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Real Options

Let us consider an investment project, which is characterized by a pair
({Vt , t ≥ 0}, I ),
where Vt is the Present Value of the project started at time t, and
I is the cost of required investment.
Vt is assumed to be a stochastic process, defined at a probability space
with filtration (Ω,F , {Ft , t ≥ 0},P).
The real options model (starting from McDonald-Siegel model) supposes
that:

- at any moment, a decision-maker (investor) can either accept the
project and proceed with the investment or delay the decision until he
obtains new information;

- investment are considered to be instantaneous and irreversible (they
cannot be withdrawn from the project and used for other purposes).

The investor’s problem is to evaluate the project and to select an
appropriate time for the investment (real option valuing).
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There are two different approaches to solving the investor’s problem.

1 The value of project is the maximum of Net Present Value (NPV)
from the project over all stopping times (regarding to σ-algebras Ft):

max
τ

E(Vτ − I )e−ρτ = E(Vτ∗ − I )e−ρτ∗
.

An optimal stopping time τ∗ is viewed as optimal investment time.
It is not clear where an arbitrary discount rate ρ should come from.

2 A project is spanned with some traded asset S , which price St is
completely correlated with present value of the project Vt .
The value of project is linked with the value of derivative based on this
asset S .
The opportunity to invest is considered as an American style option
(to buy the asset on predetermined price I ).
At that a value of option is accepted as a value of investment project,
and an exercise time is viewed as the investment time.
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Two ways in option valuation
1) Contingent Claims Analysis (CCA).
We have BS-market with risk-free interest rate r and risky asset S , which
dynamics St = St(µ) is described by geometric Brownian motion (with
drift µ and volatility σ), and flow of dividends at rate δ.
On the above BS market we consider a riskless replicated portfolio, and the
value of real option is defined as the value of this portfolio under
no-arbitrage conditions. In this way the value of option is derived from a
solution (F (s), s∗) to the following free-boundary problem :

0.5σ2s2F
′′
(s) + (r − δ)sF

′
(s)− rF (s) = 0, 0 < s < s∗;

F (s∗) = g(s∗); (1)
F ′(s∗) = g ′(s∗),

where g(s) = s − I .
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2) Optimal stopping for American option
We consider on the BS market, defined above, an American option with
payoff ft = g(St) = (St − I )+. The value of real option is the value of this
American option, i.e. sup

τ
EQe−rτ fτ (over all stopping times τ), and EQ is

taken at risk-neutral measure Q, such that {Ste−(r−δ)t , t ≥ 0} is
Q-martingale. After the change of measure the value of option can be
written as

sup
τ

Ee−rτg(Sτ (r − δ)), (2)

where expectation is taken relative to initial measure P, and risky asset S
evolves as geometric Brownian motion with drift r − δ and volatility σ.
Formula (2) for the value of American option holds in more general setting
with any payoff function g(S).

� � �
In order to specify the rate of return µ and dividend rate δ of a risky asset
S we can embed the BS market into the CAPM model: µ = r + φσRSm,
where φ is “market price of risk", RSm is correlation of S with market
portfolio; and δ = µ− α, where α is the expected rate of return of
project’s present value Vt .
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It is commonly accepted that CCA approach

0.5σ2s2F
′′
(s) + (r − δ)sF

′
(s)− rF (s) = 0, 0 < s < s∗;

F (s∗) = g(s∗); F ′(s∗) = g ′(s∗), (3)

gives the same solution as the corresponding optimal stopping problem

sup
τ

Ee−rτg(Sτ (r − δ)). (4)

This is a case for a classical American call option with the payoff
g(s) = (s − I )+, but for the general payoff function a relation between
solutions to problems (3) and (4) remains open.
More general question:

What is the connection between optimal stopping problem for diffusion
processes and appropriate free-boundary problem?

We study this question in the framework of the variational approach to
optimal stopping problems.
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The further outline of the talk

Optimal stopping problem. Free-boundary problem
Variational approach. One-parametric class of “continuation sets”
A variational view to a smooth pasting principle

A solution to free-boundary problem can not give an optimal stopping
How a variational approach works.

“Russian Option”
Optimal investment timing problem under tax exemptions
Two-dimensional geometric Brownian motion and non-linear payoff
function
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Optimal stopping problem

Let Xt , t ≥ 0 be a diffusion process with values in Rn defined on a
stochastic basis (Ω,F , {Ft , t ≥ 0},P) by the following stochastic equation:

dXt = a(Xt)dt + b(Xt)dWt , X0 = x ,

where a : Rn → Rn is vector of drift coefficients,
b : Rn → Rn×n is matrix of diffusion,
Wt = (w1

t , ...,w
n
t ) – standard multi-dimensional Wiener process.

Infinitesimal operator of the process Xt :

LX =
∑

i

ai (x)
∂

∂xi
+

1
2

∑
i ,j

[
b(x)bT(x)

]
ij

∂2

∂xi∂xj

(semi-elliptic partial differential operator on C 2(Rn))
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Let us consider an optimal stopping problem (OSP) for this process:

U(x) = sup
τ

Exg(Xτ )e−ρτ , (5)

where g : Rn → R1 is payoff function, ρ ≥ 0 is discount rate, and Ex

means the expectation for the process Xt starting from the initial state x .
The maximum in (5) takes over some class of stopping times (s.t.) τ ,
usually over the class M of all stopping times with respect to the natural
filtration (FX

t = σ{Xs , 0 ≤ s ≤ t}, t ≥ 0).
Traditional solving of problem (5) is to find stopping time τ∗(x), at which
sup in (5) is attained, as well as the value function U(x), for all initial
states x . In other words, (5) is considered as the family of problems
depending on the parameter x (“mass” setting).
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Free-boundary problem

Optimal stopping time for the problem (5) can be represented as the first
exit time of the process Xt out of the continuation set C = {U(x) > g(x)}.
Usually it is proposed to find unknown function U(x) and continuation set
C as a solution to free-boundary problem (Stefan problem):

LXU(x) = ρU(x), x ∈ C ; (6)
U(x) = g(x), x ∈ ∂C ; (7)
grad U(x) = grad g(x), x ∈ ∂C (8)

where LX is the infinitesimal generator of Xt ,
∂C is the boundary of the set C .
The condition (7) is called continuous pasting,

and (8) – smooth pasting.
A proof of necessity of the condition (8) for one-dimensional diffusion
processes one can find, e.g., in A.Shiryaev &G.Peskir (2006).
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Variational approach

We develop another approach to solving an optimal stopping problem which
we shall refer as the variational. We a priori define a class of “continuation
regions”, and we find the optimal region over this given class.
Unlike the mass setting of an optimal stopping problem, we study the
individual OSP for the given (fixed) initial state of the process X0 = x .
Let G = {G} be a given class of regions in Rn,
τG = τG (x) = inf{t ≥ 0 : Xt /∈ G} be a first exit time of process Xt out of
the region G (obviously, τG = 0 whenever x /∈ G ), and
M(G) = {τG , G ∈ G} be a set of first exit times for all regions from the
class G.
We will suppose that τG <∞ (a.s.) for any G ∈ G, i.e. {τG} are stopping
times.
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Under fixed initial value x for any continuation region G ∈ G define a
function of sets:

VG (x) = Exg(XτG )e−ρτG . (9)

If x ∈ G then VG (x) can be derived from solutions to boundary Dirichlet
problems:

LXu(x) = ρu(x), x ∈ G ;
u(x) = g(x), x ∈ ∂G .

To calculate functions (9) one can also use martingale methods.

Thus, a solving an optimal stopping problem over a class M(G) can be
reduced to a solving the following variational problem:

VG (x) → max
G∈G

. (10)

If G ∗ is an optimal region in (10), the optimal stopping time over the class
M(G) is the first exit time from this region: τG∗ .
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One-parametric class of “continuation regions”

Under some additional assumptions a general variational problem can be
simplified and be made more convenient for study.
Let D be a set of initial states of the process Xt . Let
G = {Gp, p ∈ P ⊂ R1} be one-parametric class of regions in Rn,
τp = inf{t≥0 : Xt /∈ Gp}, Vp(x) = VGp(x).
We will call function F (p, x), defined on P × D, a terminal-initial function
if F (p, x) = Vp(x) for p ∈ P, x ∈ Gp. Then

Vp(x) =

{
F (p, x), x ∈ Gp

g(x), x /∈ Gp
.

It is assumed that “continuous pasting” holds at the boundary of set Gp:

F (p, x) = g(x), x ∈ ∂Gp. (11)
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Assume that a family of regions {Gp} satisfies the conditions:

x 

Gq(x) 

1 Monotonicity. Gp1 ⊂ Gp2 whenever p1 < p2.
2 “Thickness”. Every point x ∈ D belongs to the

boundary of the unique set Gq(x). A parameter of
those set will be refered as q(x), so x ∈ ∂Gq(x).

Under the above assumptions a maximization of Vp(x) in p can be reduced
to a maximization of “simpler” terminal-initial function F (p, x).

Theorem 1
Let for x ∈ D a terminal-initial function F (p, x) have a unique maximum
(in p ∈ P) at the point p∗(x), and F (p, x) decreases in p whenever
p > p∗(x). Then τp∗(x) is an optimal stopping time in OSP over the class
M(G).
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A variational view to a smooth pasting principle

Let D is an open set (in Rn), functions F (p, x), g(x), q(x) (a parameter of
the region whose boundary passes through the point x), are differentiable.
Let p̄(x) be a stationary point of F (p, x) in p, i.e. F ′p(p̄(x), x) = 0
(x ∈ D), and p̄(x) = p̄ do not depend on x . The continuous pasting
implies for the function F (x) = F (p̄, x) the relation:

grad Vp̄(x) = grad F (x) = grad g(x), x ∈ ∂Gp̄. (12)

The equality (12) is a traditional smooth pasting condition, and, therefore,
(F̄ (x),Gp̄) is a solution to free-boundary problem (Feynmann-Kac formula).

Smooth pasting is a first-order necessary condition to a stationary point
(from variational point of view), i.e. the weakest optimality condition

If grad q(x) 6= 0 for all x ∈ D, then a smooth pasting condition (12) is
equivalent to stationarity of a terminal-initial function F (p, x) (in p) at the
point p̄.
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Second-order conditions for optimal stopping times

Let Xt , t ≥ 0 be a diffusion process with values in R1 with infinitesimal
operator LX , and g ∈ C 2(R1).
The class of stopping times τp= min{t≥0 : Xt≥p}, M = {τp, p ∈ R1}
Let (U(x), p∗) be the solution to free-boundary problem:

LXU(x) = ρU(x), x < p∗,
U(p∗) = g(p∗),
U ′(p∗) = g ′(p∗).

(1) If U ′′(p∗) < g ′′(p∗), then τp∗ is not the optimal stopping time (over
the class M).

(2) If U ′′(p∗) > g ′′(p∗), then τp∗ is the local optimal stopping time, i.e. it
gives a local maximum (in p) to the variational functional Vp(x).

(3) If U ′′(p∗) > g ′′(p∗), and free-boundary problem has a unique solution,
then τp∗ is the optimal stopping time (over the class M).
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A solution to free-boundary problem can not give
a solution to optimal stopping problem

Example
One-dimensional geometric Brownian motion
dXt = Xt(0.5dt + dwt), X0 = x , (where wt be standard Wiener process),
payoff function g(x) = gδ(x) = (x − 1)3 + xδ for x ≥ 0 (δ > 0),
discount rate ρ = δ2/2.
The function g(x) is smooth and increasing (in x) for all δ > 0.

A free-boundary problem for finding unknown function U(x) and
boundary p∗ is the following one:

1
2x2U ′′(x) + 1

2xU ′(x) = ρU(x), 0 < x < p∗

U(p∗) = g(p∗),

U ′(p∗) = g ′(p∗).
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Let Vp(x)=Exg(Xτp)e−ρτp , where τp = min{t≥0 : Xt≥p}.

For δ < 3 the free-boundary problem has the unique solution
U(x) = V1(x) = xδ, p∗ = 1, but the optimal stopping problem
has no solution, since Vp(x) →∞ when p →∞ (for all x > 0).

For δ = 3 the free-boundary problem also has the unique solution
U(x) = V1(x) = x3, p∗ = 1,
but the optimal stopping problem has no solution,
since Vp(x) ↑ V (x) = 2x3 when p →∞ (for all x > 0).
For this case V (x) = sup

τ
Exg(Xτ )e−ρτ 6= U(x).

For δ > 3 the free-boundary problem has two solutions:
(a) U(x)=V1(x)=xδ, p∗=1, and
(b) U(x)=Vpδ

(x)=h(pδ)xδ, p∗=pδ=δ/(δ−3),
but the case (a) does not give a solution to the optimal stopping problem
(which there exists, in contrast to the previous case).
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How a variational approach works. “Russian option”

Pricing in “Russian Option” can be reduced to OSP (with payoff g(x)=x)
for the diffusion process (ψt , t ≥ 0) with reflection:
dψt = −ψt(rdt + σdwt) + dϕt , where non-decreasing process (ϕt , t≥0)
grows whenever (ψt , t≥0) attains boundary {1} (L.Shepp &A.Shiryaev).
Consider the class of stopping times τp = min{t ≥ 0 : ψt ≥ p}, p > 1.
Following the explicit formula for Vp(x) = Exψτpe−ρτp , we can view

F (p, x) = p · β2xβ1 − β1xβ2

β2pβ1 − β1pβ2
, p ≥ 1, x ≥ 1,

where β1, β2 are roots of the equation σ2β2 − (σ2 + 2r)β − 2ρ = 0
(β1 < 0, β2 > 1), as the terminal-initial function.
F (p, x) attains the unique maximum (in p≥1) for all x>1 at the point

p∗ =
[

β2(1−β1)
β1(1−β2)

]1/(β2−β1)
, and decreases for p>p∗. Thus, Theorem 1

implies that τp∗ is optimal stopping time over the class {τp, p>1}.
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Optimal investment timing problem under tax exemptions

Suppose that investment into creating a firm is made at time τ ≥ 0,
Iτ be cost of investment required to create firm at time τ ,
πτ

τ+t be the flow of profits from the firm,
Dτ

t+τ — the flow of depreciation charges (diminishing the tax base),
γ is the corporate profit tax rate.
A creation of a new firm in real sector of economy is usually accompanied
by tax holidays (exemption from profit tax) during the payback period ντ :

ντ = inf{ν ≥ 0 : E
(∫ ν

0
πτ

τ+te
−ρtdt

∣∣∣∣Fτ

)
≥ Iτ}

(if infimum is not attained, then we put ντ = ∞).
The present value of the firm (at the investment time τ) is:

Vτ = E
(∫ ντ

0
πτ

τ+te
−ρtdt + χτ

∫ ∞

ντ

[(1− γ)πτ
τ+t + γDτ

t+τ ]e
−ρt dt

∣∣∣∣Fτ

)
,
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Investment timing problem

The investor’s decision problem is to find such a stopping time τ
(investment rule), that maximizes the expected NPV from the future firm

E (Vτ − Iτ ) e−ρτ → max
τ
,

where the maximum is considered over all stopping times τ∈M.
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Mathematical assumptions

The process of profits (πτ
τ+t , t, τ≥0) is represented as

πτ
τ+t = πτ+tξ

τ
τ+t , t, τ ≥ 0,

where (πt , t ≥ 0) is geometric Brownian motion:

dπt = πt(α1dt + σ11dw1
t ) (π0 > 0, σ11 > 0), t ≥ 0,

and (ξτ
τ+t , t≥0) is a family of non-negative diffusion processes (t, τ ≥ 0):

ξτ
τ+t=1+

τ+t∫
τ

a(s−τ, ξτ
s ) ds+

τ+t∫
τ

b1(s−τ, ξτ
s ) dw1

s +

τ+t∫
τ

b2(s−τ, ξτ
s ) dw2

s ,

where w2
t is standard Wiener process independent on w1

t .
The process πt can be related to the market prices of goods and resources,
whereas fluctuations ξτ

τ+t can be generated by the firm created at time τ
(firm’s uncertainty).
We will suppose that Eπτ

τ+t <∞ for all t, τ ≥ 0.
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The cost of the required investment It is also the geometric Brownian
motion:

dIt = It(α2dt + σ21dw1
t + σ22dw3

t ), (I0 > 0) t ≥ 0,

where standard Wiener process w3
t is independent on w1

t , w2
t , and

σ21 ≥ 0, σ22 > 0.
The flow of depreciation charges at time t+τ will be represented as

Dτ
τ+t = Iτat , t ≥ 0,

where (at , t≥0) is the “depreciation density”, characterizing a depreciation

policy, i.e. non-negative function a : R1
+ → R1

+, such that
∫ ∞

0
at dt = 1.
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Reduction to optimal stopping problem

The investment timing problem

E (Vτ − Iτ ) e−ρτ → max
τ∈M

, (13)

is reduced to optimal stopping problem for geometric Brown.motion (πt , It):

Eg(πτ , Iτ )e−ρτ → max
τ∈M

, (14)

with homogeneous payoff function g(π, I )=(1−γ)(πB−I )+γIA(ν(π/I )),

where A(ν) =

∫ ∞

ν
ate−ρtdt, ν(p)= min{ν>0 :

∫ ν

0
Bte−ρtdt≥p−1},

Bt = E(πtξ
0
t )/π0, B =

∫ ∞

0
Bte−ρt dt <∞.

If τ∗ is an optimal stopping time for (14) and ν(πτ∗/Iτ∗) <∞ (a.s.), then
τ∗ is the optimal investment time for the problem (13).
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Two-dimensional geometric Brownian motion
and non-linear payoff function

We can apply the variational approach to optimal stopping problem for
two-dimensional geometric Brownian motion Xt=(X 1

t ,X
2
t ), t≥ 0

dX 1
t = X 1

t (α1dt + σ11dw1
t + σ12dw2

t ), X 1
0 = x1,

dX 2
t = X 2

t (α2dt + σ21dw1
t + σ22dw2

t ), X 2
0 = x2,

(15)

where (w1
t ,w

2
t ) is standard two-dimensional Wiener process.

Let payoff function g(x1, x2) be continuous and positive homogeneous of
order m ≥ 0, i.e. g(λx) = λmg(x) for all λ > 0, x1, x2 ≥ 0.
The region of the initial states of Xt is D = {(x1, x2) : x1, x2 > 0}, and
Gp = {(x1, x2) ∈ D : x1 < px2}, p > 0 are continuation sets.
τp(x) = min{t ≥ 0 : X 1

t ≥ pX 2
t } denotes the first exit time of the process

(15) from the region Gp.
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If the following (standard) conditions hold

α1 − 1
2(σ2

11 + σ2
12) ≥ α2 − 1

2(σ2
21 + σ2

22), (16)

ρ > max(ᾱ1, ᾱ2)m, where ᾱi=αi+
1
2(m−1)(σ2

i1+σ
2
i2), i = 1, 2. (17)

then the function Vp(x) = Exe−ρτp(x)g(Xτp(x)) is the solution to Dirichlet
problem and has the following type:

Vp(x1, x2)=h(p)xβ
1 xm−β

2 (if 0<x1<px2),

where h(p) = g(p, 1)p−β and β is a positive root of the quadratic equation

1
2 σ̃

2β(β − 1) +
(
ᾱ1 − ᾱ2 − m−1

2 σ̃2)β − (ρ− ᾱ2m) = 0,

where σ̃2=(σ11−σ21)
2+(σ12−σ22)

2.
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As a terminal-initial function F (p, x) for the considered OSP we can take

F (p, x) = h(p)xβ
1 xm−β

2 , h(p) = g(p, 1)p−β. (18)

Maximum of the function F (p, x) in p is attained at the same point p∗ as
maximum of h(p), i.e. this point does not depend on x .
The class {Gp, p > 0} satisfies the requirements of monotonicity and
thickness for continuation regions, and τp are stopping times. Thus,
applying Theorem 1 to the optimal stopping problem we obtain

Theorem 2
Let standard conditions (16), (17) hold, σ̃ > 0, p∗ be the unique maximum
point of the function h(p), defined in (18), and h(p) decreases for p > p∗.
Then τp∗= min{t≥0 : X 1

t ≥p∗X 2
t } is optimal stopping time over the class

{τp, p>0}.

(For the linear payoff function g(x1, x2) the conditions on h(p) hold surely)
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The class of continuation regions {Gp, p>0} for the considered problem is
chosen “well” and τp∗ will be also optimal (under additional assumptions)
over the class of all stopping times.

Theorem 3
Let all conditions of Theorem 2 hold, g ∈ C 2(R2

+), p∗>0 be the unique
maximum point of the function h(p) and g ′x1

(p, 1)p−β+1 decreases for
p>p∗. Then τ∗= min{t≥0 : X 1

t ≥p∗X 2
t } is optimal stopping time over the

class of all stopping times.

Corollary (McDonald &Siegel, Hu &Øksendal)
Let g(x1, x2)=c2x2−c1x1 (c1, c2>0), σ̃>0, condition (16) hold, and
ρ > max(α1, α2). Then the optimal stopping time (over all stopping times)
is τ∗= min{t≥0 : X 1

t ≥p∗X 2
t }, where p∗=c1c−1

2 β(β−1)−1, and β is a
positive root of the equation 1

2 σ̃
2β(β−1)+(α2−α1)β−(ρ−α1)=0.
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In order to prove the optimality of stopping time τ∗ over the class of all
stopping times we use the following “verification theorem”, based on
variational inequalities method.

Verification Theorem (Øksendal)

Suppose, there exists a function Φ : Rn
+ → R1, satisfying the following

conditions:
1) Φ∈C 1(Rn

+), Φ∈C 2(Rn
+ \ ∂Γ); where Γ={x ∈ Rn

+ : Φ(x)>g(x)},
2) ∂Γ is locally the graph of Lipschitz function and

Ex
∫ ∞

0
χ∂Γ(Xt) dt = 0 for all x ∈ Rn

+;

3) Φ(x) ≥ g(x) for all x ∈ Rn
+;

4) LΦ = ρΦ for x ∈ Γ;
5) LΦ ≤ ρΦ for x ∈ Rn

+ \ Γ (Γ is a closure of the set Γ);
6) τ̄ = inf{t ≥ 0 : Xt /∈ Γ} <∞ a.s. for all x ∈ Rn

+;
7) the family {g(Xτ )e−ρτ , τ ≤ τ̄} is uniformly integrable for all x ∈ Γ.

Then τ̄ is an optimal stopping time (over all stopping times), and Φ(x) is
the value function.
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Return to investment timing problem

Let β be a positive root of the quadratic equation

1
2 σ̃

2β(β−1)+(α1−α2)β−(ρ−α2)=0, σ̃2=(σ11−σ21)
2+σ2

22.

Then Theorem 3 implies

Theorem 4
Let at ,Bt ∈ C 1(R+) and all conditions of Theorem 3 hold. Then the
optimal investment time for the investment timing problem (13) is
τ∗= min{t≥0 : πt≥p∗It}, where p∗ is a root of the equation

β(1− γ) +
γaν(p)

pBν(p)
= (1− γ)(β − 1)pB + βγA(ν(p)).
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