The tracking error rate of the Delta-Gamma hedging strategy

Azmi MAKHLOUF¹

Joint work with : Emmanuel GOBET¹

¹Laboratoire Jean Kuntzmann, Grenoble University and CNRS Grenoble , FRANCE

6th World Congress of the Bachelier Finance Society, Toronto, June 22th-26th 2010

Delta Hedging Strategy (DHS)

- Risky assets S (with Black-Scholes model)
- Option to be hedged : $u(t,S) := \mathbb{E}_{\mathbb{Q}}(e^{-r(T-t)}g(S_T)|S_t = S)$
- Rebalancing dates : $\pi := \{ 0 = t_0 < \cdots < t_i < \cdots < t_N = T \}$

Delta Hedging Strategy (DHS)

- Risky assets S (with Black-Scholes model)
- Option to be hedged : $u(t,S) := \mathbb{E}_{\mathbb{Q}}(e^{-r(T-t)}g(S_T)|S_t = S)$
- Rebalancing dates : $\pi := \{ 0 = t_0 < \cdots < t_i < \cdots < t_N = T \}$

Delta Hedging Strategy (DHS) \equiv hold δ_{t_i} risky assets between t_i et t_{i+1} such that :

Portfolio value at time $t: V^{\Delta,N}(t,S_t) = \delta_t^0 S_t^0 + \delta_t S_t$

$$\partial_{\mathcal{S}} V^{\Delta,N} = \partial_{\mathcal{S}} u \Longrightarrow \delta_t = \partial_{\mathcal{S}} u(t,S_t)$$

Delta Hedging Strategy (DHS)

- Risky assets S (with Black-Scholes model)
- Option to be hedged : $u(t,S) := \mathbb{E}_{\mathbb{Q}}(e^{-r(T-t)}g(S_T)|S_t = S)$
- Rebalancing dates : $\pi := \{0 = t_0 < \cdots < t_i < \cdots < t_N = T\}$

Delta Hedging Strategy (DHS) \equiv hold δ_{t_i} risky assets between t_i et t_{i+1} such that :

Portfolio value at time $t: V^{\Delta,N}(t,S_t) = \delta_t^0 S_t^0 + \delta_t S_t$

$$\partial_{\mathcal{S}} V^{\Delta,N} = \partial_{\mathcal{S}} u \Longrightarrow \delta_t = \partial_{\mathcal{S}} u(t,S_t)$$

The (discounted) Delta tracking error $\bar{\mathcal{E}}_{N}^{\Delta} := e^{-rT}(V_{T}^{\Delta,N} - g(S_{T}))$

$$\bar{\mathcal{E}}_N^{\Delta} = \sum_{i=0}^{N-1} \int_{t_i}^{t_{i+1}} (\delta_{t_i} - \delta_t) \mathrm{d}\bar{S}_t.$$

▶ In Gobet and Temam (2001) : (with **uniform** time net)

In Gobet and Temam (2001) : (with uniform time net)
 For g(x) = (x − K)₊ (or any Lipschitz continuous g),

$$(\mathbb{E}|\bar{\mathcal{E}}_N^{\Delta}|^2)^{rac{1}{2}} \sim N^{-rac{1}{2}}$$

▶ In Gobet and Temam (2001) : (with uniform time net)
 ● For g(x) = (x - K)₊ (or any Lipschitz continuous g),

$$(\mathbb{E}|\bar{\mathcal{E}}_N^{\Delta}|^2)^{rac{1}{2}} \sim N^{-rac{1}{2}}$$

• For
$$g(x) = (x - K)^a_+$$
, $a \in (0, \frac{1}{2})$,
 $(\mathbb{E}|\bar{\mathcal{E}}^{\Delta}_N|^2)^{\frac{1}{2}} \sim N^{-\frac{1}{4} - \frac{a}{2}}$.

▶ In Gobet and Temam (2001) : (with uniform time net)
 ● For g(x) = (x - K)₊ (or any Lipschitz continuous g),

$$(\mathbb{E}|\bar{\mathcal{E}}_N^{\Delta}|^2)^{\frac{1}{2}} \sim N^{-\frac{1}{2}}$$

• For
$$g(x) = (x - K)^a_+$$
, $a \in (0, \frac{1}{2})$,
 $(\mathbb{E}|\bar{\mathcal{E}}^{\Delta}_N|^2)^{\frac{1}{2}} \sim N^{-\frac{1}{4} - \frac{a}{2}}$.

• For $g(x) = \mathbbm{1}_{x \geq K}$, $(\mathbb{E}|ar{\mathcal{E}}_N^{\Delta}|^2)^{rac{1}{2}} \sim N^{-rac{1}{4}}.$

• For
$$g \in L_{2,\alpha}$$
, $\alpha \in (0,1]$,

$$(\mathbb{E}|\bar{\mathcal{E}}_N^{\Delta}|^2)^{\frac{1}{2}}=\mathcal{O}(N^{-\frac{\alpha}{2}}).$$

• For
$$g \in L_{2,\alpha}$$
, $\alpha \in (0,1]$,

$$(\mathbb{E}|\bar{\mathcal{E}}_N^{\Delta}|^2)^{\frac{1}{2}}=\mathcal{O}(N^{-\frac{\alpha}{2}}).$$

• Moreover, one can reach the order $N^{-\frac{1}{2}}$ thanks to a convenient choice of a non regular time net.

• For
$$g \in L_{2,\alpha}$$
, $\alpha \in (0,1]$,

$$(\mathbb{E}|\bar{\mathcal{E}}_N^{\Delta}|^2)^{\frac{1}{2}}=\mathcal{O}(N^{-\frac{\alpha}{2}}).$$

• Moreover, one can reach the order $N^{-\frac{1}{2}}$ thanks to a convenient choice of a non regular time net.

▶ Both the payoff function regularity and the time net choice have an effect on the convergence order of the Delta hedging error.

► The Delta-Gamma Hedging Strategy (DGHS) \equiv hold, between t_i and t_{i+1} , δ_{t_i} risky assets S and $\delta_{t_i}^C$ of another instrument whose price is $(C(t, S_t))_{0 \le t \le T}$: (in dim 1)

$$V^{\Delta\Gamma,N}(t,S_t) = \delta_t^0 S_t^0 + \delta_t S_t + \delta_t^C C(t,S_t)$$

► The Delta-Gamma Hedging Strategy (DGHS) \equiv hold, between t_i and t_{i+1} , δ_{t_i} risky assets S and $\delta_{t_i}^C$ of another instrument whose price is $(C(t, S_t))_{0 \le t \le T}$: (in dim 1)

$$V^{\Delta\Gamma,N}(t,S_t) = \delta_t^0 S_t^0 + \delta_t S_t + \delta_t^C C(t,S_t)$$

►
$$\partial_{S} V^{\Delta\Gamma,N} = \partial_{S} u$$
 and $\partial_{S}^{2} V^{\Delta\Gamma,N} = \partial_{S}^{2} u$ yield (in dim 1)

$$\delta_{t_i}^{\mathsf{C}} := \frac{\partial_{\mathsf{S}}^2 u(t_i, S_{t_i})}{\partial_{\mathsf{S}}^2 C(t_i, S_{t_i})}, \qquad \delta_{t_i} := \partial_{\mathsf{S}} u(t_i, S_{t_i}) - \frac{\partial_{\mathsf{S}}^2 u(t_i, S_{t_i})}{\partial_{\mathsf{S}}^2 C(t_i, S_{t_i})} \partial_{\mathsf{S}} C(t_i, S_{t_i}).$$

► The Delta-Gamma Hedging Strategy (DGHS) \equiv hold, between t_i and t_{i+1} , δ_{t_i} risky assets S and $\delta_{t_i}^C$ of another instrument whose price is $(C(t, S_t))_{0 \le t \le T}$: (in dim 1)

$$V^{\Delta\Gamma,N}(t,S_t) = \delta_t^0 S_t^0 + \delta_t S_t + \delta_t^C C(t,S_t)$$

►
$$\partial_S V^{\Delta\Gamma,N} = \partial_S u$$
 and $\partial_S^2 V^{\Delta\Gamma,N} = \partial_S^2 u$ yield (in dim 1)

$$\delta_{t_i}^{\mathsf{C}} := \frac{\partial_{\mathsf{S}}^2 u(t_i, \mathsf{S}_{t_i})}{\partial_{\mathsf{S}}^2 C(t_i, \mathsf{S}_{t_i})}, \qquad \delta_{t_i} := \partial_{\mathsf{S}} u(t_i, \mathsf{S}_{t_i}) - \frac{\partial_{\mathsf{S}}^2 u(t_i, \mathsf{S}_{t_i})}{\partial_{\mathsf{S}}^2 C(t_i, \mathsf{S}_{t_i})} \partial_{\mathsf{S}} C(t_i, \mathsf{S}_{t_i}).$$

► Our goal : study, in dimension *d*,

- the link between the order of $\overline{\mathcal{E}}_N^{\Delta\Gamma}$ and the payoff regularity
- the effect of the rebalancing dates choice

Assets

$$\begin{cases} S_0^j &= s_0^j, \\ \mathrm{d}S_t^j &= \mu_j S_t^j \mathrm{d}t + \sigma_j S_t^j \mathrm{d}\hat{W}_t^j, \end{cases}$$

- $\langle \hat{W}^j, \hat{W}^k \rangle_t = \rho_{j,k} t$, and the matrix $(\rho_{j,k})_{1 \le j,k \le d}$ has full rank.
- Risk-neutral probability \mathbb{Q} :

•
$$\lambda_j = \frac{\mu_j - r}{\sigma_j}$$

• $(W_t^j := \hat{W}_t^j + \lambda_j t)_{1 \le j \le d}$ is a Q-Brownian motion

• Hedging instruments : for $0 \le j < k \le d$, $C^{j,k}(t, S^j, S^k) :=$ $\mathbb{E}_{\mathbb{Q}}\left[e^{-r(T_2-t)}(S^k_{T_2} - K_{j,k}S^j_{T_2})_+ | S^j_t = S^j, S^k_t = S^k\right],$ (\longrightarrow closed BS and Margrabe formulas).

- Hedging instruments : for $0 \le j < k \le d$, $C^{j,k}(t, S^j, S^k) :=$ $\mathbb{E}_{\mathbb{Q}}\left[e^{-r(T_2-t)}(S^k_{T_2} - K_{j,k}S^j_{T_2})_+|S^j_t = S^j, S^k_t = S^k\right]$, (\longrightarrow closed BS and Margrabe formulas).
- Hedging ratios :
 - $\delta_{t_i}^{j,k}$ ($1 \le j < k \le d$, Exchange options)

•
$$\delta^{0,l}_{t_i}$$
 $(1 \leq l \leq d$, Call options)

•
$$\delta'_{t_i}$$
 $(1 \le l \le d, \text{ assets}).$

▶ with almost similar definitions to those in dim 1.

• The option to hedge :

•
$$u(t,S) := \mathbb{E}_{\mathbb{Q}} \left[e^{-r(T-t)} g(S_T) | S_t = S \right]$$
, with $S = (S^1, ..., S^d) \in \mathbb{R}^d_+$.

- The option to hedge :
 - $u(t,S) := \mathbb{E}_{\mathbb{Q}}\left[e^{-r(T-t)}g(S_T)|S_t = S\right]$, with $S = (S^1, ..., S^d) \in \mathbb{R}^d_+$.
 - Payoff : $\mathbb{E}_{\mathbb{P}} \left| g(S_{\mathcal{T}}) \right|^{2p_0} < \infty$, for some $p_0 > 1$.

For l, m, n = 1...d, we define

$$\begin{split} \bar{u}(t) &:= e^{-rt} u(t, S_t) = \mathbb{E}_{\mathbb{Q}} \left[e^{-rT} g(S_T) | \mathcal{F}_t \right]; \\ \bar{u}_l^{(1)}(t) &:= e^{-rt} \sigma_l S_t^l \partial_l u(t); \\ \bar{u}_{l,m}^{(2)}(t) &:= e^{-rt} \sigma_l \sigma_m S_t^l S_t^m \partial_{l,m}^2 u(t); \\ \bar{u}_{l,m,n}^{(3)}(t) &:= e^{-rt} \sigma_l \sigma_m \sigma_n S_t^l S_t^m S_t^n \partial_{l,m,n}^3 u(t). \end{split}$$

And similar definitions with $\overline{C}^{j,k}(t)$ (for $0 \le j < k \le d$ et l, m, n = 1...d).

For l, m, n = 1...d, we define

$$\begin{split} \bar{u}(t) &:= e^{-rt} u(t, S_t) = \mathbb{E}_{\mathbb{Q}} \left[e^{-rT} g(S_T) | \mathcal{F}_t \right]; \\ \bar{u}_l^{(1)}(t) &:= e^{-rt} \sigma_l S_t^l \partial_l u(t); \\ \bar{u}_{l,m}^{(2)}(t) &:= e^{-rt} \sigma_l \sigma_m S_t^l S_t^m \partial_{l,m}^2 u(t); \\ \bar{u}_{l,m,n}^{(3)}(t) &:= e^{-rt} \sigma_l \sigma_m \sigma_n S_t^l S_t^m S_t^n \partial_{l,m,n}^3 u(t). \end{split}$$

And similar definitions with $\overline{C}^{j,k}(t)$ (for $0 \le j < k \le d$ et l, m, n = 1...d).

► Q-Martingales.

▶ enable tricky calculus of the Itô decompositions.

Theorem

$$\overline{\mathcal{E}}_{N}^{\Delta\Gamma}(g,\pi) = -\sum_{i=0}^{N-1} \sum_{l,m,n=1}^{d} \int_{t_{i}}^{t_{i+1}} \int_{t_{i}}^{t} \int_{t_{i}}^{s} \left(\overline{u}_{l,m,n}^{(3)}(r) + R_{l,m,n}^{i,(3)}(r) \right) \mathrm{d}W_{r}^{n} \mathrm{d}W_{s}^{m} \mathrm{d}W_{t}^{l}$$

Theorem

$$\overline{\mathcal{E}}_{N}^{\Delta\Gamma}(g,\pi) = -\sum_{i=0}^{N-1} \sum_{l,m,n=1}^{d} \int_{t_{i}}^{t_{i+1}} \int_{t_{i}}^{t} \int_{t_{i}}^{s} \left(\overline{u}_{l,m,n}^{(3)}(r) + R_{l,m,n}^{i,(3)}(r) \right) \mathrm{d}W_{r}^{n} \mathrm{d}W_{s}^{m} \mathrm{d}W_{t}^{\prime}$$

▶ NB. For DHS :
$$\overline{\mathcal{E}}_{N}^{\Delta}(g, \pi) = -\sum_{i=0}^{N-1} \sum_{l,m=1}^{d} \int_{t_{i}}^{t_{i+1}} \int_{t_{i}}^{t} \left(\overline{u}_{l,m}^{(2)}(s) + R_{l,m}^{i,(2)}(s) \right) \mathrm{d}W_{s}^{m} \mathrm{d}W_{t}^{l}$$

Theorem

$$\overline{\mathcal{E}}_{N}^{\Delta\Gamma}(g,\pi) = -\sum_{i=0}^{N-1} \sum_{l,m,n=1}^{d} \int_{t_{i}}^{t_{i+1}} \int_{t_{i}}^{t} \int_{t_{i}}^{s} \left(\overline{u}_{l,m,n}^{(3)}(r) + R_{l,m,n}^{i,(3)}(r) \right) \mathrm{d}W_{r}^{n} \mathrm{d}W_{s}^{m} \mathrm{d}W_{t}^{\prime}$$

► NB. For DHS :
$$\overline{\mathcal{E}}_{N}^{\Delta}(g, \pi) =$$

- $\sum_{i=0}^{N-1} \sum_{l,m=1}^{d} \int_{t_{i}}^{t_{i+1}} \int_{t_{i}}^{t} \left(\overline{u}_{l,m}^{(2)}(s) + R_{l,m}^{i,(2)}(s) \right) \mathrm{d}W_{s}^{m} \mathrm{d}W_{t}^{l}.$

• One has to estimate $\mathbb{E}_{\mathbb{P}} \left| \overline{u}_{l,m,n}^{(3)}(r) \right|^2$ and $\mathbb{E}_{\mathbb{P}} \left| R_{l,m,n}^{i,(3)}(r) \right|^2$: the regularity of g plays a key role.

Fractional regularity : the space $L_{2,\alpha}$

When $\mathbb{E}|g(X_T)|^2 < +\infty$, we define

$$V_{t,T}(g) := \mathbb{E}_{\mathbb{P}} \left| g(S_T) - \mathbb{E}_{\mathbb{P}}^{\mathcal{F}_t}(g(S_T)) \right|^2$$

When $\mathbb{E}|g(X_T)|^2 < +\infty$, we define

$$V_{t,T}(g) := \mathbb{E}_{\mathbb{P}} \left| g(S_T) - \mathbb{E}_{\mathbb{P}}^{\mathcal{F}_t}(g(S_T)) \right|^2$$

Definition

For some $\alpha \in (0, 1]$,

$$\mathsf{L}_{2,\alpha} = \left\{ g \text{ t.q. } \mathbb{E}(g(\mathcal{S}_{\mathcal{T}})^2) + \sup_{0 \leq t < \mathcal{T}} \frac{V_{t,\mathcal{T}}(g)}{(\mathcal{T}-t)^{\alpha}} < +\infty \right\}.$$

Examples

• If g is Lipschitz-continuous, then $g \in L_{2,1}$.

- If g is Lipschitz-continuous, then $g \in L_{2,1}$.
- If g is Hölder-continuous with exponent α , then $g \in L_{2,\alpha}$.

- If g is Lipschitz-continuous, then $g \in L_{2,1}$.
- If g is Hölder-continuous with exponent α , then $g \in L_{2,\alpha}$.

• If
$$g(x) = (x - K)^a_+$$
 with $a \in (0, \frac{1}{2})$, then $g \in \mathsf{L}_{2,a+\frac{1}{2}}$!

- If g is Lipschitz-continuous, then $g \in L_{2,1}$.
- If g is Hölder-continuous with exponent α , then $g \in L_{2,\alpha}$.
- If $g(x) = (x \mathcal{K})^a_+$ with $a \in (0, \frac{1}{2})$, then $g \in \mathsf{L}_{2,a+\frac{1}{2}}$!
- If $g(x) = (x K)^a_+$ with $a \in (\frac{1}{2}, 1]$, then $g \in L_{2,1}$!

- If g is Lipschitz-continuous, then $g \in L_{2,1}$.
- If g is Hölder-continuous with exponent α , then $g \in L_{2,\alpha}$.
- If $g(x) = (x \mathcal{K})^a_+$ with $a \in (0, \frac{1}{2})$, then $g \in \mathsf{L}_{2,a+\frac{1}{2}}$!
- If $g(x) = (x K)^a_+$ with $a \in (\frac{1}{2}, 1]$, then $g \in L_{2,1}$!
- If $g(x) = \mathbb{1}_D(x)$, then $g \in \mathsf{L}_{2,\frac{1}{2}}$!

 For 1 ≤ l, m, n ≤ d and 0 ≤ t < T, and using the usual Malliavin representation of Greeks,

$$egin{aligned} & \mathbb{E}_{\mathbb{P}}\left|ar{u}_{l}^{(1)}(t)
ight|^{2} \leq Crac{V_{t,T}(g)}{(T-t)}, \ & \mathbb{E}_{\mathbb{P}}\left|ar{u}_{l,m}^{(2)}(t)
ight|^{2} \leq Crac{V_{t,T}(g)}{(T-t)^{2}}, \ & \mathbb{E}_{\mathbb{P}}\left|ar{u}_{l,m,n}^{(3)}(t)
ight|^{2} \leq Crac{V_{t,T}(g)}{(T-t)^{3}}. \end{aligned}$$

• bound for
$$\mathbb{E}_{\mathbb{P}}\left|ar{u}_{l,m,n}^{(3)}(t)
ight|^2:rac{C}{(T-t)^{3-lpha}}$$
 if $g\in\mathsf{L}_{2,lpha}$.

• bound for
$$\mathbb{E}_{\mathbb{P}}\left|\bar{u}_{l,m,n}^{(3)}(t)\right|^2$$
 : $\frac{C}{(T-t)^{3-\alpha}}$ if $g\in\mathsf{L}_{2,lpha}$.

• For
$$R_{l,m,n}^{i,(3)}(t)$$
, it is more intricate!

$$R_{l,m,n}^{i,(3)}(t) = \cdots - \sum_{0 \le j < k \le d} \delta_{t_i}^{j,k} \bar{C}_{l,m,n}^{j,k,(3)}(t) - \ldots$$

• bound for
$$\mathbb{E}_{\mathbb{P}} \left| \overline{u}_{l,m,n}^{(3)}(t) \right|^2 : \frac{C}{(T-t)^{3-\alpha}}$$
 if $g \in L_{2,\alpha}$.
• For $R_{l,m,n}^{i,(3)}(t)$, it is more intricate!

$$R_{l,m,n}^{i,(3)}(t) = \cdots - \sum_{0 \le j < k \le d} \delta_{t_i}^{j,k} \bar{C}_{l,m,n}^{j,k,(3)}(t) - \ldots$$

► terms
$$\frac{\bar{C}_{l,m}^{j,k,(2)}(t)}{\bar{C}_{l,m}^{j,k,(2)}(t_i)}$$
 et $\frac{\bar{C}_{l,m,n}^{j,k,(3)}(t)}{\bar{C}_{l,m}^{j,k,(2)}(t_i)}$ (with $t_i \leq t \leq t_{i+1}$)

• bound for
$$\mathbb{E}_{\mathbb{P}}\left|ar{u}_{l,m,n}^{(3)}(t)
ight|^2:rac{C}{(T-t)^{3-lpha}}$$
 if $g\in\mathsf{L}_{2,lpha}.$

• For $R_{l,m,n}^{i,(3)}(t)$, it is more intricate!

$$R_{l,m,n}^{i,(3)}(t) = \cdots - \sum_{0 \le j < k \le d} \delta_{t_j}^{j,k} \bar{C}_{l,m,n}^{j,k,(3)}(t) - \ldots$$

► terms
$$\frac{\bar{C}_{l,m}^{j,k,(2)}(t)}{\bar{C}_{l,m}^{j,k,(2)}(t_i)}$$
 et $\frac{\bar{C}_{l,m,n}^{j,k,(3)}(t)}{\bar{C}_{l,m}^{j,k,(2)}(t_i)}$ (with $t_i \leq t \leq t_{i+1}$)

▶ using the closed formulas, we obtain that these terms belong to L_p ($p \ge 2$) if and only if $|\pi| \le \pi^{\text{threshold}}$.

▶ using the closed formulas, we obtain that these terms belong to L_p ($p \ge 2$) if and only if $|\pi| \le \pi^{\text{threshold}}$.

▶ If
$$|\pi| \le \pi^{ ext{threshold}}$$
, then, for $0 \le t_i \le t < t_{i+1} \le T$,

$$\mathbb{E}_{\mathbb{P}}\left| \mathsf{R}_{l,m,n}^{i,(3)}(t)
ight|^2 \leq rac{\mathcal{C}}{(\mathcal{T}-t)^2}.$$

Corollary

Assume
$$g \in L_{2,\alpha}$$
 (for some $\alpha \in (0,1]$) and $\mathbb{E}_{\mathbb{P}} |g(S_T)|^{2p_0} < \infty$ for
some $p_0 > 1$. Then, if $|\pi| \leq \pi^{\text{threshold}}$, and for $0 \leq t < T$,
 $\mathbb{E}_{\mathbb{P}} \left| \overline{u}_{l,m,n}^{(3)}(t) + R_{l,m,n}^{i,(3)}(t) \right|^2 \leq \frac{C}{(T-t)^{3-\alpha}}.$

For some $\beta \in (0,1]$,

$$\pi^{(\beta)} := \{t_k^{(N,\beta)} := T - T(1 - \frac{k}{N})^{\frac{1}{\beta}}, 0 \le k \le N\}.$$

NB.

•
$$\pi^{(1)} = \text{uniform grid.}$$

• For $\beta < 1$, the points in $\pi^{(\beta)}$ are more concentrated near T.

Theorem (with uniform grid)

Assume $g \in L_{2,\alpha}$ and $\mathbb{E}_{\mathbb{P}} |g(S_{\mathcal{T}})|^{2p_0} < \infty$ for some $p_0 > 1$.

• Regular grid $\pi^{(1)}$. For N sufficiently large to ensure $|\pi^{(1)}| = \frac{T}{N} \le \pi^{\text{threshold}}$, one has

$$\left(\mathbb{E}_{\mathbb{P}}\left|\overline{\mathcal{E}}_{N}^{\Delta \mathsf{\Gamma}}(g,\pi^{(1)})\right|^{2}
ight)^{1/2}=\mathcal{O}(rac{1}{N^{lpha/2}}).$$

Theorem (with uniform grid)

Assume $g \in L_{2,\alpha}$ and $\mathbb{E}_{\mathbb{P}} |g(S_{\mathcal{T}})|^{2p_0} < \infty$ for some $p_0 > 1$.

• Regular grid $\pi^{(1)}$. For N sufficiently large to ensure $|\pi^{(1)}| = \frac{T}{N} \le \pi^{\text{threshold}}$, one has

$$\left(\mathbb{E}_{\mathbb{P}}\left|\overline{\mathcal{E}}_{N}^{\Delta \mathsf{\Gamma}}(g,\pi^{(1)})\right|^{2}
ight)^{1/2}=\mathcal{O}(rac{1}{N^{lpha/2}}).$$

▶ tight estimate for $\alpha < 1$ (if $\alpha = 1$, the rate may go from $N^{\frac{1}{2}}$ to N).

Theorem (with uniform grid)

Assume $g \in L_{2,\alpha}$ and $\mathbb{E}_{\mathbb{P}} |g(S_{\mathcal{T}})|^{2p_0} < \infty$ for some $p_0 > 1$.

• Regular grid $\pi^{(1)}$. For N sufficiently large to ensure $|\pi^{(1)}| = \frac{T}{N} \le \pi^{\text{threshold}}$, one has

$$\left(\mathbb{E}_{\mathbb{P}}\left|\overline{\mathcal{E}}_{N}^{\Delta \mathsf{\Gamma}}(g,\pi^{(1)})\right|^{2}
ight)^{1/2}=\mathcal{O}(rac{1}{N^{lpha/2}})$$

▶ tight estimate for $\alpha < 1$ (if $\alpha = 1$, the rate may go from $N^{\frac{1}{2}}$ to N).

► DGHS with a regular grid does **not** improve the rate of convergence.

Theorem (with non regular grid)

Non regular grid π^(β), β ∈ (0, 1). For N sufficiently large to ensure |π^(β)| ≤ π^{threshold}, one has

$$\left(\mathbb{E}_{\mathbb{P}}\left|\overline{\mathcal{E}}_{N}^{\Delta\Gamma}(g,\pi^{(\beta)})\right|^{2}\right)^{1/2} = \begin{cases} \mathcal{O}(\frac{1}{N^{\frac{\alpha}{2\beta}}}) \text{ if } \beta \in (\frac{\alpha}{2},1), \\\\ \mathcal{O}(\frac{\sqrt{\log N}}{N}) \text{ if } \beta = \frac{\alpha}{2}, \\\\ \mathcal{O}(\frac{1}{N}) \text{ if } \beta \in (0,\frac{\alpha}{2}). \end{cases}$$

▶ NB. These estimates are equal to those we observe numerically.

Numerical results

Figure: For a Digital Call : at the top (DHS), $\log(\mathbb{E}_{\mathbb{P}}|\overline{\mathcal{E}}_{N}^{\Delta}(g, \pi^{(\beta)})|^{2})$ vs $\log(N)$. At the bottom (DGHS), $\log(\mathbb{E}_{\mathbb{P}}|\overline{\mathcal{E}}_{N}^{\Delta\Gamma}(g, \pi^{(\beta)})|^{2})$ vs $\log(N)$.

Numerical results

Remark on the convergence in distribution

Figure: Distributions of the DHS (at the top) and DGHS (at the bottom) tracking errors for a Digital Call

 \rightarrow Convergences in \textbf{L}_2 and in distribution are different.

• Extension to more general model for S

- $\bullet\,$ Extension to more general model for S
- Rate of convergence in distribution of the DGHS tracking error ?