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General Introduction

Context

• Kyoto Protocol (1997): Emissions in developed countries

. Reduced

. Stabilized

• Regulator: Control their national emissions

. Corporate: Additional risk

. Consumer: Erosion in purchasing power

• Most implemented instruments policies:

. Emissions tax: Finland (1990), Sweden (1991), Quebec (2007),...

. Cap-and-Trade Market: EU ETS (2005), WCI (2007), RGGI (2006),...
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General Introduction

Cap-and-Trade Market Mechanism

• Ceiling for emissions

• Compliance period

• Market: price to comply with emission target

• Least cost: internal abatement or acquisition of allowances

• Trading between: Regulated emitters, Non-regulated emitters, Non-emitters

W. Mnif, M. Davison 3



General Introduction

EU ETS Market

Figure 1: Futures prices for Dec 2009-14 from April 2008 to December 2009 (Source: Bloomberg)
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General Introduction

EU ETS Market

• Auctioning up to 10% of total emissions in Phase II (Article 10 of the EU
Directives)

• Point Carbon 2010 survey: 51% sold some surplus EUAs

• Short: power/heat sector

• Long: pulp/paper and cement/lime/glass sectors
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General Introduction

Questions

• Is the cap-and-trade system the most cost e�ective policy instrument?

• Does it force emissions reductions?

• For which market design do price signals best describe the true cost of emitting
a tonne of carbon?

• How can we protect regulated companies and consumers in the transition to a
clean energy economy?

• Can we avoid carbon leakage?
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Market Design

Hybrid system

• Removes the de�ciencies of both the cap-and-trade and the carbon tax markets.

• Protects the economy by �xing a safety valve price.

• Special case: Cap-and-trade market.

• Baumol and Oates (1988), Weitzman (1974), Montero (2002), Roberts and
Spence (1976), Prizer (2002), McKibbin and Wilcoxen (2002), Jacoby and Eller-
man (2004)
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Market Design

100% auctioning

• Eliminate windfall pro�ts (Woerdman, Couwenberg and Nentjes, 2009).

• Incentives to innovate (Cramton and Kerr, 1998)

• Stable long-term price signal (Hepburn et al., 2006)

• Distribute % income to

. �nal consumer as tax reduction

. avoid carbon leakage

. invest in green projects
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Market Design

Principle market players

Regulator

• Incomplete information: Abate-
ment cost and emission quantity

• Sets:

. Auctioning price P0

. Initial endowment N0

. Length of compliance periods

. Penalty π

Emitter

• Abatement cost available

• Accurate emission prediction

• Avoid paying P0

• Buy allowances ≤ N0
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Two period Market Model

• Compliance dates T1 and T2, T1 < T2

• Banking allowed: Do not a�ect market position at T1

• Borrowing Forbidden

• Insu�cient certi�cates at T1: Later delivery + Penalty π to pay at T1

• Safety valve price Pmax

• Adjust market parameters at time T+
1
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Two period Market Model

De�ne

• The discounted price process of the future contracts:

. X1
t matures at T1

. X2
t matures at T2

• No-arbitrage condition: X1
t ≤ πe−r(T1−t) +X2

t

• Stopping time τ

τ(ω) = min{t/X1
t (ω) = Pmax}

• T1-contingent claim: H = f(X) ∈ L2(P )
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Two period Market Model

• ∀t ≥ τ(ω), X1
t = Pmax

• τ(ω) < T1

. X2
T1

= Pmax − π

. H(ω) = f(Pmax)

• τ(ω) ≥ T1

. Short: X2
T1
< X1

T1

⇒ H(ω) = f(min(X1
T1

(ω), π +X2
T1

(ω), Pmax))

. Not short: X2
T1
≥ X1

T1

⇒ H(ω) = f(X1
T1

(ω))
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Two period Market Model

E�ective payo�

H = Iτ≥T1

[IX2
T1
<X1

T1
f(min(X1

T1
, π +X2

T1
, Pmax))

+IX2
T1
≥X1

T1
f(X1

T1
)]

+Iτ<T1
f(Pmax)

Example: H := T1-Call option at strike K written on X1
t

• f(X) = (X −K)+

• Depends on X2
T1
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Pricing and Hedging Solution

Mean reversion Jump di�usion dynamic
(Daskalakis et al., 2009)

• dXi
t = θidt+

Xi
t−(µidt+ σi1dw1t + σi2dw2t + ϕi1dN1t + ϕi2dN2t), Xi

0 > 0, ϕi1 > −1

• (N1t, N2t)
′: Poisson process with intensity ν = (ν1, ν2)

′

• (w1t, w2t)
′: independent Brownian motions

Probability space (Ω,F , P )

• Complete

• F0 is trivial and contains all nut sets of F
• Ft: P-augmented right continuous �ltration generated by wt and Nt, ∀t ≤ T1
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Pricing and Hedging Solution

Market incomplete

• Existence of intrinsic risk

• Equivalent martingale measureMe(X) 6= {}

Doob-Meyer Decomposition

• Xi
t = Xi∗

0 +M i
t +Ait, i = 1..2

• M i
t : Local P -martingale

• Ait: predictable process with �nite variation

• Xi∗
0 : F0-measurable
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Pricing and Hedging Solution

De�ne

• Space of square integrable martingales: M2(P )

• Dynamic strategies: φ = (ξt, ηt)0≤t≤T

• Portfolio value process: Vt = ξ′ ·Xt + ηt

• Cumulative gains: Gt(ξ) =
∫ t
0
ξsdXs

• Cumulative cost: Ct = Vt −Gt(ξ)

• Risk: Rt(φ) = E((CT (φ)− Ct(φ))2)

• Optimality Equation: φ∗ s.t. Rt(φ
∗) ≤ Rt(φ) for all admissible φ
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Pricing and Hedging Solution

Föllmer-Schweizer Decomposition

C(φ) ∈M2(P ), C(φ) ⊥M i under P

m

H = H0 +
∫ T
0
ξH · dXt + LHT , P a.s

where

• H0 ∈ R,

• ξH ∈ Θ,

• LH ∈M2(P ) and LH ⊥M i,

• Θ = {(ξ)t/R2 − predictable process,

(E[
∫ T1
0
ξ′td < M >t ξt])

1/2 <∞, and E[(
∫ T1
0
|ξ′tdAt|)2] <∞}.
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Pricing and Hedging Solution

Let

Σ =

(
σ11 σ12
σ21 σ22

)
, Φ =

(
ϕ11 ϕ12

ϕ21 ϕ22

)
,

Λ =

(
σ2
11 + σ2

12 σ11σ21 + σ12σ22
σ11σ21 + σ22σ12 σ2

21 + σ2
22

)
,

Ξ =

(
ϕ2
11ν1 + ϕ2

12ν2 ϕ11ϕ21ν1 + ϕ12ϕ22ν2
ϕ21ϕ11ν1 + ϕ22ϕ12ν2 ϕ2

21ν1 + ϕ2
22ν2

)
,

α = (Λ + Ξ)−1(µ+ Φν).
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Pricing and Hedging Solution

Mean-variance tradeo� process

De�ne

λ̂it :=
1

Xi
t−
αi, for i = 1, 2

K̂t =

∫ t

0

λ̂′sd < M >s λ̂s

K̂t Properties

• Deterministic

• Uniformly bounded in (t, ω)

⇒ ∃! F-S Decomposition (Monat and Stricker, 1995)
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Pricing and Hedging Solution

Minimal Martingale Measure P̂

Density process

Zt = ε(−
∫ .

0

λ̂sdMs)t, 0 ≤ t ≤ T1,

where

ε(X) = 1 +

∫ t

0

ε(X)s−dYs, 0 ≤ t ≤ T1.

• Zt > 0 if ∃δ/(αΦ)i < 1− δ (Arai, 2004)

• Zt ∈M2(P ) (Choulli et al., 1998)
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Pricing and Hedging Solution

Under P̂ ,

Vt = Ê[H|Ft]

Pricing Procedure

• Dynamics under P̂

dXi
t = θidt+Xi

t−((µi − σi1(α1σ11

+α2σ21)− σi2(σ12α1 + σ22α2))dt

+σi1dw
P̂
1t + σi2dw

P̂
2t + ϕi1dN

P̂
1t + ϕi2dN

P̂
2t), Xi

0 > 0

. (wP̂1t,w
P̂
2t)
′: P̂ -standard Brownian motions

. N P̂
t = (N P̂

1t, N
P̂
2t)
′: Poisson process under P̂ with intensity

νP̂ = (ν1(1− α1ϕ11)(1− α2ϕ21), ν2(1− α1ϕ12)(1− α2ϕ22))
′

• V0 = Ê[H]
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Pricing and Hedging Solution

Pricing T2-contingent claim

• Market e�ciency vs Structural adjustment at T+
1

• Pricing under Larger �ltration F̃ ⊇ F such that ∀t ≤ T1, F̃t = Ft

• Two period setting: H = f(X2
T2

)

• Given H is attainable under F̃ :

H = H0 +

∫ T2

0

ξ̃sdX
2
s

where
ξ̃: F̃−measurable admissible strategy
H0: F̃0−measurable
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Pricing and Hedging Solution

Pricing T2-contingent claim

• For t < T1: (F)t≥0 available =⇒ intrinsic risk for H

H = H0 +

∫ T1

001

ξ̃sdX
2
s︸ ︷︷ ︸+

∫ T2

T+
1

ξ̃sdX
2
s︸ ︷︷ ︸

6

Partial hedge

6

Full hedge

�
�

�
�
�

�
��	∫ T2

T+
1

ξ̃sdX
2
s =

∫ T2

T+
1

ξsdX
2
s +NT2

where ξs : Fs-measurable, NT2 ∈ L2(Ω, FT2, P ) and Nt⊥M2
t
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Pricing and Hedging Solution
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Concluding remarks

• Quadratic Hedging

minE[(H − V0 −
∫ T

0

ξsdXs)
2]

• Get around incomplete information by Super-Hedging
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