Interest rate modelling: How important is arbitrage-free evolution?

Siobhán Devin¹ Bernard Hanzon² Thomas Bibarits³

¹European Central Bank

²University College Cork, Ireland

³European Investment Bank

Overview

§1 Nelson–Siegel (NS) models:

• Daily yield curve estimation; forecasting.

§2 No arbitrage interest rate models:

Heath–Jarrow–Morton.

§3 Contribution: $HJM = NS + Adj = NS_{proj} + Adj$

• Adj < Adj, Adj is small.

Some notation

Zero-coupon bonds (ZCB):

- A ZCB is a contract that guarantees its holder the payment of one unit of currency at time maturity.
- *P*(*t*, *x*) is the value of the bond at time *t* which matures in *x* years; *P*(*t*, 0) = 1.
- A ZCB price is a discount factor.

Common interest rates:

- Continuously compounded yield: $y(t, x) = -\frac{\log P(t, x)}{x}$.
- Short rate: $\lim_{x\to 0^+} y(t,x) = r(t)$.
- Forward rate: $F(t, x, x + \epsilon) = \frac{1}{P(t+x,\epsilon)} \frac{P(t,x+\epsilon) P(t,x)}{\epsilon}$.
- Instantaneous forward rate: $f(t, x) = \lim_{\epsilon \to 0^+} F(t, x, x + \epsilon) = -\frac{\partial \log P(t, x)}{\partial x}, \quad r(t) = f(t, t).$
- Relationship between *f* and *y*: $y(t, x) = \frac{1}{x} \int_0^x f(t, s) ds$.

§1 Nelson–Siegel (NS) models

§1 Nelson–Siegel (NS) models:

• Daily yield curve estimation; forecasting.

Figure: The EUR ZERO DEPO/SWAP curve as of 24/06/2009.

Figure: The EUR ZERO DEPO/SWAP curve as of 24/06/2009.

- Nelson–Siegel curves (and their extensions) are used by banks (eg central/investment) to estimate the shape of the yield curve.
- This estimation is justified by principal component analysis: low number of dimensions describes the curve with high accuracy.

Nelson-Siegel yield curve:

$$y(x) = L + S\left(\frac{1 - e^{-\lambda x}}{\lambda x}\right) + C\left(\frac{1 - e^{-\lambda x}}{\lambda x} - e^{-\lambda x}\right)$$

- y denotes the Nelson–Siegel yield curve.
- λ , *L*, *S* and *C* are estimated using yield data.

Figure: Influence of shocks on the factor loadings of the Nelson–Siegel yield curve.

Forecasting the term structure of interest rates.

Nelson–Siegel yield curve forecasting model:

$$y(t,x) = L(t) + S(t) \left(\frac{1 - e^{-\lambda x}}{\lambda x}\right) + C(t) \left(\frac{1 - e^{-\lambda x}}{\lambda x} - e^{-\lambda x}\right)$$

Advantages:

- Simple implementation.
- Easy to interpret.
- Can replicate observed yield curve shapes.
- Can produce more accurate one year forecasts than competitor models (Diebold and Li 2007).

A drawback?

Nelson-Siegel models are not arbitrage-free (Filipović 1999).

No arbitrage models

§2 No arbitrage interest rate models:

• Heath–Jarrow–Morton.

The HJM framework

The HJM framework:

$$df(t, x) = \alpha(f, t, x) dt + \sigma(f, t, x) dW(t),$$

$$f(0, x) = f^o(x),$$

where

$$\alpha(f,t,x) = \frac{\partial f(t,x)}{\partial x} + \sigma(f,t,x) \int_0^x \sigma(f,t,s) \, ds$$

A concrete model is fully specified once f^{o} and σ are given.

The HJM framework

Why use the HJM framework?

- Most short rate models can be derived within this framework.
- Automatic calibration: initial curve is a model input.
- Arbitrage-free pricing.

Interesting points:

- In practice one uses 2–3 driving Brownian motions ("factors").
- Despite this most HJM models are infinite-dimensional.
- Choice of volatility (not number of factors) determines complexity.
- A HJM model will be finite-dimensional if the volatility is an exponential polynomial function ie

$$EP(x) = \sum_{i=1}^{n} p_{\lambda_i}(x) e^{-\lambda_i x},$$

where p_{λ_i} is a polynomial associated with λ_i , (Björk, 2003).

The HJM framework

$$df(t, x) = \alpha(f, t, x) dt + \sigma(f, t, x) dW(t),$$

$$f(0, x) = f^o(0, x).$$

Possible volatility choices:

- Hull–White: $\sigma(f, t, x) = \sigma e^{-ax}$, (Ho–Lee: $\sigma(f, t, x) = \sigma$).
- Nelson–Siegel: $\sigma(f, t, x) = a + (b + cx)e^{-dx}$.
- Curve–dependent: $\sigma(f, t, x) = f(t, x)[a + (b + cx)e^{-dx}]$.

Note: Curve–dependent volatility is similar to a continuous–time version of the BGM/LIBOR market model.

Research contribution

§3a Theoretical Contribution: $HJM = NS + Adj = NS_{proj} + Adj$

A specific HJM model

Consider the following HJM model:

$$df(t,x) = \left(\frac{\partial f}{\partial x} + C(\sigma, x)\right) dt + \sigma_{11} dB_1(t) + (\sigma_{21} + \sigma_{22}e^{-\lambda x} + \sigma_{23}xe^{-\lambda x}) dB_2(t),$$

$$f^{o}(0,x) = f^{NS}(x).$$

A specific HJM model

Consider the following HJM model:

$$df(t,x) = \left(\frac{\partial f}{\partial x} + C(\sigma,x)\right) dt + \sigma_{11} dB_1(t) + (\sigma_{21} + \sigma_{22}e^{-\lambda x} + \sigma_{23}xe^{-\lambda x}) dB_2(t),$$

$$f^{o}(0,x) = f^{NS}(x).$$

(Björk 2003): f has a finite dimensional representation (FDR) since there is a finite-dimensional manifold G such that

•
$$f^o \in \mathcal{G}$$

• drift and volatility are in the tangent space of \mathcal{G} .

A specific HJM model

Consider the following HJM model:

$$df(t,x) = \left(\frac{\partial f}{\partial x} + C(\sigma,x)\right) dt + \sigma_{11} dB_1(t) + (\sigma_{21} + \sigma_{22}e^{-\lambda x} + \sigma_{23}xe^{-\lambda x}) dB_2(t),$$

$$f^{o}(0,x) = f^{NS}(x).$$

(Björk 2003): f has a finite dimensional representation (FDR) since there is a finite-dimensional manifold G such that

•
$$f^o \in \mathcal{G}$$

• drift and volatility are in the tangent space of *G*.

For our model $\mathcal{G} = span\{\overline{B}(x)\}$ • $\overline{B}(x) = (1, e^{-\lambda x}, xe^{-\lambda x}, x, x^2e^{-\lambda x}, e^{-2\lambda x}, xe^{-2\lambda x}, x^2e^{-2\lambda x})$

A method to construct the FDR

• *f* has an FDR given by $f(t, x) = \overline{B}(x).z(t)$ where

 $dz(t) = (Az(t) + b) dt + \Sigma dW(t), \quad z(0) = z_0.$

• A, b, Σ and z_0 are determined from

•
$$\overline{B}(x).z_0 = f^o(x)$$

• $\overline{B}(x).b = C(\sigma, x) = (B(x)\sigma) \int_0^x (B(s)\sigma)^T ds$

•
$$\overline{B}(x)Az(t) = \frac{\partial f}{\partial x} = \frac{d\overline{B}(x)}{dx}z(t)$$

•
$$\bar{B}(x)\Sigma = B(x)\sigma$$

•
$$B(x) = (1, e^{-\lambda x}, xe^{-\lambda x})$$

- Method of proof: comparison of coefficients.
- Easily generalised to exponential-polynomial functions.

Our specific HJM model

Our specific HJM model has the following finite-dimensional representation:

$$f(t,x) = z_1(t) + z_2(t)e^{-\lambda x} + z_3(t)xe^{-\lambda x} + z_4(t)x + z_5(t)x^2e^{-\lambda x} + z_6(t)e^{-2\lambda x} + z_7(t)xe^{-\lambda x} + z_8(t)x^2e^{-2\lambda x}.$$

Interesting points:

- Only z_1 , z_2 and z_3 are stochastic.
- A *specific* choice of initial curve will result in *z*₄,...,*z*₈ being constant.

(This is closely related with work by Christensen, Diebold and Rudebusch (2007) on extended NS curves).

• This model has counter-intuitive terms.

Our specific HJM model

How important is the Adjustment in the HJM model?

Previous approach: Statistical

- Coroneo, Nyholm, Vidova–Koleva (ECB working paper 2007).
- The estimated parameters of a NS model are not statistically different from those of an arbitrage–free model.

Our approach: Analytical

- We quantify the distance between forward curves,
- We analyse the differences in interest rate derivative prices.

Our Nelson-Siegel model: NSproj

•
$$NS_{proj}(t,x) = \hat{z}_1(t) + \hat{z}_2(t)e^{-\lambda x} + \hat{z}_3(t)xe^{-\lambda x}$$

•
$$\hat{z}(t) = (\hat{A}\hat{z}(t) + \hat{b}) dt + \hat{\Sigma} dW(t), z(0) = z_0$$
 where

•
$$B(x).\hat{z}_0 = f^{NS}(x)$$

•
$$B(x).\hat{b} = \mathcal{P}[(B(x)\sigma)\int_0^x (B(s)\sigma)^T ds]$$

•
$$B(x)\hat{A}\hat{z}(t) = \frac{\partial f}{\partial x}^{NS_{proj}}$$

•
$$B(x)\hat{\Sigma} = \mathcal{P}[B(x)\sigma]$$

Projection formula: Projection of v onto Span (B_1, B_2, B_3) :

$$\mathcal{P}: L^2 o \operatorname{Span}\, B(x): v\mapsto \sum_{i=1}^3 \sum_{j=1}^3 (R^{-1})_{ij} < v, B_j > B_i(x),$$

 $R_{ij} = \int B_i(s) B_j(s) \, ds$

Our Nelson-Siegel model: NSproj

•
$$NS_{proj}(t, x) = \hat{z}_1(t) + \hat{z}_2(t)e^{-\lambda x} + \hat{z}_3(t)xe^{-\lambda x}$$

•
$$\hat{z}(t) = (\hat{A}\hat{z}(t) + \hat{b}) dt + \hat{\Sigma} dW(t), z(0) = z_0$$
 where

•
$$B(x).\hat{z}_0 = f^{NS}(x)$$

•
$$B(x).\hat{b} = \mathcal{P}[(B(x)\sigma)\int_0^x (B(s)\sigma)^T ds]$$

•
$$B(x)\hat{A}\hat{z}(t) = \frac{\partial f}{\partial x}^{NS_{pro}}$$

•
$$B(x)\hat{\Sigma} = \mathcal{P}[B(x)\sigma]$$

$$HJM = NS + Adj = NS_{proj} + Adj$$
$$Adj < Adj$$

• Same approach can be used for infinite-dimensional HJM.

Research contribution

§3b Applied Contribution: $HJM = NS + Adj = NS_{proj} + Adj$

• Adj < Adj, Adj is small.

An application

Recall the HJM model:

$$df(t, x) = \left(\frac{\partial f}{\partial x} + C(\sigma, x)\right) dt + \sigma_{11} dB_1(t) + (\sigma_{21} + \sigma_{22}e^{-\lambda x} + \sigma_{23}xe^{-\lambda x}) dB_2(t),$$

$$f^{o}(0, x) = f^{NS}(x).$$

An application

Recall the HJM model:

$$df(t,x) = \left(\frac{\partial f}{\partial x} + C(\sigma, x)\right) dt + \sigma_{11} dB_1(t) + (\sigma_{21} + \sigma_{22}e^{-\lambda x} + \sigma_{23}xe^{-\lambda x}) dB_2(t),$$

$$f^0(0,x) = f^{NS}(x).$$

We can rewrite this model as:

 $dY(t,x) = \mu(t,x) dt + S_1(x) dB_1(s) + S_2(x) dB_2(s),$

where
$$Y(t, x) = \log P(t, x)$$
,
 $S_1(x) = \sigma_{11}x$,
 $S_2(x) = \frac{e^{-x\lambda}(-1+e^{x\lambda})(\lambda\sigma_{22}+\sigma_{23})}{\lambda^2} + x\left(\sigma_{21} - \frac{e^{-x\lambda}\sigma_{23}}{\lambda}\right)$

Our data set consists of daily observations of depo/swap yields with maturities ranging from 3 months to 20 years.

Our data set consists of daily observations of depo/swap yields with maturities ranging from 3 months to 20 years.

To estimate the volatility we use **Principal Component** Analysis (PCA).

Our data set consists of daily observations of depo/swap yields with maturities ranging from 3 months to 20 years.

To estimate the volatility we use **Principal Component** Analysis (PCA).

$$\begin{pmatrix} \Delta Y(t,1) \\ \vdots \\ \Delta Y(t,20) \end{pmatrix} \simeq \begin{pmatrix} \mu_1(1) \\ \vdots \\ \mu_1(20) \end{pmatrix} + \begin{pmatrix} S_1(1) & S_2(1) \\ \vdots & \vdots \\ S_1(20) & S_2(20) \end{pmatrix} * \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

Our data set consists of daily observations of depo/swap yields with maturities ranging from 3 months to 20 years.

To estimate the volatility we use **Principal Component Analysis (PCA)**.

$$\begin{pmatrix} \Delta Y(t,1) \\ \vdots \\ \Delta Y(t,20) \end{pmatrix} \simeq \begin{pmatrix} \mu_1(1) \\ \vdots \\ \mu_1(20) \end{pmatrix} + \begin{pmatrix} S_1(1) & S_2(1) \\ \vdots & \vdots \\ S_1(20) & S_2(20) \end{pmatrix} * \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

By applying PCA to our data set

 we found that approximately 98% of the variance in the yields is captured by the first two principal components.

Our data set consists of daily observations of depo/swap yields with maturities ranging from 3 months to 20 years.

To estimate the volatility we use **Principal Component Analysis (PCA)**.

$$\begin{pmatrix} \Delta Y(t,1) \\ \vdots \\ \Delta Y(t,20) \end{pmatrix} \simeq \begin{pmatrix} \mu_1(1) \\ \vdots \\ \mu_1(20) \end{pmatrix} + \begin{pmatrix} S_1(1) & S_2(1) \\ \vdots & \vdots \\ S_1(20) & S_2(20) \end{pmatrix} * \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$$

By applying PCA to our data set

- we found that approximately 98% of the variance in the yields is captured by the first two principal components.
- we determined the volatility associated with each factor.

Parameter estimation

Figure: First and second principal component and fitted curves.

- First component fitted using $S_1(x) = \sigma_{11}x$.
- Second component fitted using $S_2(x) = \frac{e^{-x\lambda} \left(-1+e^{x\lambda}\right) (\lambda \sigma_{22} + \sigma_{23})}{\lambda^2} + x \left(\sigma_{21} - \frac{e^{-x\lambda} \sigma_{23}}{\lambda}\right).$

Figure: Some possible curve shapes generated by HJM and NS models after simulation for 5 years.

Figure: Some possible curve shapes generated by HJM and NS models after simulation for 5 years.

Figure: Some possible curve shapes generated by HJM and NS models after simulation for 5 years.

Figure: Some possible curve shapes generated by HJM and NS models after simulation for 5 years.

Note: The average curve for *any* future time can be calculated analytically at time 0.

Figure: Difference in the curves after five years.

Note: This difference remains the same for each realisation.

Analysis of simulated prices

Theoretical 'European call option' prices on a 20 year bond:

T ₀ (years)	5	10	15
Strike	0.565	0.686	0.865
$\Pi^{HJM}(T_0)$ $\Pi^{NS_{proj}}(T_0)$	0.0193 0.0192	0.0146 0.0144	0.00567 0.00562
% difference	0.47%	1.18%	0.89%

- T_0 denotes option maturity; Π denotes price.
- The strike is the at-the-money forward price of the bond $P(T_0, 20 T_0)$.

Analysis of simulated prices

Theoretical 'Capped floating rate note' prices:

Cap	2%	3%	4%
⊓ ^{HJM} ⊓ ^{NS_{proj}}	0.372 0.371	0.349 0.256	0.256 0.163
% difference (of nominal)	0.045%	0.043%	0.033%

- Maturity of 20 years; nominal of 1; annual interest rate payment.
- Differences of 1–2% of nominal are common.

Case Studies

Case Study 1: Cap/Floor

- Nominal: EUR 180 million; Maturity: 30/6/2014.
- Receive capped and floored 3 month EURIBOR + spread:

Payout = (Nominal/4)*Max[0,Min[5%,ir+0.3875%]]

• Valuation:

Model	Valuation (EUR)	% difference (of nominal)
Numerix (1F HW)	-2,045,140	
HJM	-2,085,124	0.022%
NS _{proj}	-2,085,449	0.024%

Case Studies

Case Study 2: Curve Steepener

- Nominal: EUR 4, 258, 000; Maturity: 30/5/2015.
- Pay 'Curve steepener payoff' semi-annually:

Payout = (Nominal/2)* Max["10 year swap"-"2 year swap",0]

• Valuation:

Model	Valuation (EUR)	% difference (of nominal)
Numerix (3F BGM)	345,186	
HJM	295,401	1.2%
NS _{proj}	296, 251	1.15%

Contribution

1. *HJM* = *NS*+ *Adj*

initial curve affects shape of Adj, Adj contains counter-intuitive terms.

2.
$$HJM = NS_{proj} + Adj$$
, $Adj < Adj$.

3 Simulation and Case Studies: $HJM \simeq NS_{proj}$

- for forward curve shapes, bond options, capped FRNs.
- Numerix (3F–BGM) \approx 2F–HJM \approx NS_{proj}

Thank you

Research supported by:

- STAREBEI (Stages de Recherche á la BEI).
- *The Embark Initiative* operated by the Irish Research Council for Science, Technology and Engineering.
- The Edgeworth Centre for Financial Mathematics.

Disclaimer: This work expresses solely the views of the authors and does not necessarily represent the opinion of the ECB or EIB.