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Mean-variance portfolio selection in one period

Harry Markowitz (Portfolio selection, 1952):

◮ maximise return and minimise risk
◮ return=expectation
◮ risk=variance

Mean-variance portfolio selection with risk aversion γ > 0 in one period:

U(ϑ) = E [x + ϑ⊤∆S ] −
γ

2
Var[x + ϑ⊤∆S ] = max

ϑ
!

Solution is the so-called mean-variance efficient strategy, i.e.

ϑ̃ :=
1

γ
Cov[∆S |F0]

−1E [∆S |F0] =: ϑ̂.

Question: How does this extend to multi-period or continuous time?
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Basic problem

Markowitz problem:

U(ϑ) = E
[
x +

∫ T

0
ϑudSu

]
−
γ

2
Var

[
x +

∫ T

0
ϑudSu

]
= max

(ϑs)0≤s≤T

!

Static: criterion at time 0 determines optimal ϑ̃ via g̃ =
∫ T

0 ϑ̃dS .

Question: more explicit dynamic description of ϑ̃ on [0,T ] from g̃?
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Dynamic: Use ϑ̃ on (0, t] and determine optimal strategy on (t,T ] via
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Time inconsistent: this optimal strategy is different from ϑ̃ on (t,T ]!

Time-consistent mean-variance portfolio selection:
Find a strategy ϑ̂, which is “optimal” for Ut(ϑ) and time-consistent.
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Previous literature

Strotz (1956): “choose the best plan among those that [you] will actually
follow.” → Recursive approach to time inconsistency for a different problem.

In Markovian models: Deterministic functions, HJB PDEs and verification thm.

Ekeland et al. (2006): game theoretic formulation for different problems.

Basak and Chabakauri (2007): results for mean-variance portfolio selection.

Björk and Murgoci (2008): General theory of Markovian time inconsistent
stochastic optimal control problems (for various forms of time inconsistency.)
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1) How to formulate and to obtain the solution in a more general model?

2) Rigorous justification of the continuous-time formulation?
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1) How to formulate and to obtain the solution in a more general model?

2) Rigorous justification of the continuous-time formulation?

Financial market:

R
d -valued semimartingale S wlog. S = S0 + M + A ∈ S2(P).

Θ = ΘS := {ϑ ∈ L(S) |
∫
ϑdS ∈ S2(P)} = L2(M) ∩ L2(A).
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Outline

1 Discrete time

2 Continuous time

3 Convergence of solutions

Christoph Czichowsky (ETH Zurich) Mean-variance portfolio selection Toronto, 26th June 2010 5 / 17



Local mean-variance efficiency in discrete time

Use x + ϑ · S := x +
∫ T

0 ϑudSu = x +
∑T

i=1 ϑi∆Si and suppose d = 1.

Definition

A strategy ϑ̂ ∈ Θ is locally mean-variance efficient (LMVE) if

Uk−1(ϑ̂) − Uk−1(ϑ̂+ δ1{k}) ≥ 0 P-a.s.

for all k = 1, . . . ,T and any δ = (ϑ− ϑ̂) ∈ Θ.

Recursive optimisation (Källblad 2008): ϑ̂ ∈ Θ is LMVE if and only if

ϑ̂k =
1

γ

E [∆Sk |Fk−1]

Var [∆Sk |Fk−1]
−

Cov
[
∆Sk ,

∑T

i=k+1 ϑ̂i∆Si

∣∣∣Fk−1

]

Var [∆Sk |Fk−1]
=

1

γ
λk − ξk (ϑ̂)

for k = 1, . . . ,T .
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Cov
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∆Sk ,

∑T

i=k+1 ϑ̂i∆Si

∣∣∣Fk−1

]

Var [∆Sk |Fk−1]
=

1

γ
λk − ξk (ϑ̂)

=
1

γ

∆Ak

E [(∆Mk)2|Fk−1]
−

E
[
∆MkE

[∑T

i=k+1 ϑ̂i∆Si

∣∣∣Fk

]∣∣∣Fk−1

]

E [(∆Mk )2|Fk−1]

for k = 1, . . . ,T .
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Structure condition and mean-variance tradeoff process

S satisfies the structure condition (SC), i.e. there exists a predictable
process λ such that

Ak =

k∑

i=1

λiE
[
(∆Mi)

2|Fi−1

]
=

k∑

i=1

λi∆〈M〉i

for k = 0, . . . ,T and the mean-variance tradeoff process (MVT)

Kk :=

k∑

i=1

(
E [∆Si |Fi−1]

)2

Var [∆Si |Fi−1]
=

k∑

i=1

λ2
i ∆〈M〉i =

k∑

i=1

λi∆Ai

for k = 0, . . . ,T is finite-valued, i.e. λ ∈ L2
loc

(M).

If the LMVE strategy ϑ̂ exists, then λ ∈ L2(M), i.e. KT ∈ L1(P).

Comments: 1) SC and MVT also appear naturally in other quadratic
optimisation problems in mathematical finance; see Schweizer (2001).
2) No arbitrage condition: A ≪ 〈M〉.
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Expected future gains

For each ϑ ∈ Θ, define the expected future gains Z (ϑ) and the square
integrable martingale Y (ϑ) by

Zk(ϑ) : = E

[
T∑

i=k+1

ϑi∆Si

∣∣∣∣Fk

]
= E

[
T∑

i=1

ϑi∆Ai

∣∣∣∣Fk

]
−

k∑

i=1

ϑi∆Ai

=: Yk(ϑ) −

k∑

i=1

ϑi∆Ai

= Y0(ϑ) +

k∑

i=1

ξi (ϑ)∆Mi + Lk(ϑ) −

k∑

i=1

ϑi∆Ai

for k = 0, 1, . . . ,T inserting the GKW decomposition of Y (ϑ).

Lemma

The LMVE strategy ϑ̂ exists if and only if
1) S satisfies (SC) with λ ∈ L2(M), i.e. KT ∈ L1(P), and 2) ϑ̂ = 1

γ
λ− ξ(ϑ̂).

Christoph Czichowsky (ETH Zurich) Mean-variance portfolio selection Toronto, 26th June 2010 8 / 17



Global description of ξ(ϑ̂) via FS decomposition

Combining both representations we obtain

T∑

i=1

ϑ̂i∆Ai =
T∑

i=1

(
1

γ
λi − ξi (ϑ̂)

)
∆Ai

= Y0(ϑ̂) +

T∑

i=1

ξi (ϑ̂)∆Mi + LT (ϑ̂)

1

γ
KT =

1

γ

T∑

i=1

λi∆Ai = Y0(ϑ̂) +

T∑

i=1

ξi (ϑ̂)∆Si + LT (ϑ̂) (1)

(1) is almost the Föllmer–Schweizer (FS) decomposition of 1
γ
KT .

The integrand ξ(ϑ̂) =: 1
γ
ξ̂ in the FS decomposition yields the locally

risk-minimising strategy for the contingent claim 1
γ
KT .

Global description: ϑ̂ ∈ Θ exists iff (1) and ϑ̂ = 1
γ
(λ− ξ̂).
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Continuous time setting

Increasing, integrable, predictable process B called “operational time”
such that: A = a · B, 〈M ,M〉 = c̃M · B and a = c̃Mλ+ η with η ∈ Ker(c̃M).

S satisfies the structure condition (SC), if η = 0, i.e.

A =

∫
d〈M〉λ,

and the mean-variance tradeoff process (MVT)

Kt :=

∫ t

0

λ⊤u d〈M〉uλu =

∫ t

0

λudAu < +∞.

Expected future gains Z (ϑ) and GKW decomposition of Y (ϑ)

Zt(ϑ) : = E

[∫ T

t

ϑudSu

∣∣∣∣Ft

]
= E

[∫ T

0

ϑudAu

∣∣∣∣Ft

]
−

∫ t

0

ϑudAu

=: Yt(ϑ) −

∫ t

0

ϑudAu

= Y0(ϑ) +

∫ t

0

ξu(ϑ)dMu + Lt(ϑ) −

∫ t

0

ϑudAu
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Local mean-variance efficiency in continuous time

Idea: Combine recursive optimisation with a limiting argument.

Definition

A strategy ϑ̂ ∈ Θ is locally mean-variance efficient (in continuous time) if

lim
n→∞

uΠn [ϑ̂, δ] := lim
n→∞

∑

ti ,ti+1∈Πn

Uti (ϑ̂) − Uti (ϑ̂+ δ1(ti ,ti+1])

E [Bti+1 − Bti |Fti ]
1(ti ,ti+1] ≥ 0 P⊗B-a.e.

for any increasing sequence (Πn) of partitions such that |Πn| → 0 and any δ ∈ Θ.

Inspired by the concept of local risk-minimisation (LRM); Schweizer (88, 08).

lim
n→∞

uΠn [ϑ̂, δ] =
(
γ
(
ξ(ϑ̂) + ϑ̂

)
− λ+

γ

2
δ
)⊤

cMδ − δ⊤η P ⊗ B-a.e.

Remarks: 1) Convergence without any additional assumptions,
i.e. boundedness assumptions on δ and continuity of A.
2) Generalises also results for LRM.
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The LMVE strategy ϑ̂ in continuous time

Theorem

1) The LMVE strategy ϑ̂ ∈ Θ exists if and only if

i) S satisfies (SC) with λ ∈ L2(M), i.e. KT ∈ L1(P).

ii) ϑ̂ = 1
γ
λ− ξ(ϑ̂), i.e. Ĵ(ϑ̂) = ϑ̂, where Ĵ(ψ) := 1

γ
λ− ξ(ψ) for ψ ∈ Θ and

ξ(ψ) is the integrand in the GKW decomposition of
∫ T

0 ψudAu .

2) If K is bounded and continuous, Ĵ(·) is a contraction on (Θ, ‖.‖β,∞) where

‖ϑ‖β,∞ :=
∥∥∥
(∫ T

0

1

E(−βK )u
ϑ⊤u d〈M〉uϑu

) 1
2
∥∥∥

L2(P)
∼ ‖ϑ‖L2(M) + ‖ϑ‖L2(A).

In particular, the LMVE strategy ϑ̂ is given as the limit ϑ̂ = limn→∞ ϑn in
(Θ, ‖.‖β,∞), where ϑn+1 = Ĵ(ϑn) for n ≥ 1, for any ϑ0 = ϑ ∈ Θ.
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Global description of ξ(ϑ̂) via FS decomposition

Theorem

The LMVE strategy ϑ̂ ∈ Θ exists if and only if S satisfies (SC) and the MVT
process KT ∈ L1(P) and can be written as

KT = K̂0 +

∫ T

0

ξ̂dS + L̂T (2)

with K̂0 ∈ L2(F0), ξ̂ ∈ L2(M) such that ξ̂ − λ ∈ L2(A) and L̂ ∈ M2
0(P) strongly

orthogonal to M. In that case, ϑ̂ = 1
γ

(
λ− ξ̂

)
, ξ(ϑ̂) = 1

γ
ξ̂ and U(ϑ̂) = . . . (2).

If the minimal martingale measure exists, i.e. d bP

dP
:= E(−λ · M)T ∈ L2(P)

and strictly positive, and KT ∈ L2(P), then

Zt(ϑ̂) =
1

γ

(
K̂0 +

∫ t

0

ξ̂dS + L̂t − Kt

)
=

1

γ
Ê [KT − Kt |Ft ],

and ξ̂ is related to the GKW of KT under P̂ ; see Choulli et al. (2010).

Application in concrete models: 1) λ, 2) K , 3) E(−λ · M) and 4) ξ̂ . . .
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Discretisation of the financial market

Let (Πn)n∈N increasing such that |Πn| → 0 and S = S0 + M + A.

Discretisation of processes

Sn
t := Sti , Mn

t := Mti and An
t := Ati for t ∈ [ti , ti+1) and all ti ∈ Πn.

Discretisation of filtration

Fn
ti

:= Fti for t ∈ [ti , ti+1) and all ti ∈ Πn and F
n := (Fn

t )0≤t≤T .

Canonical decomposition of Sn = S0 + M̄n + Ān ∈ S2(P ,Fn)

Ān
t :=

∑i

k=1 E [∆An
tk
|Ftk−1

] = An
t − MA,n

t

M̄n
t := Mn

t + MA,n
t for t ∈ [ti , ti+1)

where the “discretisation error” is given by the F
n-martingale

MA,n
t :=

i∑

k=1

(∆An

tk
− E [∆An

tk
|Ftk−1

]) for t ∈ [ti , ti+1).
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Convergence of solutions ϑ̂n

Due to time inconsistency usual abstract arguments don’t work.

Work with global description directly to show

ϑ̂n =
1

γ

(
λn − ξ̂n

) L
2(M)
−→ ϑ̂ =

1

γ

(
λ− ξ̂

)
, as |Πn| → 0.

Discrete- and continuous-time FS decomposition

K n

T = K̂ n

0 +
∑

ti∈Πn

ξ̂n

ti
∆Sn

ti
+ L̂n

T and KT = K̂0 +

∫ T

0

ξ̂udSu + L̂T .

For this we establish

1) λn =
∑

ti ,ti+1∈Πn

∆Ā
n

ti+1

E [(∆M̄n
ti+1

)2|Fti
]
1(ti ,ti+1]

L
2(M)
−→ λ

2) K n

T
=

∑
ti ,ti+1∈Πn

λn
ti+1

∆Ān
ti+1

L
2(P)
−→ KT =

∫ T

0
λudAu

3) 2), |Πn| → 0 implies ξ̂n
L

2(M)
−→ ξ̂.

Problem to control the “discretisation error” MA,n.

Simple sufficient condition: K =
∫

dK

dt
dt and dK

dt
uniformly bounded.
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Thank you for your attention!

http://www.math.ethz.ch/∼czichowc
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