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Rüdiger Frey (joint work with Roland C. Seydel)

Mathematisches Institut Universität Leipzig and MPI MIS Leipzig

Bachelier Finance Society, June 2010

(1) Optimal Securitization via Impulse Control
Bachelier Finance Society, June 2010 1

/ 30



Introduction

Overview

1 Introduction

2 Optimal Securitization Strategy
The model
Specific model inputs
Solution of the Optimization Problem

3 Numerical Results

(2) Optimal Securitization via Impulse Control
Bachelier Finance Society, June 2010 2

/ 30



Introduction

Securitization

Consider a commercial bank lending to customers. In a securitization
transaction the bank sells part of its loan portfolio to investors in a
bond-like form, passing on part of the risk and return.

Investor B

Customer
Investor C

Investor A

Bank CDO

Potential benefits of securitization

On the macro level: possibly mitigation of concentration risk and
easier refinancing for banks

On the micro level securitization can be an important risk
management tool for commercial banks (reduction of leverage)

Securitization is of course not problem-free but this is not our focus here.
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Introduction

Securitization ctd.

It is not costless to securitize (sell) loans:

An ABS transaction typically entails fixed costs: Rating agency fees,
legal costs, time spent . . .

The more you sell, the lower the price investors want to pay (liquidity
and agency problems)

Finding a good (optimal) securitization strategy is non-trivial

. . . it is not optimal to sell all at once, but rather distributed over time;

. . . it is not optimal to securitize all the time, but rather at discrete
points in time.

Conclusion. Determination of an optimal securitization strategy (for the
bank) leads to a a dynamic optimization problem under fixed and variable
transaction costs. ⇒ apply impulse control methods.
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Optimal Securitization Strategy The model

The Agents Involved

Customers Bank ABS Investors

Bank’s creditor

Bank’s shareholder
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Optimal Securitization Strategy The model

Modeling a commercial a bank ctd

Consider a commercial bank solely engaged in lending business. Loan
portfolio is homogeneous and loans to customers have maturity ∞
(perpetuities) with nominal 1.

Starting point is the fundamental balance sheet equation

assets = liabilities

cash · 1cash>0 + loans = equity− cash · 1cash<0

Refinancing through negative cash (short-term refinancing): Assume
there are no liquidity problems!

Cash

Equity

Loans

Cash > 0

Equity

Loans
−Cash Cash < 0
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Optimal Securitization Strategy The model

Model dynamics

State variables of the model:

Nominal loan exposure Lt =: X 1
t .

Cash balance Ct =: X 2
t (positive or negative). Note that

leverage equals πt = loan exposure
equity = Lt

Lt+Ct
.

Economic state variable Mt =: X 3
t that affects default rates

Dynamics of L: dLt = −dNt + βtdPt , where

Nt is a point process with state dependent intensity λ(Mt−)Lt−,
representing the timing of defaults. (Bottom-up view: defaults are
conditionally independent given FM

∞ with intensity λ(Mt−).)

The stochastic control βt ∈ {0, 1} allows to increase the loan
exposure at the advent of a potential customer. Advents of customers
are modelled by jumps of the standard Poisson process P.

(8) Optimal Securitization via Impulse Control
Bachelier Finance Society, June 2010 8

/ 30



Optimal Securitization Strategy The model

Model dynamics (2)

Cash C . Cash position is affected by

interest payed or earned on cash position given by rBCtdt (rB
refinancing cost)

interest rLLtdt earned on loan position

recovery payments in case of default (1− δ)dNt (here LGD δ = 1).

cash-reduction because of issuing of new loans −βtdPt .

Hence we have the following cash-dynamics

dCt = (rB(Xt)Ct + rLLt) dt + dNt − βtdPt

Economic state M. Markov switching process (continuous-time Markov
chain) between two economic states, Mt ∈ {0, 1}.
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Optimal Securitization Strategy The model

The Securitization strategy (impulses)

Each securitization of ζi ≥ 0 loans at a stopping time τi has the following
effects:

1 Reduce loan exposure: Lτi = Ľτi− − ζi .
2 Increase cash by market value η(·) of the amount sold minus fixed

costs cf > 0:
Cτi = Čτi− + η(M̌τi−, ζi )− cf

In summary, bring the process X = (L,C ,M)T from an old state x to the
new state Γ(x , ζ) with

Γ(x , ζ) = (x1 − ζ, x2 + η(x3, ζ)− cf , x3)T

A sequence γ = (τi , ζi )i≥1 is called an impulse control strategy.
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Optimal Securitization Strategy The model

The optimization problem

We consider the model on the state space
S = {x ∈ R3 : x1 > −1, x1 + x2 > 0} (as long as the bank does not
default and Lt ≥ 0.)

Fix horizon date T > t and some concave increasing utility function
U. Let τ = τS ∧ T . We assume that the shareholders want the bank
to maximize the expected utility of its liquidation value at τS ,

J(α)(t, x) = E(t,x) [U (max(η(Mτ , L
α
τ ) + Cα

τ , 0))] (1)

by an choosing optimal stochastic and impulse control strategy
α = (β, γ).

Define the value function

v(t, x) = sup{J(α)(t, x) : α admissible}.

(11) Optimal Securitization via Impulse Control
Bachelier Finance Society, June 2010 11

/ 30



Optimal Securitization Strategy Specific model inputs

The players revisited

Customers Bank ABS Investors

Bank’s creditor

Bank’s shareholder
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Optimal Securitization Strategy Specific model inputs

Modeling market value of loans η(·)

The loan portfolio of our bank consists of perpetuities (loans with
maturity ∞, i.e., the nominal is never paid back).

The risk-neutral value of one such perpetual loan is

p∞m := E
[∫ τ

0
e−ρsrLds + e−ρτ (1− δ(Mτ ))

∣∣∣∣M0 = m

]
,

for τ the default time of the loan, and ρ risk-free interest rate. The
vector p∞ can be obtained by a simple inversion of the generator
matrix of M.

With constant default intensity λ: p∞ = (rL + (1− δ)λ)
/

(ρ+ λ).

To account for risk aversion, one possible choice for the market value
of ζ loans is:

η(m, ζ) := ζ ·min (1, p∞m · (1− δλ(m)) ) < ζp∞m (2)
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Optimal Securitization Strategy Specific model inputs

Modeling refinancing cost rb(·)

Basic rule of thumb: On average, the bank’s creditors want to earn the
risk-free interest ρ, so they will demand a refinancing rate rB according to

1 + ρ = (1− PD) · (1 + rB), (3)

where PD = probability of default of the bank over one year. Equation (3)
leads to

rB :=
ρ+ PD

1− PD
. (4)

Now, for a given loan amount ` and cash position c we define

PD := P(∆L > `+ c) = P
(

∆L

`
>
`+ c

`

)
(5)

⇒ model the distribution of the [0, 1]-valued relative loss ∆L/`.
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Optimal Securitization Strategy Specific model inputs

Modeling refinancing cost rb(·) ctd.

Goal: Model distribution of relative loss ∆L/` as seen by creditors

Losses in our loan portfolio follow a Bernoulli mixture distribution (for
fixed t) with path of M as common factor.

Large portfolio approximation: typically a Bernoulli mixture
distribution converges for granularity going to ∞ to a limiting
distribution depending only on the common factor (see
[McNeil et al., 2005])

Choosing a probit-normal factor leads to the well-known continuous
Vasicek loss distribution Vp,%,

Vp,%(x) = N
[
1/
√
%(N−1(x)

√
1− %− N−1(p))

]
(p ∈ (0, 1) ≈ average default rate, % ∈ (0, 1) ≈ correlation)

We take p ≈ λ(Mt); the parameter ρ can be used as additional
risk-aversion parameter on behalf of creditors
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Optimal Securitization Strategy Specific model inputs

Refinancing cost: examples
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the inverse leverage (`+ c)/` .
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Optimal Securitization Strategy Solution of the Optimization Problem

Numerical considerations

We want to find an optimal impulse control for the bank

It seems impossible to find an analytical solution

Usual approach: solve numerically the HJBQVI1 (partial
integro-differential equation) by iterated optimal stopping and thus
obtain the value function v = supα E[U(wealth)]

From the value function, derive an (approximately) optimal strategy

1Hamilton-Jacobi-Bellman quasi-variational inequality
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Optimal Securitization Strategy Solution of the Optimization Problem

Value function v and HJBQVI

Our aim is to find v as solution of the HJBQVI (here partial difference
equation)

min(− sup
β∈{0,1}

{ut + Lβu}, u −Mu) = 0 in [0,T )× S (6)

for Lβ the infinitesimal generator of the state variable process
X = (L,C ,M) where x̃ := (x1, x2) = (`, c):

Lβu(x) =

(
u(x̃ +

(
−1
0

)
, x3)− u(x)

)
λ(x3)x1

+

(
u(x̃ +

(
β
−β

)
, x3)− u(x)

)
λP

+ (u(x̃ , 1− x3)− u(x))λx3,(1−x3) + (rB(x)x2 + rLx1)ux2

and M the intervention operator selecting the momentarily best impulse,
Mu(t, x) = supζ{u(t, Γ(x , ζ))}.
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Optimal Securitization Strategy Solution of the Optimization Problem

HJBQVI: Existence and Uniqueness

We can prove using results from [Seydel, 2008]:

Theorem (Parabolic viscosity solution)

Assume that c 7→ rB(`, c ,m) is continuous, and U continuous and
bounded from below. Further assume that lim infc↓−` rB(`, c, ·) > rL for
` > 0, and η(·, ζ) ≤ ζ. Then the value function v is the unique viscosity
solution of (6), and it is continuous on [0,T ]× Z× R× {0, 1} (i.e.,
continuous in time and in cash).

Proof: See [Frey and Seydel, 2009].
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Numerical Results

Basic data

Power law utility U(x) =
√

x
Symmetric Markov chain transition intensities of 0.3 for M
Default intensities per loan: λ(0) = 2.6% in expansion and
λ(1) = 4.7% in contraction, no loan default recovery (δ ≡ 1)
Risk-free rate ρ = 0.04, loan interest rate rL = 0.08
Market value η: A form slightly more procyclical than (2) ⇒
proportional transaction costs of 0% (≈ 6.5%) in expansion
(contraction)
Refinancing cost rB is based on Vasicek loss distribution with with
p = 1.5λ, and correlation % = 0.2 (0.4) in expansion (contraction).
Fixed transaction costs cf = 0.5

State equations:

dLt = −dNt dCt = (rB(Xt)Ct + rLLt) dt

Γ(t, x , ζ) = (x1 − ζ, x2 + η(x3, ζ)− cf , x3)T
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Numerical Results

Optimal impulses
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Figure: Impulses in expansion (left) and contraction (right) for T = 7. The light
areas mark the impulse departure points (with the lightness indicating how far to
the left the impulses goes, i.e., how many loans are sold), the cyan circles
represent the corresponding impulse arrival points
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Numerical Results

Further results of numerical analysis

Even with substantial transaction costs, securitization is a useful risk
management tool for the bank: utility indifference argument shows
that value of bank is increased substantially by the possibility of
securitization

Risk-dependent refinancing cost creates a major incentive to securitize

Optimal securitization strategy is largely influenced by form of
transaction cost

- Low fixed cost cf ⇒ more transactions
- Strongly procyclical market value of loans (high transaction costs in

contraction), ⇒ only little securitization in contraction, but more loans
are securitized in expansion
Weakly procyclical market value ⇒ High securitization activity in
contraction

Additional control of loan exposure (β) had only small effect
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Numerical Results

Cash value of securitization
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Figure: Cash value of securitization in expansion (M = 0) and in contraction
(right), for T = 7. For every x we display the cash amount a such that
v3(x1, x2 − a) = v1(x1, x2) (v3 being the value function with impulses, v1 without

(24) Optimal Securitization via Impulse Control
Bachelier Finance Society, June 2010 24

/ 30



Numerical Results

Impulse and stochastic control
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Figure: Impulse and stochastic control: Cash value of additional stochastic
control (top row), and optimal strategy (bottom row) in expansion (left) and
contraction (right), for T = 7. Business arrival intensity λP = 2
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Viscosity solutions

Viscosity solutions (1)

Definition (Viscosity solution)

A function u ∈ PB([0,T ]× Rd) is a (viscosity) subsolution of (6) if for all
(t0, x0) ∈ [0,T ]× Rd and ϕ ∈ PB ∩ C 1,2([0,T )× Rd) with
ϕ(t0, x0) = u∗(t0, x0), ϕ ≥ u∗ on [0,T )× Rd ,

min

(
− sup
β∈B

{
∂ϕ

∂t
+ Lβϕ+ f β

}
, u∗ −Mu∗

)
≤ 0

in (t0, x0) ∈ ST , and

min (u∗ − g , u∗ −Mu∗) ≤ 0

in (t0, x0) ∈ ∂+ST (the parabolic boundary). [...]
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Viscosity solutions

Viscosity solutions (2)

Definition (Viscosity solution (cont’d))

A function u ∈ PB([0,T ]× Rd) is a (viscosity) supersolution of (6) if for
all (t0, x0) ∈ [0,T ]× Rd and ϕ ∈ PB ∩ C 1,2([0,T )× Rd) with
ϕ(t0, x0) = u∗(t0, x0), ϕ ≤ u∗ on [0,T )× Rd ,

min

(
− sup
β∈B

{
∂ϕ

∂t
+ Lβϕ+ f β

}
, u∗ −Mu∗

)
≥ 0

in (t0, x0) ∈ ST , and

min (u∗ − g , u∗ −Mu∗) ≥ 0

in (t0, x0) ∈ ∂+ST .
A function u is a viscosity solution if it is sub- and supersolution.
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Further numerical results

Impulses in time
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Figure: Impulses in expansion for different T : top left T = 1, top right T = 3,
bottom left T = 5 and bottom right T = 7

(29) Optimal Securitization via Impulse Control
Bachelier Finance Society, June 2010 29

/ 30



Further numerical results

Optimal impulses, no Markov-switching
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Figure: Impulses without Markov switching, for only expansion (left) and only
contraction (right) for T = 7. Market value according to procyclical form (a),
corresponding to 0% (about 17%) proportional transaction costs in expansion
(contraction). For the colour code, see the explanations in Figure 1. Otherwise,
same data as in Figure ??
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