roduction Model Solution Empirical income Robustness Summary

Optimal Housing, Consumption, and Investment Decisions over the Life-Cycle

Holger Kraft¹ Claus Munk²

¹Goethe University Frankfurt, Germany

²Aarhus University, Denmark

Bachelier Finance Society Toronto, June 2010

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

- 1 Introduction
- 2 Model
- 3 Solution
- 4 Empirical income
- 5 Robustness
- 6 Summary

Motivation

- Labor income and housing decisions important for most individuals
- Some papers include labor income, some papers housing decisions
- The few papers including both aspects are restrictive [Campbell/Cocco (QJE03), Cocco (RFS05), Yao/Zhang (RFS05), Van Hemert (WP09)]
- Difficult optimization problem typically solved by highly complex numerical methods

This paper

- Rich model: stochastic labor income, house price, interest rate, stock price
- Disconnect housing consumption and housing investment
- Closed-form "Excel-ready" solution
- Model generates life-cycle behavior with many realistic features
- Non-negligible welfare gains from "perfect" house price-linked financial contracts

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

1 Introduction

- 3 Solution
- 4 Empirical income
- 5 Robustness

Financial assets

• Short-term interest rate (= return on cash):

$$dr_t = \kappa (\bar{r} - r_t) dt - \sigma_r dW_{rt}$$

• Price $B_t = B(r_t, t)$ of bond (20Y used later):

$$rac{dB_t}{B_t} = (r_t + \lambda_B \sigma_B(r_t, t)) \ dt + \sigma_B(r_t, t) \ dW_{rt}$$

• Stock price:

$$\frac{dS_t}{S_t} = (r_t + \lambda_S \sigma_S) dt + \sigma_S \left(\rho_{SB}, \sqrt{1 - \rho_{SB}^2} \right) \begin{pmatrix} dW_{rt} \\ dW_{St} \end{pmatrix}$$

Introduction	Model o●ooo	Solution	Empirical income	Robustness	Summary o
10 B (10 B (

Housing

"Unit" house price H_t : (unit \approx 1 "average" sq. foot)

$$\frac{dH_{t}}{H_{t}} = (r_{t} + \lambda_{H}\sigma_{H} - r^{\mathsf{imp}}) dt + \sigma_{H}(\rho_{HB}, \hat{\rho}_{HS}, \hat{\rho}_{H}) \begin{pmatrix} dW_{rt} \\ dW_{St} \\ dW_{Ht} \end{pmatrix}$$

Housing positions:

- owning φ_{ot} housing units
- renting φ_{rt} units at rental rate νH_t per unit
- investing in REITs, φ_{Rt} units, total return $\frac{dH_t}{H_t} + \nu dt$

Housing consumption: $\varphi_{Ct} = \varphi_{ot} + \varphi_{rt}$ Housing investment: $\varphi_{lt} = \varphi_{ot} + \varphi_{Rt}$ 1

Introduction Model Solution Empirical income Robustness Summary

Labor income and wealth

Income rate Y_t until retirement at \tilde{T} :

$$\frac{dY_{t}}{Y_{t}} = (\bar{\mu}_{Y}(t) + br_{t}) dt + \sigma_{Y}(t) (\rho_{YB}, \hat{\rho}_{YS}, \hat{\rho}_{Y}) \begin{pmatrix} dW_{rt} \\ dW_{St} \\ dW_{Ht} \end{pmatrix}$$

In retirement: $Y_t = \Upsilon Y_{\tilde{T}}, t \in [\tilde{T}, T]$. Human wealth/capital:

$$L_t = \mathrm{E}_t^{\mathbb{Q}} \left[\int_t^T \boldsymbol{e}^{-\int_t^s r_u \, du} Y_s \, ds \right] = \begin{cases} Y_t F(t, r_t), & t < \tilde{T}, \\ Y_{\tilde{T}} F(t, r_t), & t \in (\tilde{T}, T], \end{cases}$$

where F is known in closed form.

Financial/tangible wealth: X_t . Total wealth: $X_t + L_t$.

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

The individual's optimization problem

$$J(t, X, r, H, Y) = \sup \operatorname{E}_{t} \left[\int_{t}^{T} e^{-\delta(u-t)} \frac{1}{1-\gamma} \left(c_{u}^{\beta} \varphi_{Cu}^{1-\beta} \right)^{1-\gamma} ds \right]$$

Choose:

- ct perishable consumption rate
- φ_{Ct} housing units consumed
 - $\hat{\pi}_{lt}$ fraction of total wealth invested in house, $\hat{\pi}_{lt} = \frac{H_t \varphi_{lt}}{X_t + L_t}$
- $\hat{\pi}_{\textit{Bt}}$ fraction of total wealth invested in bond
- $\hat{\pi}_{\mathit{St}}$ fraction of total wealth invested in stock

Selected parameter values

250

Individual	
Wealth	20,000
Risk aversion	4
Work life	30 Y
Retirement	20 Y
House	
Exp. return	1%
Volatility	12%
Imputed rent	5%
Rent	5%

Unit price

Excess stock return	5%
Income	
Initial	20,000
Avg. growth	2%
Volatility	7.5%
Retirement	60%
Correlations	
income/stock,bond	0
house/stock	0.5
house/bond	0.65
income/house	0.57

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

- 1 Introduction
 - 2 Model
- 3 Solution
- 4 Empirical income
- 5 Robustness

6 Summary

Introduction	Model 00000	Solution ●00000	Empirical income	Robustness	Summary o

Solution to the HJB-equation...

$$J(t, X, r, H, Y) = \frac{1}{1 - \gamma} g(t, r, H)^{\gamma} (X + YF(t, r))^{1 - \gamma},$$

$$g(t,r,H) = \frac{\eta\nu}{1-\beta} H^k \int_t^T e^{-d_1(u-t)-\beta\frac{\gamma-1}{\gamma}\mathcal{B}_\kappa(u-t)r} \, du,$$

Introduction	Model 00000	Solution ○●○○○○	Empirical income	Robustness	Summary 0

Investments – fractions of total wealth

Stocks
$$\hat{\pi}_{S} = \frac{1}{\gamma} \frac{\xi_{S}}{\sigma_{S}} - \frac{\sigma_{Y}\zeta_{S}}{\sigma_{S}} \frac{L}{X+L},$$

 $4\% \qquad 0 \leftrightarrow 33\%$
Bonds $\hat{\pi}_{B} = \frac{1}{\gamma} \frac{\xi_{B}}{\sigma_{B}} - \left(\frac{\sigma_{Y}\zeta_{B}}{\sigma_{B}} - \frac{\sigma_{r}}{\sigma_{B}} \frac{F_{r}}{F}\right) \frac{L}{X+L} - \frac{\sigma_{r}}{\sigma_{B}} \frac{g_{r}}{g},$
 $-63\% \qquad 0 \leftrightarrow 116\% \qquad 0 \leftrightarrow -42\% \qquad 49\%$
House $\hat{\pi}_{I} = \frac{1}{\gamma} \frac{\xi_{I}}{\sigma_{H}} - \frac{\sigma_{Y}\zeta_{I}}{\sigma_{H}} \frac{L}{X+L} + \frac{Hg_{H}}{g}$
 $91\% \qquad 0 \leftrightarrow -109\% \qquad 15\%$
speculative adjust for human wealth hedge

Note: σ_Y drops to zero at retirement, but $L/(X + L) > 0 \rightsquigarrow$ jump

Introduction	Model 00000	Solution	Empirical income	Robustness ০০০	Summary o

Expected wealth over the life-cycle

Introduction	Model 00000	Solution 000●00	Empirical income	Robustness	Summ o

Expected investments over the life-cycle

Introduction	Model 00000	Solution oooo●o	Empirical income	Robustness 000	Summary o

... with age-dependent income volatility

00 00000 00000 000 000	0

Housing consumption and investments

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

- 1 Introduction
- 2 Model
- 3 Solution
- Empirical income
- 5 Robustness

6 Summary

Introduction Mode	el Solution	Empirical incor	me Robustness	Summary
00 000	00 00000	o o	000	0

Empirical income profiles

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

Expected investments again

Introduction Model Solution Empirical income Robustness Summary oo oooo oooo oo oo oo oo

Housing consumption and investments again

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

- 1 Introduction
- 2 Model
- 3 Solution
- 4 Empirical income
- 5 Robustness

Unspanned labor income

- Our solution requires market completeness, i.e., spanned labor income
- Labor income is much closer to being spanned when housing assets are included – high income-house price correlation
- If labor income is unspanned, the implementation of our consumption/investment strategy is sub-optimal
- Bick, Kraft & Munk (presented Thursday): the welfare loss is relatively small (magnitude ≤ 3%)

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

Constant housing consumption

Note: minimum certainty-equivalent wealth loss is only 0.24%

Infrequent rebalancing of housing positions

	Welfare loss	
Adjustment frequency	2 years	5 years
Infrequent φ_{C} , frequent φ_{I}	0.03%	0.07%
Infrequent φ_I , frequent φ_C	0.43%	1.85%
Infrequent φ_{C} and φ_{I}	0.46%	1.96%

- suggests moderate welfare gains from market for REITs or CSI housing contracts
- suggests moderate effects of housing transactions costs

Introduction	Model	Solution	Empirical income	Robustness	Summary
00	00000	000000	000	000	0

- 1 Introduction
- 2 Model
- 3 Solution
- 4 Empirical income
- 5 Robustness

Summary

- Framework for consumption, housing, and investment decisions over the life-cycle
- High income/house correlation → life-cycle patterns in optimal decisions, in particular housing investment
- Calibrated model has many realistic features
- Lots of comparative statics in the paper
- Need to know more about typical life-cycle pattern in income volatility and income/house price correlation
- Our model is a benchmark for numerical solutions with portfolio constraints and transaction costs