Time-Consistent Mean-Variance Portfolio Selection in Discrete and Continuous Time

Christoph Czichowsky

Department of Mathematics ETH Zurich

BFS 2010 Toronto, 26th June 2010

Christoph Czichowsky (ETH Zurich)

Mean-variance portfolio selection

Toronto, 26th June 2010 1 / 17

Mean-variance portfolio selection in one period

- Harry Markowitz (Portfolio selection, 1952):
 - maximise return and minimise risk
 - return=expectation
 - risk=variance

• Mean-variance portfolio selection with risk aversion $\gamma > 0$ in one period:

$$U(\vartheta) = E[x + \vartheta^{\top} \Delta S] - \frac{\gamma}{2} \operatorname{Var}[x + \vartheta^{\top} \Delta S] = \max_{\vartheta} !$$

• Solution is the so-called mean-variance efficient strategy, i.e.

$$\widetilde{\vartheta} := \frac{1}{\gamma} \operatorname{Cov}[\Delta S | \mathcal{F}_0]^{-1} E[\Delta S | \mathcal{F}_0] =: \widehat{\vartheta}.$$

• Question: How does this extend to multi-period or continuous time?

Markowitz problem:

$$U(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u\right] = \max_{(\vartheta_s)_{0 \le s \le T}} !$$

• Static: criterion at time 0 determines optimal $\tilde{\vartheta}$ via $\tilde{g} = \int_0^T \tilde{\vartheta} dS$.

• Question: more explicit dynamic description of $\tilde{\vartheta}$ on [0, T] from \tilde{g} ?

• Markowitz problem:

$$U(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u\right] = \max_{(\vartheta_s)_{0 \le s \le \tau}} !$$

• Static: criterion at time 0 determines optimal $\tilde{\vartheta}$ via $\tilde{g} = \int_0^T \tilde{\vartheta} dS$.

- Question: more explicit dynamic description of $\tilde{\vartheta}$ on [0, T] from \tilde{g} ?
- Dynamic: Use $\widetilde{\vartheta}$ on (0, t] and determine optimal strategy on (t, T] via

$$U_t(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u \Big| \mathcal{F}_t\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u \Big| \mathcal{F}_t\right] = \max_{(\vartheta_s)_{t \le s \le T}} !$$

Markowitz problem:

$$U(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u\right] = \max_{(\vartheta_s)_{0 \le s \le \tau}} !$$

• Static: criterion at time 0 determines optimal $\tilde{\vartheta}$ via $\tilde{g} = \int_0^T \tilde{\vartheta} dS$.

- Question: more explicit dynamic description of $\tilde{\vartheta}$ on [0, T] from \tilde{g} ?
- Dynamic: Use $\widetilde{\vartheta}$ on (0, t] and determine optimal strategy on (t, T] via

$$U_t(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u \Big| \mathcal{F}_t\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u \Big| \mathcal{F}_t\right] = \max_{(\vartheta_s)_{t \le s \le T}} !$$

• Time inconsistent: this optimal strategy is different from $\tilde{\vartheta}$ on (t, T]!

Markowitz problem:

$$U(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u\right] = \max_{(\vartheta_s)_{0 \le s \le \tau}} !$$

• Static: criterion at time 0 determines optimal $\tilde{\vartheta}$ via $\tilde{g} = \int_0^T \tilde{\vartheta} dS$.

- Question: more explicit dynamic description of $\tilde{\vartheta}$ on [0, T] from \tilde{g} ?
- Dynamic: Use $\widetilde{\vartheta}$ on (0, t] and determine optimal strategy on (t, T] via

$$U_t(\vartheta) = E\left[x + \int_0^T \vartheta_u dS_u \Big| \mathcal{F}_t\right] - \frac{\gamma}{2} \operatorname{Var}\left[x + \int_0^T \vartheta_u dS_u \Big| \mathcal{F}_t\right] = \max_{(\vartheta_s)_{t \le s \le T}} !$$

- Time inconsistent: this optimal strategy is different from $\tilde{\vartheta}$ on (t, T]!
- Time-consistent mean-variance portfolio selection: Find a strategy $\hat{\vartheta}$, which is "optimal" for $U_t(\vartheta)$ and time-consistent.

Previous literature

 Strotz (1956): "choose the best plan among those that [you] will actually follow." → Recursive approach to time inconsistency for a different problem.

In Markovian models: Deterministic functions, HJB PDEs and verification thm.

- Ekeland et al. (2006): game theoretic formulation for different problems.
- Basak and Chabakauri (2007): results for mean-variance portfolio selection.
- Björk and Murgoci (2008): General theory of Markovian time inconsistent stochastic optimal control problems (for various forms of time inconsistency.)

(4) E (4) E (4)

Previous literature

 Strotz (1956): "choose the best plan among those that [you] will actually follow." → Recursive approach to time inconsistency for a different problem.

In Markovian models: Deterministic functions, HJB PDEs and verification thm.

- Ekeland et al. (2006): game theoretic formulation for different problems.
- Basak and Chabakauri (2007): results for mean-variance portfolio selection.
- Björk and Murgoci (2008): General theory of Markovian time inconsistent stochastic optimal control problems (for various forms of time inconsistency.)
- 1) How to formulate and to obtain the solution in a more general model?
- 2) Rigorous justification of the continuous-time formulation?

• • = • • = • = =

Previous literature

 Strotz (1956): "choose the best plan among those that [you] will actually follow." → Recursive approach to time inconsistency for a different problem.

In Markovian models: Deterministic functions, HJB PDEs and verification thm.

- Ekeland et al. (2006): game theoretic formulation for different problems.
- Basak and Chabakauri (2007): results for mean-variance portfolio selection.
- Björk and Murgoci (2008): General theory of Markovian time inconsistent stochastic optimal control problems (for various forms of time inconsistency.)
- 1) How to formulate and to obtain the solution in a more general model?
- 2) Rigorous justification of the continuous-time formulation?

Financial market:

- \mathbb{R}^d -valued semimartingale S wlog. $S = S_0 + M + A \in S^2(P)$.
- $\Theta = \Theta_S := \{ \vartheta \in L(S) \mid \int \vartheta dS \in S^2(P) \} = L^2(M) \cap L^2(A).$

イロト イボト イヨト イヨト 二日

Outline

Christoph Czichowsky (ETH Zurich)

э

Local mean-variance efficiency in discrete time

• Use
$$x + \vartheta \cdot S := x + \int_0^T \vartheta_u dS_u = x + \sum_{i=1}^T \vartheta_i \Delta S_i$$
 and suppose $d = 1$.

Definition

A strategy $\widehat{\vartheta} \in \Theta$ is locally mean-variance efficient (LMVE) if

$$U_{k-1}(\widehat{\vartheta}) - U_{k-1}(\widehat{\vartheta} + \delta \mathbb{1}_{\{k\}}) \ge 0$$
 P-a.s.

for all k = 1, ..., T and any $\delta = (\vartheta - \widehat{\vartheta}) \in \Theta$.

• Recursive optimisation (Källblad 2008): $\widehat{\vartheta} \in \Theta$ is LMVE if and only if

$$\widehat{\vartheta}_{k} = \frac{1}{\gamma} \frac{E[\Delta S_{k} | \mathcal{F}_{k-1}]}{\operatorname{Var}\left[\Delta S_{k} | \mathcal{F}_{k-1}\right]} - \frac{\operatorname{Cov}\left[\Delta S_{k}, \sum_{i=k+1}^{T} \widehat{\vartheta}_{i} \Delta S_{i} \middle| \mathcal{F}_{k-1}\right]}{\operatorname{Var}\left[\Delta S_{k} | \mathcal{F}_{k-1}\right]} = \frac{1}{\gamma} \lambda_{k} - \xi_{k}(\widehat{\vartheta})$$

for k = 1, ..., T.

Local mean-variance efficiency in discrete time

• Use
$$x + \vartheta \cdot S := x + \int_0^T \vartheta_u dS_u = x + \sum_{i=1}^T \vartheta_i \Delta S_i$$
 and suppose $d = 1$.

Definition

A strategy $\widehat{\vartheta} \in \Theta$ is locally mean-variance efficient (LMVE) if

$$U_{k-1}(\widehat{\vartheta}) - U_{k-1}(\widehat{\vartheta} + \delta \mathbb{1}_{\{k\}}) \ge 0$$
 P-a.s.

for all k = 1, ..., T and any $\delta = (\vartheta - \widehat{\vartheta}) \in \Theta$.

• Recursive optimisation (Källblad 2008): $\widehat{\vartheta}\in\Theta$ is LMVE if and only if

$$\begin{split} \widehat{\vartheta}_{k} &= \frac{1}{\gamma} \frac{E[\Delta S_{k} | \mathcal{F}_{k-1}]}{\operatorname{Var} [\Delta S_{k} | \mathcal{F}_{k-1}]} - \frac{\operatorname{Cov} \left[\Delta S_{k}, \sum_{i=k+1}^{T} \widehat{\vartheta}_{i} \Delta S_{i} \middle| \mathcal{F}_{k-1} \right]}{\operatorname{Var} [\Delta S_{k} | \mathcal{F}_{k-1}]} = \frac{1}{\gamma} \lambda_{k} - \xi_{k}(\widehat{\vartheta}) \\ &= \frac{1}{\gamma} \frac{\Delta A_{k}}{E\left[(\Delta M_{k})^{2} | \mathcal{F}_{k-1} \right]} - \frac{E\left[\Delta M_{k} E\left[\sum_{i=k+1}^{T} \widehat{\vartheta}_{i} \Delta S_{i} \middle| \mathcal{F}_{k} \right] \middle| \mathcal{F}_{k-1} \right]}{E\left[(\Delta M_{k})^{2} | \mathcal{F}_{k-1} \right]} \\ \text{for } k = 1, \dots, T. \end{split}$$

Structure condition and mean-variance tradeoff process

 S satisfies the structure condition (SC), i.e. there exists a predictable process λ such that

$$A_{k} = \sum_{i=1}^{k} \lambda_{i} E\left[(\Delta M_{i})^{2} | \mathcal{F}_{i-1} \right] = \sum_{i=1}^{k} \lambda_{i} \Delta \langle M \rangle_{i}$$

for k = 0, ..., T and the mean-variance tradeoff process (MVT)

$$\mathcal{K}_{k} := \sum_{i=1}^{k} \frac{\left(E[\Delta S_{i} | \mathcal{F}_{i-1}] \right)^{2}}{\operatorname{Var}\left[\Delta S_{i} | \mathcal{F}_{i-1} \right]} = \sum_{i=1}^{k} \lambda_{i}^{2} \Delta \langle M \rangle_{i} = \sum_{i=1}^{k} \lambda_{i} \Delta A_{i}$$

for k = 0, ..., T is finite-valued, i.e. $\lambda \in L^2_{loc}(M)$.

- If the LMVE strategy $\widehat{\vartheta}$ exists, then $\lambda \in L^2(M)$, i.e. $K_T \in L^1(P)$.
- Comments: 1) SC and MVT also appear naturally in other quadratic optimisation problems in mathematical finance; see Schweizer (2001).
 2) No arbitrage condition: A ≪ ⟨M⟩.

Expected future gains

For each ϑ ∈ Θ, define the expected future gains Z(ϑ) and the square integrable martingale Y(ϑ) by

$$Z_{k}(\vartheta) := E\left[\sum_{i=k+1}^{T} \vartheta_{i} \Delta S_{i} \middle| \mathcal{F}_{k}\right] = E\left[\sum_{i=1}^{T} \vartheta_{i} \Delta A_{i} \middle| \mathcal{F}_{k}\right] - \sum_{i=1}^{k} \vartheta_{i} \Delta A_{i}$$

=: $Y_{k}(\vartheta) - \sum_{i=1}^{k} \vartheta_{i} \Delta A_{i}$
= $Y_{0}(\vartheta) + \sum_{i=1}^{k} \xi_{i}(\vartheta) \Delta M_{i} + L_{k}(\vartheta) - \sum_{i=1}^{k} \vartheta_{i} \Delta A_{i}$

for k = 0, 1, ..., T inserting the **GKW decomposition** of $Y(\vartheta)$.

Lemma

The LMVE strategy $\widehat{\vartheta}$ exists if and only if 1) S satisfies (SC) with $\lambda \in L^2(M)$, i.e. $K_T \in L^1(P)$, and 2) $\widehat{\vartheta} = \frac{1}{\gamma}\lambda - \xi(\widehat{\vartheta})$.

Christoph Czichowsky (ETH Zurich)

8 / 17

Global description of $\xi(\widehat{\vartheta})$ via FS decomposition

• Combining both representations we obtain

$$\sum_{i=1}^{T} \widehat{\vartheta}_{i} \Delta A_{i} = \sum_{i=1}^{T} \left(\frac{1}{\gamma} \lambda_{i} - \xi_{i}(\widehat{\vartheta}) \right) \Delta A_{i}$$
$$= Y_{0}(\widehat{\vartheta}) + \sum_{i=1}^{T} \xi_{i}(\widehat{\vartheta}) \Delta M_{i} + L_{T}(\widehat{\vartheta})$$
$$\frac{1}{\gamma} K_{T} = \frac{1}{\gamma} \sum_{i=1}^{T} \lambda_{i} \Delta A_{i} = Y_{0}(\widehat{\vartheta}) + \sum_{i=1}^{T} \xi_{i}(\widehat{\vartheta}) \Delta S_{i} + L_{T}(\widehat{\vartheta})$$
(1)

- (1) is almost the Föllmer–Schweizer (FS) decomposition of $\frac{1}{\gamma}K_T$.
- The integrand $\xi(\hat{\vartheta}) =: \frac{1}{\gamma} \hat{\xi}$ in the FS decomposition yields the locally risk-minimising strategy for the contingent claim $\frac{1}{\gamma} K_T$.
- Global description: $\widehat{\vartheta} \in \Theta$ exists iff (1) and $\widehat{\vartheta} = \frac{1}{\gamma} (\lambda \widehat{\xi})$.

Continuous time setting

- Increasing, integrable, predictable process *B* called "operational time" such that: $A = a \cdot B$, $\langle M, M \rangle = \tilde{c}^M \cdot B$ and $a = \tilde{c}^M \lambda + \eta$ with $\eta \in \text{Ker}(\tilde{c}^M)$.
- S satisfies the structure condition (SC), if $\eta = 0$, i.e.

$$A=\int d\langle M\rangle\lambda,$$

and the mean-variance tradeoff process (MVT)

$$K_t := \int_0^t \lambda_u^\top d\langle M \rangle_u \lambda_u = \int_0^t \lambda_u dA_u < +\infty.$$

• Expected future gains $Z(\vartheta)$ and GKW decomposition of $Y(\vartheta)$

$$Z_{t}(\vartheta) := E\left[\int_{t}^{T} \vartheta_{u} dS_{u} \middle| \mathcal{F}_{t}\right] = E\left[\int_{0}^{T} \vartheta_{u} dA_{u} \middle| \mathcal{F}_{t}\right] - \int_{0}^{t} \vartheta_{u} dA_{u}$$
$$=: Y_{t}(\vartheta) - \int_{0}^{t} \vartheta_{u} dA_{u}$$
$$= Y_{0}(\vartheta) + \int_{0}^{t} \xi_{u}(\vartheta) dM_{u} + L_{t}(\vartheta) - \int_{0}^{t} \vartheta_{u} dA_{u}$$

10 / 17

Local mean-variance efficiency in continuous time

• Idea: Combine recursive optimisation with a limiting argument.

Definition

A strategy $\widehat{\vartheta} \in \Theta$ is locally mean-variance efficient (in continuous time) if

$$\lim_{n\to\infty} u^{\prod_n}[\widehat{\vartheta},\delta] := \lim_{n\to\infty} \sum_{t_i,t_{i+1}\in\Pi_n} \frac{U_{t_i}(\widehat{\vartheta}) - U_{t_i}(\widehat{\vartheta} + \delta\mathbb{1}_{(t_i,t_{i+1}]})}{E[B_{t_{i+1}} - B_{t_i}|\mathcal{F}_{t_i}]} \mathbb{1}_{(t_i,t_{i+1}]} \ge 0 \quad P \otimes B\text{-a.e.}$$

for any increasing sequence (Π_n) of partitions such that $|\Pi_n| \rightarrow 0$ and any $\delta \in \Theta$.

• Inspired by the concept of local risk-minimisation (LRM); Schweizer (88, 08).

$$\lim_{n\to\infty} u^{\prod_n}[\widehat{\vartheta},\delta] = \left(\gamma\left(\xi(\widehat{\vartheta}) + \widehat{\vartheta}\right) - \lambda + \frac{\gamma}{2}\delta\right)^\top c^M \delta - \delta^\top \eta \qquad P\otimes B\text{-a.e.}$$

Remarks: 1) Convergence without any additional assumptions, i.e. boundedness assumptions on δ and continuity of A.
 2) Generalises also results for LRM.

The LMVE strategy $\widehat{\vartheta}$ in continuous time

Theorem

1) The LMVE strategy $\widehat{\vartheta} \in \Theta$ exists if and only if

- i) S satisfies (SC) with $\lambda \in L^2(M)$, i.e. $K_T \in L^1(P)$.
- ii) $\widehat{\vartheta} = \frac{1}{\gamma}\lambda \xi(\widehat{\vartheta})$, i.e. $\widehat{J}(\widehat{\vartheta}) = \widehat{\vartheta}$, where $\widehat{J}(\psi) := \frac{1}{\gamma}\lambda \xi(\psi)$ for $\psi \in \Theta$ and $\xi(\psi)$ is the integrand in the GKW decomposition of $\int_0^T \psi_u dA_u$.

2) If K is bounded and continuous, $\widehat{J}(\cdot)$ is a contraction on $(\Theta,\|.\|_{\beta,\infty})$ where

$$\|\vartheta\|_{\beta,\infty} := \left\| \left(\int_0^T \frac{1}{\mathcal{E}(-\beta K)_u} \vartheta_u^\top d\langle M \rangle_u \vartheta_u \right)^{\frac{1}{2}} \right\|_{L^2(P)} \sim \|\vartheta\|_{L^2(M)} + \|\vartheta\|_{L^2(A)}.$$

In particular, the LMVE strategy $\widehat{\vartheta}$ is given as the limit $\widehat{\vartheta} = \lim_{n \to \infty} \vartheta^n$ in $(\Theta, \|.\|_{\beta,\infty})$, where $\vartheta^{n+1} = \widehat{J}(\vartheta^n)$ for $n \ge 1$, for any $\vartheta^0 = \vartheta \in \Theta$.

Global description of $\xi(\widehat{\vartheta})$ via FS decomposition

Theorem

The LMVE strategy $\widehat{\vartheta} \in \Theta$ exists if and only if S satisfies (SC) and the MVT process $K_T \in L^1(P)$ and can be written as

$$K_{T} = \widehat{K}_{0} + \int_{0}^{T} \widehat{\xi} dS + \widehat{L}_{T}$$
⁽²⁾

with $\widehat{K}_0 \in L^2(\mathcal{F}_0)$, $\widehat{\xi} \in L^2(M)$ such that $\widehat{\xi} - \lambda \in L^2(A)$ and $\widehat{L} \in \mathcal{M}_0^2(P)$ strongly orthogonal to M. In that case, $\widehat{\vartheta} = \frac{1}{\gamma} (\lambda - \widehat{\xi})$, $\xi(\widehat{\vartheta}) = \frac{1}{\gamma} \widehat{\xi}$ and $U(\widehat{\vartheta}) = \dots$ (2).

• If the minimal martingale measure exists, i.e. $\frac{d\hat{P}}{dP} := \mathcal{E}(-\lambda \cdot M)_T \in L^2(P)$ and strictly positive, and $K_T \in L^2(P)$, then

$$Z_t(\widehat{\vartheta}) = \frac{1}{\gamma} \left(\widehat{K}_0 + \int_0^t \widehat{\xi} dS + \widehat{L}_t - K_t \right) = \frac{1}{\gamma} \widehat{E}[K_T - K_t | \mathcal{F}_t],$$

and $\hat{\xi}$ is related to the GKW of K_T under \hat{P} ; see Choulli et al. (2010).

• Application in concrete models: 1) λ , 2) K, 3) $\mathcal{E}(-\lambda \cdot M)$ and 4) $\widehat{\xi} \dots$

Discretisation of the financial market

• Let $(\Pi_n)_{n\in\mathbb{N}}$ increasing such that $|\Pi_n| \to 0$ and $S = S_0 + M + A$.

Discretisation of processes

• $S_t^n := S_{t_i}$, $M_t^n := M_{t_i}$ and $A_t^n := A_{t_i}$ for $t \in [t_i, t_{i+1})$ and all $t_i \in \Pi_n$. Discretisation of filtration

•
$$\mathcal{F}_{t_i}^n := \mathcal{F}_{t_i}$$
 for $t \in [t_i, t_{i+1})$ and all $t_i \in \Pi_n$ and $\mathbb{F}^n := (\mathcal{F}_t^n)_{0 \le t \le T}$.

Canonical decomposition of $S^n = S_0 + \bar{M}^n + \bar{A}^n \in \mathcal{S}^2(P,\mathbb{F}^n)$

•
$$\bar{A}_t^n := \sum_{k=1}^i E[\Delta A_{t_k}^n | \mathcal{F}_{t_{k-1}}] = A_t^n - \mathbf{M}_t^{\mathbf{A},\mathbf{n}}$$

• $\bar{M}_t^n := M_t^n + \mathbf{M}_t^{\mathbf{A},\mathbf{n}}$ for $t \in [t_i, t_{i+1})$

where the "discretisation error" is given by the \mathbb{F}^n -martingale

$$\mathsf{M}^{\mathsf{A},\mathsf{n}}_{\mathsf{t}} := \sum_{k=1}^{i} (\Delta A^n_{t_k} - E[\Delta A^n_{t_k} | \mathcal{F}_{t_{k-1}}]) \quad \text{for } t \in [t_i, t_{i+1}).$$

Convergence of solutions $\widehat{\vartheta}^n$

- Due to time inconsistency usual abstract arguments don't work.
- Work with global description directly to show

$$\widehat{\vartheta}^n = \frac{1}{\gamma} \big(\lambda^n - \widehat{\xi}^n \big) \xrightarrow{L^2(\mathcal{M})} \widehat{\vartheta} = \frac{1}{\gamma} \big(\lambda - \widehat{\xi} \big), \quad \text{as } |\Pi^n| \to 0.$$

• Discrete- and continuous-time FS decomposition

$$\mathcal{K}_{\mathcal{T}}^n = \widehat{\mathcal{K}}_0^n + \sum_{t_i \in \Pi_n} \widehat{\xi}_{t_i}^n \Delta S_{t_i}^n + \widehat{\mathcal{L}}_{\mathcal{T}}^n \quad \text{and} \quad \mathcal{K}_{\mathcal{T}} = \widehat{\mathcal{K}}_0 + \int_0^T \widehat{\xi}_u dS_u + \widehat{\mathcal{L}}_{\mathcal{T}}.$$

For this we establish

1)
$$\lambda^{n} = \sum_{t_{i}, t_{i+1} \in \Pi_{n}} \frac{\Delta A_{t_{i+1}}^{n}}{E[(\Delta \overline{M}_{t_{i+1}}^{n})^{2} | \mathcal{F}_{t_{i}}]} \mathbb{1}_{(t_{i}, t_{i+1}]} \stackrel{L^{2}(M)}{\longrightarrow} \lambda$$

2)
$$K_{T}^{n} = \sum_{t_{i}, t_{i+1} \in \Pi_{n}} \lambda_{t_{i+1}}^{n} \Delta \overline{A}_{t_{i+1}}^{n} \stackrel{L^{2}(P)}{\longrightarrow} K_{T} = \int_{0}^{T} \lambda_{u} dA_{u}$$

3) 2),
$$|\Pi_{n}| \to 0 \text{ implies } \widehat{\xi}^{n} \stackrel{L^{2}(M)}{\longrightarrow} \widehat{\xi}.$$

- Problem to control the "discretisation error" M^{A,n}.
- Simple sufficient condition: $K = \int \frac{dK}{dt} dt$ and $\frac{dK}{dt}$ uniformly bounded.

Christoph Czichowsky (ETH Zurich)

Mean-variance portfolio selectio

15 / 17

Some references

- Basak and Chabakauri. *Dynamic Mean-Variance Asset Allocation*. (2007). Forthcoming in *Review of Financial Studies*.
- Björk and Murgoci. A General Theory of Markovian Time Inconsistent Stochastic Control Problems. Working paper, Stockholm School of Economics, (2008).
- Ekeland and Lazrak. *Being serious about non-commitment: subgame perfect equilibrium in continuous time*, (2006). Preprint, Univ. of British Columbia.
- Choulli, Vandaele and Vanmaele. *The Föllmer-Schweizer decomposition: Comparison and description*. Stoch. Pro. and their Appl., (2010), 853-872.
- Schweizer. *Hedging of Options in a General Semimartingale Model.* Diss. ETHZ no. 8615, ETH Zürich (1988).
- Schweizer. A Guided Tour through Quadratic Hedging Approaches. In Option Pricing, Inerest Rates and Risk Management, Cambridge Univ. Press (2001).
- Schweizer. Local risk-minimization for multidimensional assets and payment streams. In Advances in Mathematics of Finance, Banach Center Publ. (2008).
- Strotz. *Myopia and inconsistency in dynamic utility maximization*. Review of Financial Studies (1956), 165-180.

Christoph Czichowsky (ETH Zurich)

Mean-variance portfolio selection

Thank you for your attention!

http://www.math.ethz.ch/~czichowc

Christoph Czichowsky (ETH Zurich)

Mean-variance portfolio selection

Toronto, 26th June 2010 17 / 17

- A 12 N - A 12 N