Ambiguity Aversion in Real Options:

6th World Congress of the Bachelier Finance Society

Sebastian Jaimungal sebastian.jaimungal@utoronto.ca

Department of Statistics and Mathematical Finance Program, University of Toronto, Toronto, Canada http://www.utstat.utoronto.ca/sjaimung

June 22–26, 2010

The Real Option Problem

▶ Classical work of **McDonald & Siegel (86)** assigns the value

$$
f_t = \mathbb{E}_t \left[e^{-\rho (T-t)} \left(\mathbf{P}_T - I \right)_+ \right]
$$

to the **option to invest** in a project at *T*

- \blacktriangleright **P**_t value of a project if invested in at time *t*
- \blacktriangleright *I* the cost of the investment
- \rightharpoonup *ρ* discount rate

If **early investment** is allowed (e.g. qrtly or mthly), then

$$
f_t = \sup_{\tau \in \mathcal{T}} \mathbb{E}_t \left[e^{-\rho(\tau - t)} \left(\mathbf{P}_{\tau} - I \right)_+ \right]
$$

 \triangleright \mathscr{T} – a set of admissible stopping times

The Real Option Problem

- ▶ P_t often assumed **spanned** by a traded asset mostly **unrealistic**
	- \triangleright Spanning allows the project to effectively be traded and therefore valued using discounted expectations
- Instead view P_t as **strongly correlated** to a **tradable asset** S_t
- \blacktriangleright Two key questions addressed here:
	- \blacktriangleright How to value the option on P_t by trading in S_t ?
		- \triangleright Will use Utility indifference pricing
		- \blacktriangleright Henderson & Hobson (02) and Henderson (07) for perpetual version
	- An agent may have a good model for S_t but not P_t ... how to account for this **ambiguity**?
		- ▶ Knightian Uncertainty / ambiguity aversion
		- ^I *Robustness Approach:* **Anderson, Hansen, & Sargent (99); Uppal & Wang (03); Maenhout (04); and J. & Sigloch (09)**
		- **•** *Recursive multiple priors:* Epstein & Wang (94) Chen & Epstein (02) extension of Gilboa & Schmeidler (89)

- \blacktriangleright Consider:
	- ▶ Suppose want to value the risk *Y* received at *T*
	- **►** Agent's utility is exponential $u(x) = -\frac{1}{\gamma}e^{-\gamma x}$
	- Agent's initial wealth is x and risk-free rate is r
- \blacktriangleright Basic utility indifference valuation:
	- 1. Invest all of *x* in bank account:

$$
V(x) = -\frac{1}{\gamma} e^{-\gamma x e^{rT}}
$$

2. Invest *x − v* in bank account and receive *Y* at T:

$$
U(x) = \mathbb{E}[u((x - v)e^{rT} + \mathbf{Y})] = V(x - v)\mathbb{E}[e^{-\gamma Y}]
$$

3. Indifference value *v* solves

$$
V(x) = U(x) \quad \Rightarrow \quad v = -\frac{1}{\gamma} e^{-rT} \ln \mathbb{E}[e^{-\gamma Y}]
$$

Invest optimally in S_t without option to invest in project

$$
U(x) = \sup_{\pi \in \mathcal{A}} \mathbb{E}\left[u(\mathbf{X_T})\right]
$$

 \triangleright classical Merton (69) problem, admits explicit solution

Invest optimally in S_t with option to invest in project

 \blacktriangleright Upon exercise, receive option value, and revert to Merton:

$$
U(x, P; a) = \sup_{\tau \in \mathcal{F}} \sup_{\pi \in \mathcal{A}} \mathbb{E}\left[V(\tau, \mathbf{X}_{\tau} + a(\mathbf{P}_{\tau} - \mathbf{I})_{+})\right]
$$

$$
V(t,x) = \sup_{\pi \in \mathcal{A}} \mathbb{E} \left[u(\mathbf{X}_{\mathsf{T}}) | X_t = x \right]
$$

 \blacktriangleright Henderson (07) solved the perpetual version of this problem

Indifference value v of option to invest in project defined as

 $U(x, P; 0) = U(x - v, P; 1)$

 \triangleright Non-traded project value P_t and correlated traded equity S_t satisfy

$$
d\textbf{P}_t = \textbf{P}_t \left(\nu dt + \eta dW_t^P \right) \ , \quad d\textbf{S}_t = \textbf{S}_t \left(\mu dt + \sigma dW_t^S \right)
$$

 w^{th} *d*[W^P , W^S]_{*t*} = ρ *dt*.

For risk-neutral valuation can use the minimal entropy martingale measure:

$$
d\mathbf{P_t} = \mathbf{P_t} \left(\hat{\nu} dt + \eta d\hat{W}_t^P \right) \;, \quad d\mathbf{S_t} = \mathbf{S_t} \left(r dt + \sigma d\hat{W}_t^S \right)
$$

 ${\hat{\nu}} = \nu - \rho \eta \frac{\mu - r}{\sigma}$ and $d[\hat{W}^P, \hat{W}^S]_t = \rho dt$

- **F** The **MEMM** appears in indifference valuation as well
- **Ambiguity adjusted MEMM** appears for ambiguity-averse agents

- \blacktriangleright Let X_t denote the **investor's wealth**
- External Let π_t denote the **dollar amount invested** in the tradable asset S_t
- \blacktriangleright Let *A* denote the set of **admissible strategies**

$$
\mathcal{A} = \left\{ \pi_{\mathbf{t}} \mid \text{self financing and } \int_{0}^{T} \pi_{\mathbf{t}_{\mathbf{s}}}^{2} d\mathbf{s} < +\infty \right\}
$$

Filter Self-financing strategies imply

$$
d\mathbf{X_t} = ((\mu - r)\pi_{\mathbf{t}} + r\,\mathbf{X_t})dt + \sigma\pi_{\mathbf{t}}\,dW_t^S
$$

Dynamic programming principle leads to the HJB eqn

$$
\begin{cases} \partial_t U + \max_{\pi} \mathcal{L}_{\pi} U = 0 \\ U(t, b(x), P; a) = V(t, x + a(P - I)_+) \end{cases}
$$

▶ Assume exp. utility: $u(x) = -\frac{1}{\gamma}e^{-\gamma x}$ then wealth factors:

$$
V(t, x) = u\left(x e^{r(T-t)}\right) e^{-\frac{1}{2}\lambda^2 (T-t)}
$$

$$
U(t, x, e^y) = V(t, x) G^{\beta}(t, y)
$$

where $\lambda = (\mu - r)/\sigma$ is the **market price of risk** and $\beta = (1 - \rho^2)^{-1}$ is the power transform coefficient

▶ *G* solves a **linear complementarity problem**

$$
\begin{cases}\n\frac{\partial_t G + \mathcal{L}G}{\partial t} \leq 0, \\
\ln G(t, y) \geq h(t, y), \\
(\partial_t G + \mathcal{L}G) \cdot (\ln G(t, y) - h(t, y)) = 0,\n\end{cases}
$$

where

$$
h(t,y) = a\frac{\gamma}{\beta}(e^y - K)_+e^{r(T-t)}, \quad \text{and,} \quad \mathcal{L} = \hat{\nu}\partial_y + \frac{1}{2}\eta^2\partial_{yy}
$$

F Since wealth factors, the **indifference value** is simply:

$$
\mathbf{v}(\mathbf{t}, \mathbf{y}) = \frac{\beta}{\gamma} e^{-r(T-t)} \ln G(t, y)
$$

 \triangleright **v**(**t**, **y**) then satisfies a **non-linear complementarity problem**:

$$
\begin{cases}\n\frac{\partial_t v + \mathcal{L}v - \frac{1}{2}\eta^2 \frac{\gamma}{\beta}e^{r(T-t)}(\partial_y v)^2 \leq r v, \\
v(t, y) \geq (e^v - K)_+, \\
(\partial_t v + \mathcal{L}v - \frac{1}{2}\eta^2 \frac{\gamma}{\beta}e^{r(T-t)}(\partial_y v)^2 - rv, \\
(v(t, y) - (e^v - K)_+) = 0.\n\end{cases}
$$

- **►** As γ \downarrow 0, the non-linearity disappears
- \blacktriangleright Recovers the risk-neutral American option price

The effect of **risk-aversion** on **exercise policy**

The effect of **risk-aversion** on **option value**

- **Agent's may lack confidence** in their model and this uncertainty affects decisions
- **As illustrated in the classical Ellsberg paradox**
	- ▶ You are given 40 **red** marbles; and a total of 60 **black** and **green** marbles
	- \triangleright Mix all marbles, 1 chosen at random
	- \blacktriangleright Most investors prefer A to B

 \triangleright Most investors prefer D to C

- \blacktriangleright Inconsistent with maximizing expected utility
- \triangleright Resolved through including ambiguity aversion

- ▶ Agent's may **lack confidence** in their model
	- **EXA** Knightian Uncertainty viewed as **ambiguity aversion**
- ▶ Use ideas from **Robust Portfolio Optimization**
	- **Agent has some confidence in a reference measure** P
	- ▶ Agent is willing to consider a class of **candidate measures** Q
	- \blacktriangleright Agent then solves the problem

$$
V(x, P, S) = \sup_{\pi \in \mathcal{A}} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E}^{\mathbb{Q}}_{x, P, S} \left[u(X_T^{\pi}) + \frac{1}{\varepsilon} h(\mathbb{Q} | \mathbb{P}) \right].
$$

- \triangleright $h(\mathbb{O}|\mathbb{P})$ is a **penalty function**... e.g. relative entropy
- **The parameter** ε **acts as a measure of ambiguity aversion**
	- ^I As *ε ↓* 0 reference measure is picked out
	- ^I *ε ↑* +*∞* all candidates measures are equal

- ► For relative entropy: $h(\mathbb{Q}|\mathbb{P}) = \mathbb{E}^{\mathbb{Q}}[ln \frac{d\mathbb{Q}}{d\mathbb{P}}] = \mathbb{E}^{\mathbb{Q}}[\int_0^{\tau} \mu_s' \Sigma^{-1} \mu_s ds]$
- Instead use scaled relative entropy similar to in J. & Sigloch (09) :

$$
\mathbf{U}^{\mathsf{a}}(\mathbf{t}, \mathbf{x}, \mathbf{P}, \mathbf{S}) = \sup_{\tau \in \mathcal{I}_{t}} \sup_{\pi \in \mathcal{A}} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E} \Bigg[V(\widehat{\tau}, X_{\widehat{\tau}}^{\pi} + a(P_{\widehat{\tau}} - I)_{+}, P_{\widehat{\tau}}, S_{\widehat{\tau}}) - \frac{1}{\epsilon} \int_{t}^{\widehat{\tau}} \mathbf{U}^{\mathsf{a}}(\mathbf{s}, \mathbf{X}_{\mathbf{s}}^{\pi}, \mathbf{P}_{\mathbf{s}}, \mathbf{S}_{\mathbf{s}}) \mu_{\mathbf{s}}^{\mathbb{Q}'} \Sigma^{-1} \mu_{\mathbf{s}}^{\mathbb{Q}} d\mathbf{s} \Bigg],
$$

where, $\hat{\tau} = \tau \wedge T$ and

$$
\mathbf{V}(\mathbf{t}, \mathbf{x}, \mathbf{P}, \mathbf{S}) = \sup_{\pi \in \mathcal{A}} \inf_{\mathbb{Q} \in \mathcal{Q}} \mathbb{E} \left[u(X_T^{\pi}) - \frac{1}{\epsilon} \int_t^T \mathbf{V}(\mathbf{s}, \mathbf{X}_s^{\pi}, \mathbf{P}_s, \mathbf{S}_s) \mathbf{v}_s^{\mathbb{Q}'} \mathbf{\Sigma}^{-1} \mu_s^{\mathbb{Q}} ds \right].
$$

Fig. 2 The **Dynamic programming principle** leads to the HJB eqn

$$
\begin{cases}\n\partial_t U + \max_{\pi,\mu} \left(\mathcal{L}_{\pi,\mu} U - \frac{1}{\varepsilon} \mu' \Sigma^{-1} \mu U \right) = 0 \\
U(t, b(x), P; a) = V(t, x + a(P - I)_+) \\
\partial_t V + \max_{\pi,\mu} \left(\mathcal{L}_{\pi,\mu} V - \frac{1}{\varepsilon} \mu' \Sigma^{-1} \mu V \right) = 0 \\
V(T, x) = u(x)\n\end{cases}
$$

 \triangleright The scaling of relative entropy allows explicit solutions the DPE

 \triangleright Equations are similar to previous case with modified parameters

 \blacktriangleright The ansatz

$$
V(t,x) = u\left(x e^{r(T-t)}\right) e^{-\frac{1}{2}\lambda^2 (T-t)}, \quad U(t,x,e^y) = V(t,x) G^{\beta}(t,y)
$$

solves the resulting dynamic programming equations

- $▶$ $\lambda^2 = \frac{1}{1+\epsilon} \left(\frac{\mu-r}{\sigma} \right)$ is ambiguity adjusted market price of risk
- **I** The power transform coefficient β also depends on the ambiguity aversion parameter
- ▶ **indifference value** $\mathbf{v}(\mathbf{t}, \mathbf{y}) = \frac{\beta}{\gamma} e^{-r(T-t)} \ln G(t, y)$ **solves a non-linear** complimentary problem

$$
\begin{cases}\n\partial_t v + \mathcal{L}_{\varepsilon} \mathbf{v} - \frac{1}{2} \eta^2 \frac{\gamma}{\beta} e^{r(T-t)} (\partial_y \mathbf{v})^2 &\leq r v, \\
v(t,y) &\geq (e^{\gamma} - K)_+, \\
(\partial_t v + \mathcal{L}_{\varepsilon} \mathbf{v} - \frac{1}{2} \eta^2 \frac{\gamma}{\beta} e^{r(T-t)} (\partial_y v)^2 - r v) \\
\cdot (v(t,y) - (e^{\gamma} - K)_+) &= 0.\n\end{cases}
$$

The effect of **ambiguity-aversion** on **exercise boundary**

The effect of **ambiguity-aversion** on **option price**

- ▶ Ambiguity and Risk aversion are similar but distinct
- ^I **As** *γ ↓* 0 **non-linearity in LC problem is removed but dependence on** *ε* **remains** through the **ambiguity adjusted MEMM drift**

$$
\hat{\nu} = \nu - \frac{1}{1+\varepsilon} \rho \eta \frac{\mu - r}{\sigma}
$$

- ^I As *ε ↓* 0, ˆ*ν* decreases to **MEMM drift**
- ^I As *ε ↑* +*∞*, ˆ*ν* increases to *ν* **reference measure drift**
- \triangleright An agent may be risk-neutral but severely ambiguity averse

Conclusions

- ▶ Project value modeled as non-traded asset
- \triangleright Correlated traded asset provides partial hedge
- \triangleright Use utility indifference to value option
- \triangleright Risk-aversion affects option value and exercise strategy in non-linear way
- \triangleright Ambiguity aversion can be incorporated trough a scaled entropic penalty
- \triangleright Ambiguity also affects option value and exercise strategy in non-linear way
- \triangleright Ambiguity and risk aversion are similar but distinct factors in explaining agent's behavior

Conclusion

Thank you for your attention!!

Sebastian Jaimungal

sebastian.jaimungal@utoronto.ca University of Toronto, Toronto, Canada

http://www.utstat.utoronto.ca/sjaimung