDO Structure
Conclusion	Related Literature
Implementation	CDO Spread Determinants

STANDARDIZATION ASSUMPTIONS

- Underlying CDS Portfolio restricted to components of CDX / iTraXX index series
- Pre-Set Attachment / Detachment Points
- \rightarrow Success Story \Rightarrow option trading possible

CDS INDEX TRANCHES


- CDS Index Tranches securitize CDS Index Series.
- Attachment / Detachment Points are standardized [0%, 3%, 6%, 9%, 12%, 22%, 100%]
 ⇒ improves liquidity, reduces ramp-up costs for structurers

・ロト ・ 日本・ ・ 日本・

Synthetic CDO Structure

- Only synthetic CDOs (CDOs on a CDS portfolio) allow for product standardization and hence for liquidity
- $\bullet\,$ CDOs securitize credit spreads and issue tranches $\rightarrow\,$ Leverage

Related Literature

- BGM model : Arbitrage-Free model for other than instantaneous, continuously compounded forward rates
 - The idea is to chose a different numeraire other than the risk-free account
 - \blacktriangleright Leads to Black's formula \rightarrow we refer to as "market models"
 - First attempt to model a market-implied term structure of forward rates
- CDS option MM : Brigo & Mercurio transferred the idea of a market model into the credit derivatives environment
 - One-Period Spread modeling approach applied to the CDS market, with approximation constraints
- D. Filipovic, L. Overbeck and T. Schmidt. "Dynamic CDO Term Structure Modelling" (2008)

Scope

- provide a market model for tranche spread dynamics
- practitioner-oriented approximation method which avoids modeling the 125 underlying CDS
- incorporates CDS correl assumptions market-implied (wrong or false)
- $\bullet\,$ underlier are traded tranche by tranche $\Rightarrow\,$ no need for cross tranche model
- $\bullet\,$ every tranche has its own correl assumption $\Rightarrow\,$ individual asset
- Dynamics become even more relevant with upcoming CDS clearing chamber

イロト イポト イヨト イヨト

 PRELIMINARIES
 MOTIVATION

 THE MODEL
 RECALL : CDO STRUCTURE

 CONCLUSION
 RELATED LITERATURE

 IMPLEMENTATION
 CDO SPREAD DETERMINANTS

Scope

We aim to provide a framework that justifies B&S market practice application.

Deal _		Voir		er ce deal	
Infos sur	deal			Attribu	its
Contrepartie:		#Deal:		Benchmark: 5	45 A As
	érie:	Privilège: 🛛	Usager	Date Courbe:	1/15/08
Irs ouvrés: FUR		ode Règlemt		EU Courbe Swa	D BGN
Aiust, Jrs ouvrés:1		Devise		IPanier sur i	
ACHAT Prise d'eff		Base Calc: A	ст/360	Indice:	
Date Maturi	té: 6/20/09 I	in Mois: N	on	TTRX FUROPE	
Frég Paiement: Trim	estriel		3/20/08	Taille 333	33 MM
Paver Courus: Vrai			3/20/09	Tranche: C	Custom
Spread Deal: 100.0			MM	Point Départ:	3.0
Calculs	Mode	Calc pri	x	Point Arrêt:	6.0
Valorisation au: 1/1	6/08 Mode	eles BB 1 fa	cteur	Taille tranch	10.00 MM
Règlmt cash le: 1/1	8/08			Info Ca	lc
Pts upfront (%):	0.00 Repl	Sprd (pb):	0.000	8) Infos déple	amt
Principal:	0.00 % d'	aggrég.:	0.00		
Courus:	0.00 Cour		0		
Protection due:	0.00 Spro	DVX:	0.00	Attach Corr:	0.0
Vlr Marché:	0.00 IR [OV01:	0.00	Detach Corr:	0.0
VA par défaut:	0.00 Hedd	ie Gap:	0.00		
Sen Corr Arr:		Corr Dép:	0.00	Spread indice	50.14
			CDII: 0	Fact éch sprd	· 0.00

DORN J. INDEX TRANCHE MARKET MODEL

э

 PRELIMINARIES
 MOTIVATION

 THE MODEL
 RECALL : CDO STRUCTURE

 CONCLUSION
 RELATED LITERATURE

 IMPLEMENTATION
 CDO SPREAD DETERMINANTS

Scope

- We consider a CDO tranche with AP *D*% and DP *E*% and tenor [*T_a*; *T_b*].
- The aim consists in finding a recursive formula for market-implied Spread Dynamics !
- \Rightarrow need for liquid market data.

LEMMA

Let $\Pi_{CallCDO_{a,b}^{D,E}}(t, K)$ describe the t-time pay-off of a forward start call option written on standardized CDO tranche with boundaries [D%; E%]. The tenor is $[T_a; T_b]$. Within the Black & Scholes framework the Call option takes the value

$$\Pi_{CallCDO_{a,b}^{D,E}}(t,K) = \hat{C}_{a,b}^{D,E}(t) \times \left[S_{a,b}^{D,E}(t)N(d_1) - K \times N(d_2)\right]$$
(1)

with

$$\hat{C}_{a,b}^{D,E}(T_a) =: \sum_{i=a+1}^b \delta_i B(T_a, T_i) E_Q^t T_i [X(T_i)]$$

and

$$d_{1,2} = \frac{ln\left(\frac{S_{a,b}^{D,E}(t)}{K}\right) \pm (T_a - t)\frac{1}{2}\int_t^{T_a}\sigma_{a,b}^2(s)ds}{\sigma_{a,b}(T_a - t)\sqrt{T_a - t}}$$

DORN J. INDEX TH

INDEX TRANCHE MARKET MODEL

 PRELIMINARIES
 MOTIVATION

 THE MODEL
 RECALL : CDO STRUCTURE

 CONCLUSION
 RELATED LITERATURE

 IMPLEMENTATION
 CDO SPREAD DETERMINANTS

RECALL CDO SPREAD DETERMINANTS

DEFINITION "CDO PREMIUM LEG" :

• Sum of discounted Cash-Flows perceived by the Trancheholder

DEFINITION "CDO PROTECTION LEG" :

• Sum of the discounted reductions of a tranche's notional inherent to credit events which lead to a decrease in the Trancheholder's "spread revenue".

イロト イポト イヨト イヨト

Preliminaries	Motivation
The Model	Recall : CDO Structure
Conclusion	Related Literature
Implementation	CDO Spread Determinants

DEFINITION "FAIR SPREAD" :

• The t-time Fair Spread is the Spread the investor should have contracted instead of Deal Spread + Euribor/Libor at issuing date in order to allow the tranche quote at par at time *t*.

$$\mathsf{Fair Spread} = \frac{\mathsf{Protection Leg}}{\mathsf{Premium Leg}}$$

Notional Erosion \rightarrow Spread has to be calculated on the outstanding Tranche Notional

DEFINITION FORWARD FAIR TRANCHE SPREAD

Fwd Fair Spread =
$$\frac{B(t, T_i) \text{Protection Leg}_i}{\sum_i B(t, T_i) \text{Premium Leg}_i}$$

3

Overview Spread Dynamics

THE MODEL - CENTRAL IDEA

Describe a fwd-start option on a synth. CDS Index Tranche (B&S framework)

Define forward Fair Tranche Spread as a function of the numeraire Possibility to select any mtgle dynamics of the fwd spread rate under associated probability measure

The Expected outstanding Tranche Notional is a tfwd neutral martingale

Derive forward spread dynamics for different time horizons Calculate its volatility in function of the Spread Rate and the associated observable volatility

Overview Spread Dynamics

STEP 1- THE FWD SPREAD DYNAMICS

DEFINITION

FWD-NEUTRAL MEASURE

$$S_{a,b}^{D,E}(t) = \frac{Protleg(t)}{Premleg(t)}$$

$$\frac{dQ^{D,E}_{a,b}}{dQ} = \frac{\approx}{\frac{\mathsf{Premleg(t)}}{\mathsf{Premleg(t)}}}$$

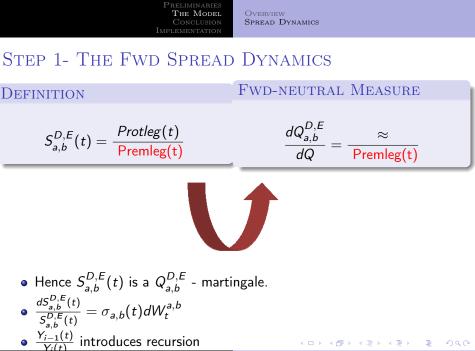
э

Overview Spread Dynamics

STEP 1- THE FWD SPREAD DYNAMICS

DEFINITION

FWD-NEUTRAL MEASURE


$$S_{a,b}^{D,E}(t) = \frac{Protleg(t)}{Premleg(t)}$$

$$\frac{dQ^{D,E}_{a,b}}{dQ} = \frac{\approx}{\frac{\mathsf{Premleg(t)}}{\mathsf{Premleg(t)}}}$$

・ロト ・聞ト ・ヨト ・ヨト

э

DORN J.

INDEX TRANCHE MARKET MODEL

Overview Spread Dynamics

STEP 2 - SHORTFALL DYNAMICS

The expected outstanding tranche notional $Y_i(t)$ is a Q^{T_i} -martingale. Its dynamics under the forward-neutral probability Q^t follows :

$$\frac{dY_i(t)}{Y_i(t)} = \gamma_i(t) dZ_t$$

STEP 3 - DERIVING THE VOLATILITY

LEMMA

 $\forall k \in [a + 1; b]$ the volatility of the process Y_k related to tenor $[T_a, T_b]$ is given by

$$\gamma_k(t) = -\sum_{j=a+1}^k \left(\frac{\delta_j S_{j-1,j}^{D,E}(t)}{1 + \delta_j S_{j-1,j}^{D,E}(t)} \sigma_{j-1,j}(t) \right)$$

Overview Spread Dynamics

STEP 4 - THE FWD ONE-PERIOD SPREAD DYNAMICS

COROLLARY

Consider a deal with tenor $[T_a, T_b]$ and tranche [D, E]. The dynamics of the forward one-period Fair Tranche Spread on tenor $[T_{i-1}, T_i]$ is given by :

$$\frac{dS_{i-1,i}^{D,E}(t)}{S_{i-1,i}^{D,E}(t)} = \sigma_{i-1,i}(t)\rho \sum_{j=a+1}^{i} \left(\frac{\delta_{j}S_{j-1,j}^{D,E}(t)}{1+\delta_{j}S_{j-1,j}^{D,E}(t)} (\sigma_{j-1,j}(t))' \right) dt \\ + \sigma_{i-1,i}(t)dZ_{t}$$

More precisely, for a deal with tenor $[T_{i-1}, T_i]$, the forward one-period Fair Tranche Spread dynamics for the same tenor amounts to :

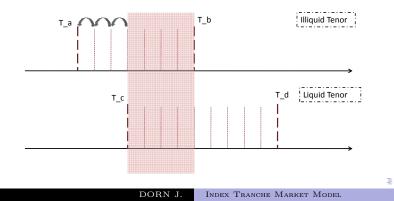
$$\frac{dS_{i-1,i}^{D,E}(t)}{S_{i-1,i}^{D,E}(t)} = \frac{\delta_i S_{i-1,i}^{D,E}(t)}{1 + \delta_i S_{i-1,i}^{D,E}(t)} |\sigma_{i-1,i}(t)|^2 dt + \sigma_{i-1,i}(t) dW_t$$

Overview Spread Dynamics

STEP 5 - THE MULTI-PERIOD EXTENSION

LEMMA

Again consider a deal with tenor $[T_a, T_b]$ and tranche [D, E]. The forward multi-period spread dynamics with the same tenor, note $S_{a,b}^{D,E}$, can be written as


$$\frac{dS_{a,b}^{D,E}(t)}{S_{a,b}^{D,E}(t)} = \left(\Lambda(t) + \varsigma(t)\right)\rho\left(\Lambda(t)\right)'dt - \left(\Lambda(t) + \varsigma(t)\right)dZ_t$$

with

$$\Lambda(t) = \sum_{i=a+1}^{b} \frac{\delta_i A(t, T_i) Y_i(t)}{\hat{C}_{a,b}^{D,E}(t)} \gamma_i(t)$$

$$\varsigma(t) = \frac{A(t, T_b) Y_b(t)}{A(t, T_a) Y_a(t) - A(t, T_b) Y_b(t)} \gamma_b(t)$$

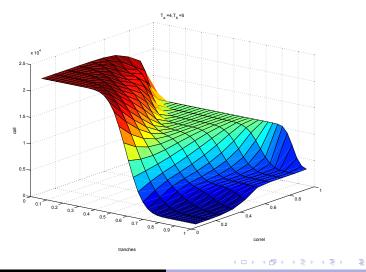
CONCLUSION

 Market Model allows for calibration of options with bespoke exercise periods to options with more liquid tenors thanks to multi-period fwd Tranche Spread Dynamics ⇒ More realistic prices.

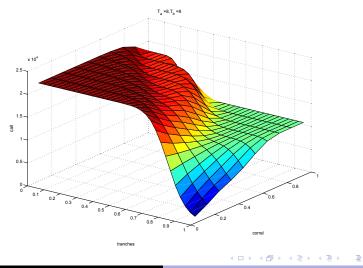
CONCLUSION

- Possibility of pricing options on tranches with future ramp-up dates ⇒ Fwd spread is no longer a martingale ⇒Calculate expectations of the fwd spread dynamics !
- Fwd spread dynamics allow for modeling of deals with complicated pay-offs !
- The investor finally pays for the Véga !

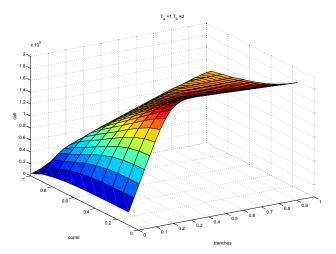
・ロト ・得ト ・ヨト ・ヨト


IMPLEMENTATION (1)

Interest rate assumptions	Deterministic
Recovery Rate	40% (market standard)
Implied volatilities of fwd-start options (in the money)	
for 3 maturities : 1 months, 3 months and 7 months	Semi-parametric approach (cf Gatarek [?])
Strike Spread K	0,02
Method used for implying the default intensity	student-t copula, degrees of freedom
	chosen in analogy to Hull [?]
Dataset used	iTraXX Series 8, daily data
	throughout may 2008
	Bloomberg ID : ITRXEB58
	(most recent and liquid series in May 2008)
Forward rates, yield curve	Provided by SGSS, Euro-VL

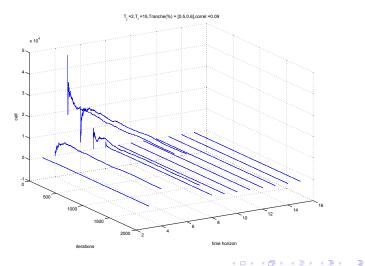

DORN J. INDEX TRANCHE MARKET MODEL

イロト イポト イヨト イヨト 三日

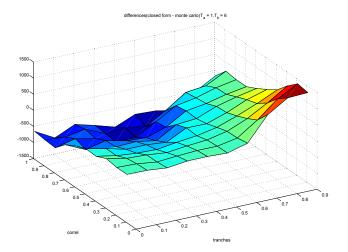

IMPLEMENTATION (1)

IMPLEMENTATION (2)

IMPLEMENTATION (3)



DORN J. INDEX TRANCHE MARKET MODEL


イロト イポト イヨト イヨト

æ

IMPLEMENTATION (4)

IMPLEMENTATION (5)

DORN J. INDEX TRANCHE MARKET MODEL

イロト イヨト イヨト イヨト

æ

Outlook

- Approach might serve to model bespoke CDOs.
- The spread on a CDO tranche can be replicated by a Call Spread on the CDO's cumulative Loss Given Default (LGD) with strikes being the respective Attachment/Detachment Points.
- Hence by modeling the LGD dynamics there should be a way to price bespoke CDO tranches.

소 曰 돈 (本) 문 돈 (本) 문 돈 ()

THANK YOU FOR YOUR ATTENTION!

DORN J. INDEX TRANCHE MARKET MODEL

・ロト ・聞ト ・ヨト ・ヨト

3