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Empirical observations

Equity and credit markets are intrinsically connected:
• Cremers (2006) et. al. find option ATM implied volatility and

option implied skews explain 32% of the variation in long-term
credit spreads.

• Carr and Wu (2009) find cross-correlation between weekly
changes of average CDS and option implied volatility as high as
0.79, between weekly changes of average CDS and option implied
skew as high as 0.82 for eight companies.

• Deep out-of-money puts, equity default swaps can be used as
hedge for credit risk, or exercised in carry trade with CDS.

• Hybrid securities, e.g. convertible bonds, callable bonds need to
be priced by joint modelling.
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Empirical observations-continued

Figure: Historical daily VIX and CDX data with correlation 0.655.
Source: Bloomberg
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Empirical observations-continued

Figure: Historical daily VIX and SPX data with correlation -0.691.
Source: Bloomberg
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Structural model

Merton(1974), Black and Cox(1976), Leland and Toft(1996), Hull,
Nelken and White(2004), Luciano and Schoutens(2006),
CreditGradesTM(2002).

• Advantages: Having natural economic interpretations,
straightforward in modelling seniority, recovery structure and
hybrid securities, illuminating capital structure arbitrage (Yu
2005).

• Disadvantages: Stylized balance sheet(default trigger, agent
incentives), computational expenses(e.g. need to calculate first
passage time density functions or numerically invert Laplace
tranform, price compound options), underlying usually
unobservable.
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Reduced form model

Carr and Wu(2009), Bayraktar and Yang(2009), Carr and
Linetsky(2006).

• Advantages: Flexible coupling between equity and credit
underlying, more tractable in computation, some underlying
observable.

• Disadvantages: No economic interpretation(for default).
General difficulties in both frameworks: multiname modelling (basket
options), exotic derivatives (American options).
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Limitations in existing structural models

• One-factor: insufficient flexibility, equity and credit determined
by one degree of freedom, leading to perfect dependence for all
instruments; market being complete, making non-underlying
redundant.

• Two-factor: Nielsen, Saa-Requejo, and Santa-Clara(1993), Briys
and de Varenne(1997) and Schobel(1999) considered stochastic
default boundaries. However, the secondary randomness is tied
to the interest rate process, not the default trigger.

• Pure diffusion: produce implied volatility surface and CDS term
structure of restrictive shapes.
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Default trigger as stochastical processes

• Collin-Dufresne and Goldstein (2001): mean-reverting leverage
(debt/asset) dynamics are more consistent with empirical
observations;

• Adrian and Shin (2009) find strong evidence for leverage
(asset/equity) procyclicality in commercial banks and
broker-dealer banks;

• Eberlein and Madan (2010) emphasize the role of risky liabilities
in hedge funds coming from short positions.
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Adrian and Shin (2009)

Figure: Total assets and leverage of non-financial, non-farm corporates.
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Adrian and Shin (2009)

Figure: Total assets and leverage of commercial banks.
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Adrian and Shin (2009)

Figure: Total assets and leverage of security brokers and dealers.
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Model features

• Stochasticity in correlated asset and default trigger processes;
• Time change the calendar time to incorporate jumps in the

underlying processes;
• We do not model strategic default as the default trigger is

exogenous. The default is triggered as the first passage time
(FPT) of the second kind. The survival probability has a spectral
expansion form;

• The stock price is a vulnerable option of the asset value, with
local volatility and state-dependent jumps;

• European call option prices can be written as a two-dimensional
fast Fourier transform (FFT), promising efficient computation.



Literature Introduction Model Framework Numerical Results Conclusions

Geometric BM model

Assumption

• Risk neutral probability space (Ω,F ,Q);
• Constant interest rate r;
• Two-factor capital structure: firm asset Ṽt = ev0+(r− 1

2σ
2
v)t+σvW

v
t ,

firm debt D̃t = ed0+(r− 1
2σ

2
d)t+σdW

d
t , corr(W v

t ,W
d
t ) = ρ;

• The dynamics of the firm equity and log-leverage is determined by
the equations

S̃t = max(Ṽt − D̃t, 0), X̃t = log Ṽt/D̃t;

• The time of default t(1) is the first passage time of the first kind
t(1) = inf{t|X̃t ≤ 0}, after which the above processes are all
stopped.
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Lévy subordinated BM model

Assumption

• The “market clock” is an independent Lévy subordinator Gt, in
particular, a gamma process with drift, having characteristics
(1− a, 0, ν) where a ∈ (0, 1) and ν(x) = ae−x/b/(bx), the Lévy
measure, has support on R+;

• The natural filtration Ft contains σ{Gu,Wv : u ≤ t, v ≤ Gt}, and
is assumed to satisfy the “usual conditions”;

• The Lévy subordinated processes are
Vt := ṼGt , Dt := D̃Gt , Xt := X̃Gt ;

• The time of default t(2) is the first passage time of the second
kind, after which the time change is stopped;

• The market observables are stock prices, implied volatility surface
and CDS term structure.
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First passage time of the second kind

Definition
For any LSBM Xt with X0 = x ≥ 0 the first passage time of the
second kind is the F-stopping time

t(2) = inf{t|Gt ≥ τ}

where τ = inf{t|X̃t ≤ 0}.
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First passage time of the second kind-continued

Figure: Realized sample paths of a log-leverage process and a
subordinator(bottom). LSBM is the red path.
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Stock dynamics

St := ṼGt∧t(2) − D̃Gt∧t(2)
Due to Itô’s formula, conditional on no default

dSt
St−

= rdt+
√

1− a
evt− − edt−

(σvevt−dW v
t − σde

dt−dW d
t )

+
1

evt− − edt−

[
evt− ·

∫
R\0

(ex − 1)Nv(dt, dx)− edt− ·
∫

R\0
(ex − 1)Nd(dt, dx)

]

where Nv and Nd are (dependent) VG random measure.
This model has local volatility σ(vt, dt) and state-dependent jumps.
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CDS pricing

Now the firm’s log-leverage ratio Xt is a Q-LSBM with “drift”
βQ = − σ2

v−σ
2
d

2(σ2
v+σ2

d−2σvσdρ)
, “variance” σ2 = σ2

v + σ2
d − 2σvσdρ.

1. For any t > 0, x ≥ 0 the risk-neutral survival probability
P (2)(t, x) := EQx [1{t(2)>t}] is given by

e−βQx

π

∫ ∞
−∞

z sin(zx)
z2 + β2

Q

e−ψ(σ2(z2+β2
Q)/2,t)dz,

where the Laplace exponent of GT is

ψV G(u, t) := − logE[e−uGt ] = t[(1− a)u+
a

b
log(1 + bu)].

2. We calculate the fair swap rate for a CDS contract with maturity
T = N∆t, with premiums paid in arrears on dates
tk = k∆t, k = 1, . . . , N , and the default payment of (1−R) paid
at the end of the period when default occurs.
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European call pricing

A European call option with strike K and maturity T has time t
predefault value

CallKTt = EQ[e−r(T−t)(VT −DT −K)+1{t(2)>T}|Ft]

= EQ[e−r(T−t)(VT −DT −K)+|Ft]
−EQ[e−r(T−t)(VT −DT −K)+1{t(2)<T}|Ft]
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GBM model

In Hurd and Zhou(2010), a vanilla spread option can be priced by
FFT

Spr(S0;T ) = e−rTE[(S1T − S2T − 1)+]

= (2π)−2e−rT
∫∫

R2+iε

eius
′
0 exp[iu(rTe− σ2T/2)′ − uΣu′T/2]P̂ (u)d2u

where P̂ (u) = Γ(i(u1+u2)−1)Γ(−iu2)
Γ(iu1+1) . and s0 = [logS10, logS20].

We can also price a down-and-in spread option

ExSpr(S0;T ) = e−rTE[(S1T − S2T − 1)+1min0<t<T (S1t−S2t)<0]

= C · (2π)−2e−rT
∫∫

R2+iε

eiuMs′0 exp[iu(rTe− σ2T/2)′ − uΣu′T/2]P̂ (u)d2u

where M is a 2× 2 constant matrix and C is a constant.
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LSBM models

Simply replace the term

exp[iu(−σ2T/2)′ − uΣu′T/2]

by

E[exp[iu(−σ2GT /2)′ − uΣu′GT /2]] = eψ
VG(iuσ2/2+uΣu′/2,t)
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Producing empiricals

Figure: Left: Implied vol. and CDS term structure for a high quality (large
X = 3) firm; Right: Implied vol. and CDS term structure for a low quality
(small X = 0.4) firm. Hypothetic model parameters
S = 1, σv = 0.5, σd = 0.2, ρ = 0.1, a = 0.5, b = 0.5, R = 0.4.
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Producing empiricals-continued

Figure: Implied volatility decreases with X, i.e. increases with PD,
producing the empirical correlation. Hypothetic model parameters
S = 1, strike = 1,TTM = 1, σv = 0.5, σd = 0.2, ρ = 0.1, a = 0.5, b = 0.5.
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Error bounds

Figure: Truncation and discretization error bounds for the VG model. The
benchmark uses N = 213, u = 80.Hypothetic model parameters
strike = 1,TTM = 1, σv = 0.5, σd = 0.2, ρ = 0.1, a = 0.5, b = 0.5.
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Objective function

Let Y denote market observed prices and Ŷ denote our model prices,
the objective function is defined as

J(θ) =
n∑
j=1

|Ŷj(θ)− Yj |2

Y 2
j

The summation contains available market data of a certain day. Then
the calibration is the minimizer of the objective function.

θ̂ = argminθJ(θ)
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AMD balance sheet

Top: AMD quarterly asset; Bottom: AMD quarterly current liability.



Literature Introduction Model Framework Numerical Results Conclusions

AMD balance sheet-continued

From Q2 2000 to Q1 2010 (40 Quarters):
Total assets = Liabilities+Share holders’ equity

• Standard deviation of asset return: 0.277
• Standard deviation of current liabilities return: 0.249
• Correlation: 0.735
• Log-(Assets/Cur.Lia.): 1.373(Q3 2008), 1.488(Q3 2006)
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AMD calibrations

Figure: Market data (“X”) VS model data(“-”). Left: 07/12/2006; Right:
09/10/2008
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AMD calibrations-continued

Table: Two-day calibration for VG model.

date σv σd ρ a b X R

07/12/06 0.32 0.13 0.64 0.60 1.20 0.90 0.58
09/10/08 0.39 0.044 -0.19 0.88 1.22 0.73 0.22
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Conclusions

1. We have presented an integrated structural model for pricing
equity and credit;

2. We have derived efficient pricing formulas based on FFT
technique;

3. The VG model is implemented with market calibration, yet other
LSBM models should work under the same principle;

4. More efficient and consistent calibration technique is under study;
5. We have also calibrated for Ford Motor Company. Fixed model

parameters+floating state variables give very good fit for CDS
term structure over 3-year span. Co-calibration with implied
volatility data is under study.
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