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Motivation

Vast literature on the pricing of barrier options.

However, main focus is on European-style contracts and single-factor
option pricing models (e.g., GBM and CEV):

Merton (1973), Rubinstein and Reiner (1991) and Rich (1994) –
single barrier European options under the GBM process;
Kunitomo and Ikeda (1992), Geman and Yor (1996), Sidenius (1998)
and Pelsser (2000) – double barrier European options also under the
GBM assumption;
Boyle and Tian (1999) and Davydov and Linetsky (2001, 2003) –
double barrier European options but under a CEV diffusion.
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Motivation

Kuan and Webber (2003) price single- and double-barrier
European-style options based on the first passage time density of the
underlying asset price to the barrier level(s).

Such optimal stopping time is recovered through the numerical
solution of an integral equation that only involves the transition
density function of the single model’ state variable.

However, Kuan and Webber (2003) limit their analysis to the GBM
assumption and to one-factor interest rate models.

Under the GBM, the approach offered by Kuan and Webber (2003)
is less efficient than most of the analytical methods proposed in the
literature.

However, their approach should be more useful when applied to
more general option pricing models.
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Motivation

Although the stochastic volatility framework offered by Heston
(1993) is able to attenuate the smile effect associated to the
log-normal assumption, very few attempts have been made to price
analytically barrier options under this setup:

Lipton (2001) and Faulhaber (2002) propose two different methods
to price continuously monitored and European-style double barrier
options, but have to assume a zero drift for the underlying Itô
process as well as the absence of correlation between the asset return
and its volatility.
Griebsch and Wystup (2008) are able to avoid the previous two
unrealistic assumptions, but only price discretely monitored barrier
options through a multidimensional numerical integration approach
that only remains efficient as long as the number of fixings is small.

Gao, Huang and Subrahmanyam (2000) propose a quasi-analytical
approach for pricing American-style barrier options, but they only
focus on single barrier contracts under the GBM assumption.
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Main Contributions

The paper extends the pricing methodology developed by Kuan and
Webber (2003) for European-style barrier options from a one-factor
setup to a more general multifactor and Markovian financial model
that is able to accommodate:

Stochastic volatility;
Stochastic interest rates;
Endogenous bankruptcy.

Additionally, but not less importantly, the analysis is also extended
to cope with the valuation of American-style barrier option contracts
under the same general financial model.
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A General Financial Model

The pricing model adopted for the analytical valuation of barrier
options can be understood as a jump to default extension–along the
lines of Carr and Linetsky (2006)–of the multifactor and Markovian
diffusion framework proposed by Detemple and Tian (2002).

If one ignores the possibility of default, the proposed framework is
viable not only to price equity options but also options on stock
indices, on currencies and on commodities.

It is assumed that the financial market is arbitrage-free and
frictionless, and that trading takes place continuously on the
time-interval T := [t0,T ], for some fixed time T > t0.

Uncertainty is represented by a complete probability space (Ω,G,Q),
where the equivalent martingale measure Q associated to the
numéraire “money market account” is taken as given.
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Model Description

The (pre-default) underlying asset price S is described by the following
time-inhomogeneous diffusion process (with killing) under the risk-neutral
measure Q:

dSt

St
= [r (Y , t)− q (Y , t) + λ (S ,Y , t)] dt + σ (S ,Y , t) dW Q

S (t) , (1)

where

r (Y , t) ∈ R is the riskless and short-term interest rate;
q (Y , t) ∈ R is the dividend yield;
λ (S ,Y , t) ∈ R+ is the hazard rate;
σ (S ,Y , t) ∈ R is the instantaneous volatility of asset returns; and
W Q

S (t) ∈ R is a standard Brownian motion.
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Model Description

Markovian model factors Y ∈ D ⊆ Rm:

dYt = µ (Y , t) dt + γ (Y , t) · dW Q (t) , (2)

where W Q (t) ∈ Rn is a vector of n independent Brownian motions.

The Wiener processes
{

W Q
S (u) ; t0 ≤ u ≤ T

}
and{

W Q (u) ; t0 ≤ u ≤ T
}

are assumed to be correlated:

d
〈

W Q
S ,W

Q
i

〉
(t) = ρidt, (3)

for i = 1, . . . , n, with |ρi | < 1, and where W Q
i (t) denotes the i th

element of vector W Q (t).

In opposition to Detemple and Tian (2002) or Nunes (2009a), but
similarly to Carr and Linetsky (2006), the underlying asset price
process can either diffuse or jump to default.
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Model Description

In the first case, bankruptcy occurs at the first passage time of the
stock price to zero:

τ0 := inf {t > t0 : St = 0} . (4)

Alternatively, S can also jump to a cemetery state at the first jump
time of a doubly-stochastic Poisson process ζ̃ with intensity
λ (S ,Y , t).

Therefore, the time of default is simply given by

ζ = τ0 ∧ ζ̃. (5)
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Model Description

The financial model described by equations (1) to (5) encompasses
several well known option pricing models as special cases:

Taking λ = 0 and τ0 = ∞, while assuming that r , q, and σ are
constant, then the standard GBM arises;
If λ = 0, τ0 = ∞, both r and q are constant, but

σ (S ,Y , t) = δ (St)
β
2
−1, for δ, β ∈ R, then the CEV model is

obtained;
It can accommodate several stochastic interest rate processes–as in
Nunes (2009a)–or stochastic volatility models–as, for instance, the
Heston (1993) model–through the dependency of r and σ on Y ;
Moreover, when r , q, λ, and σ do not depend on Y , then the jump
to default extended diffusion process of Carr and Linetsky (2006,
equation 2.1), and in particular the JDCEV model, follows.
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Model Description

Hence, the proposed financial model also allows the Carr and
Linetsky (2006) original setup to be enlarged towards a multifactor
formulation that can incorporate stochastic volatility and stochastic
interest rates.

Even though the proposed financial model considers explicitly the
risk of default only associated to the underlying equity, it is easy to
also accommodate the risk of default on the option’ writer.

This is specially relevant for the contracts under analysis since many
barrier options are traded over-the-counter.

Following, for instance, Jarrow and Turnbull (1995, equation 63),
these vulnerable options can also be priced using our approach; it is
only necessary to multiply our pricing solutions by the ratio between
a risky and default-free discount factor.
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Plain-Vanilla European Options

Following, for instance, Carr and Linetsky (2006, equations 3.2 and
3.3), the time-t0 price of a plain-vanilla European call (if φ = −1) or
put (if φ = 1) on the underlying asset price S , with strike K , and
maturity at time T , is equal to

vt0 (S ,Y ,K ,T ;φ) = v 0
t0

(S ,Y ,K ,T ;φ) + vD
t0

(S ,Y ,K ,T ;φ) , (6)

v 0
t0

(S ,Y ,K ,T ;φ) represents the time-t0 price of the corresponding
European standard option but conditional on no default until the
maturity date T :

v0
t0

(S,Y ,K ,T ;φ) := EQ

{
exp

[
−
∫ T

t0

r (Y , l) dl

]
(φK − φST )+ 11{ζ>T}

∣∣∣∣∣Gt0

}
. (7)
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Plain-Vanilla European Options

vD
t0

(S ,Y ,K ,T ;φ) corresponds to the recovery payment (of the
strike K and at time T ) associated to the European put contract:

vD
t0

(S,Y ,K ,T ;φ) := (φK)+ EQ

{
exp

[
−
∫ T

t0

r (Y , l) dl

]
11{ζ≤T}

∣∣∣∣∣Gt0

}
. (8)

The majority of the Markovian option pricing models proposed in
the literature, under a no bankruptcy assumption (i.e. with λ = 0
and τ0 =∞), provide efficient solutions for standard European-style
contracts.

Even under the risk of default, it is still possible to price
European-style plain-vanilla options in closed-form.

However, the analysis will now focus on the valuation of a European
knock-out double barrier option with no rebate.
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European Barrier Options

Definition 1

The time-T price of a unit face value and zero rebate European
knock-out double barrier option on the asset price S , with strike K , lower
barrier level L, upper barrier level U, and maturity at time T (≥ t0) is
equal to

EKODBT (S ,Y ,K , L,U;φ) = (φK − φST )+ 11{τLU>T}, (9)

where φ = 1 for a put option, φ = −1 for a call option, and

τLU := inf {u > t0 : Su ≤ L or Su ≥ U} (10)

is the first passage time of the underlying asset price to one of the two
barriers.
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European Barrier Options

Proposition 1

EKODBt0
(S,Y ,K , L,U,T ;φ) = v0

t0
(S,Y ,K ,T ;φ)− EKIDB0

t0
(S,Y ,K , L,U,T ;φ) , (11)

where function v0
t0

(S,Y ,K ,T ;φ) is given by equation (7),

EKIDB0
t0

(S,Y ,K , L,U,T ;φ) (12)

= P
(
Yt0
,T
) ∫ T

t0

SP
(
St0
,Yt0

, u
)

[∫
D

v0
u (L,Y ,K ,T ;φ)

P (Yu,T )
QT (Yu ∈ dY | Su = L,Yt0

)]
QT (

τL ∈ du| Ft0

)
+P
(
Yt0
,T
) ∫ T

t0

SP
(
St0
,Yt0

, u
)

[∫
D

v0
u (U,Y ,K ,T ;φ)

P (Yu,T )
QT (Yu ∈ dY | Su = U,Yt0

)]
QT (

τU ∈ du| Ft0

)
,
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European Barrier Options

Proposition 1

and

SP
(
St0
,Yt0

, u
)

:= EQT

{
exp

[
−
∫ u

t0

λ (S,Y , l) dl

]
11{τ0>u}

∣∣∣∣∣Ft0

}
(13)

is the probability (under the forward measure) of surviving beyond time u > t0, while

QT
(
τB ∈ du| Ft0

)
represents the probability density function of the first passage time τB , with

B ∈ {L,U}, i.e.

τL := inf

{
u > t0 : Su ≤ L, sup

t0≤v≤u
(Sv ) < U

}
, (14)

τU := inf

{
u > t0 : Su ≥ U, inf

t0≤v≤u
(Sv ) > L

}
. (15)
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First Passage Time Densities

Proposition 2

The two optimal stopping time densities QT
(
τL ∈ du| Ft0

)
and QT

(
τU ∈ du| Ft0

)
are the

implicit solutions of

F
(
t0, St0

; u, L
)

(16)

=

∫ u

t0

F (v , L; u, L) QT (
τL ∈ dv | Ft0

)
+

∫ u

t0

F (v ,U; u, L) QT (
τU ∈ dv | Ft0

)
,

and

1− F
(
t0, St0

; u,U
)

(17)

=

∫ u

t0

[1− F (v , L; u,U)] QT (
τL ∈ dv | Ft0

)
+

∫ u

t0

[1− F (v ,U; u,U)] QT (
τU ∈ dv | Ft0

)
,

where

F (v , Ev ; u, Eu) =

∫
D

QT ( Su ≤ Eu| Sv = Ev ,Yv ) QT (Yv ∈ dY | Sv = Ev ,Yt0

)
, (18)

for any deterministic and real-valued spot levels Ev and Eu .
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Plain-Vanilla American Options

Following, for instance, Nunes (2009b, equation 54), the time-t0 price of a plain-vanilla American
call (if φ = −1) or put (if φ = 1) on the underlying asset price S, with strike K , and maturity at
time T , is equal to

Vt0
(S,Y ,K ,T ;φ) = V 0

t0
(S,Y ,K ,T ;φ) + V D

t0
(S,Y ,K ,T ;φ) , (19)

where

V 0
t0

(S,Y ,K ,T ;φ) := sup
τ∈S

{
EQ

[
exp

(
−
∫ T∧τ

t0

r (Y , l) dl

)
(φK − φST∧τ )+ 11{ζ>T∧τ}

∣∣∣∣∣Gt0

]}
(20)

represents the time-t0 standard American option value that is conditional on no default, and

V D
t0

(S,Y ,K ,T ;φ) := (φK)+ EQ

{
exp

[
−
∫ ζ

t0

r (Y , l) dl

]
11{ζ≤T}

∣∣∣∣∣Gt0

}
(21)

corresponds to the recovery payment (of the strike K and at the default time ζ) associated to the
American put contract.
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American Barrier Options

Proposition 3

AKIDB0
t0

(S,Y ,K , L,U,T ;φ) (22)

= EKIDB0
t0

(S,Y ,K , L,U,T ;φ) + EEPKIDB0
t0

(S,Y ,K , L,U,T ;φ) ,

where the function EKIDB0
t0

(S,Y ,K , L,U,T ;φ) is given by equation (12),

EEPKIDB0
t0

(S,Y ,K , L,U,T ;φ) (23)

= P
(
Yt0
,T
) ∫ T

v

SP
(
St0
,Yt0

, u
)

[∫
D

EEP0
u (E (Y , u) ,Y ,K ,T ;φ)

P (Yu,T )
QT (Yu ∈ dY | Su = E (Y , u) ,Yt0

)]
{∫ u

t0

[
QT ( τe ∈ du| Sv = L) QT (

τL ∈ dv | Ft0

)
+QT ( τe ∈ du| Sv = U) QT (

τU ∈ dv | Ft0

)]}
,
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American Barrier Options

Proposition 3

the function SP
(
St0
,Yt0

, u
)

is defined by equation (13), and

EEP0
u (E (Y , u) ,Y ,K ,T ;φ) := [φK − φE (Y , u)]+ − v0

u (E (Y , u) ,Y ,K ,T ;φ) (24)

is the time-u (> t0) early exercise premium associated to a plain-vanilla European option and
valued at the optimal exercise boundary.

The implementation of Proposition 3 requires the knowledge of a new quantity: the probability
density function of the first passage time to the early exercise boundary, which is such that

11{φ=−1} + φF (v ,B; u, E (Y , u)) (25)

=

∫ u

v

[
11{φ=−1} + φF (l, E (Y , l) ; u, E (Y , u))

]
QT ( τe ∈ dl| Sv = B) ,

where B ∈ {L,U}, and function F (·) is defined through equation (18), while φ = 1 for a put
option but φ = −1 for a call option.
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Geometric Brownian Motion
CEV Model

European-style knock-out double barrier call prices under the GBM assumption

Strike Propositions 1 and 2
σ price KI1992 GY1996 S1998 P2000 16 32 64 128 256

Panel A: T − t0 = 0.25

95 4.3036 4.3036 4.3036 4.3036 4.3039 4.3037 4.3036 4.3036 4.3036
25% 100 2.4131 2.4131 2.4131 2.4131 2.4134 2.4132 2.4132 2.4131 2.4131

105 1.0804 1.0804 1.0804 1.0804 1.0805 1.0805 1.0804 1.0804 1.0804
95 0.9770 0.9770 0.9770 0.9770 0.9773 0.9770 0.9770 0.9770 0.9770

40% 100 0.5475 0.5475 0.5475 0.5475 0.5477 0.5476 0.5476 0.5475 0.5475
105 0.2447 0.2447 0.2447 0.2447 0.2447 0.2447 0.2447 0.2447 0.2447

Panel B: T − t0 = 0.50

95 1.7038 1.7038 1.7038 1.7038 1.7046 1.7041 1.7039 1.7039 1.7038
25% 100 0.9703 0.9703 0.9703 0.9703 0.9708 0.9705 0.9704 0.9703 0.9703

105 0.4418 0.4418 0.4418 0.4418 0.4421 0.4419 0.4418 0.4418 0.4418
95 0.0878 0.0878 0.0878 0.0878 0.0880 0.0878 0.0878 0.0878 0.0878

40% 100 0.0492 0.0492 0.0492 0.0492 0.0494 0.0492 0.0492 0.0492 0.0492
105 0.0220 0.0220 0.0220 0.0220 0.0223 0.0221 0.0220 0.0220 0.0220
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American-style up-and-out put option prices under the GBM assumption

Proposition 3
St0

σ T − t0 R1995 GHS2000 2d 3d 4d 5d

40.0 20% 0.25 5.0357 5.0360 5.0357 5.0356 5.0356 5.0356
40.0 20% 0.5 5.1881 5.1893 5.1860 5.1860 5.1860 5.1860
40.0 20% 0.75 5.3083 5.3095 5.3006 5.3005 5.3005 5.3005
40.0 20% 1 5.3861 5.3868 5.3679 5.3678 5.3678 5.3678

45.0 20% 0.25 1.5445 1.5448 1.5441 1.5441 1.5441 1.5441
45.0 20% 0.5 1.9375 1.9384 1.9369 1.9368 1.9368 1.9368
45.0 20% 0.75 2.1197 2.1204 2.1181 2.1180 2.1180 2.1180
45.0 20% 1 2.2151 2.2154 2.2121 2.2119 2.2119 2.2119

49.5 20% 0.25 0.1103 0.1103 0.1103 0.1102 0.1102 0.1102
49.5 20% 0.5 0.1613 0.1614 0.1614 0.1612 0.1612 0.1612
49.5 20% 0.75 0.1828 0.1828 0.1829 0.1826 0.1826 0.1826
49.5 20% 1 0.1936 0.1936 0.1937 0.1933 0.1933 0.1933

40.0 40% 0.25 5.9781 5.9778 5.9767 5.9767 5.9767 5.9767
40.0 40% 0.5 6.4285 6.4292 6.4238 6.4237 6.4237 6.4237
40.0 40% 0.75 6.6162 6.6171 6.6020 6.6017 6.6017 6.6017
40.0 40% 1 6.7054 6.7063 6.6758 6.6753 6.6753 6.6753

45.0 40% 0.25 2.7007 2.7010 2.7003 2.7002 2.7002 2.7002
45.0 40% 0.5 3.0368 3.0370 3.0350 3.0347 3.0347 3.0347
45.0 40% 0.75 3.1591 3.1594 3.1546 3.1540 3.1540 3.1540
45.0 40% 1 3.2145 3.2148 3.2036 3.2028 3.2028 3.2028

49.5 40% 0.25 0.2563 0.2563 0.2566 0.2563 0.2563 0.2563
49.5 40% 0.5 0.293 0.2930 0.2939 0.2934 0.2934 0.2934
49.5 40% 0.75 0.3059 0.3059 0.3075 0.3067 0.3067 0.3067
49.5 40% 1 0.3117 0.3117 0.3144 0.3132 0.3132 0.3132
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European-style double barrier knock-out call prices under the CEV model

Propositions 1 and 2
K U L β δ DL2001 DL2003 16 32 64 128 256

95 120 90 1 2.5 1.8805 1.8805 1.8814 1.8807 1.8805 1.8804 1.8805
95 120 90 0 2.5 × 10 2.0800 2.0808 2.0812 2.0804 2.0801 2.0800 2.0800

95 120 90 -2 2.5 × 103 2.5529 2.5528 2.5544 2.5533 2.5530 2.5528 2.5529

95 120 90 -4 2.5 × 105 3.1295 3.1295 3.1312 3.1301 3.1297 3.1295 3.1295

95 120 90 -6 2.5 × 107 3.8088 3.8088 3.8103 3.8094 3.8090 3.8088 3.8088

100 120 90 1 2.5 1.0958 1.0958 1.0964 1.0959 1.0958 1.0957 1.0958
100 120 90 0 2.5 × 10 1.2383 1.2383 1.2392 1.2386 1.2384 1.2383 1.2383

100 120 90 -2 2.5 × 103 1.5799 1.5799 1.5811 1.5803 1.5800 1.5799 1.5799

100 120 90 -4 2.5 × 105 2.0022 2.0022 2.0036 2.0027 2.0023 2.0022 2.0022

100 120 90 -6 2.5 × 107 2.5059 2.5059 2.5072 2.5064 2.5061 2.5059 2.5059

105 120 90 1 2.5 0.5126 0.5126 0.5130 0.5127 0.5126 0.5125 0.5126
105 120 90 0 2.5 × 10 0.5945 0.5945 0.5951 0.5947 0.5945 0.5945 0.5945

105 120 90 -2 2.5 × 103 0.7960 0.7960 0.7969 0.7964 0.7961 0.7961 0.7960

105 120 90 -4 2.5 × 105 1.0535 1.0535 1.0546 1.0539 1.0536 1.0535 1.0535

105 120 90 -6 2.5 × 107 1.3696 1.3697 1.3708 1.3701 1.3698 1.3697 1.3697
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American-style double barrier knock-in put prices under the CEV model

Standard European Proposition 3
K U L β δ European KIDB 2d 3d 4d 5d

95 120 90 1 2.5 3.0297 3.0096 3.2691 3.2691 3.2692 3.2697
95 120 90 0 2.5 × 10 3.1094 3.0915 3.3344 3.3345 3.3345 3.3350

95 120 90 -2 2.5 × 103 3.2865 3.2723 3.4778 3.4778 3.4778 3.4782

95 120 90 -4 2.5 × 105 3.4982 3.4870 3.6441 3.6446 3.6446 3.6446

95 120 90 -6 2.5 × 107 3.7616 3.7529 3.8506 3.8506 3.8506 3.8515

100 120 90 1 2.5 4.7075 4.5521 5.0379 5.0379 5.0379 5.0379
100 120 90 0 2.5 × 10 4.7145 4.5717 5.0312 5.0312 5.0312 5.0312

100 120 90 -2 2.5 × 103 4.7436 4.6236 5.0258 5.0258 5.0258 5.0258

100 120 90 -4 2.5 × 105 4.7977 4.6976 5.0322 5.0322 5.0322 5.0322

100 120 90 -6 2.5 × 107 4.8867 4.8040 5.0538 5.0538 5.0538 5.0540

105 120 90 1 2.5 6.8961 6.4038 7.2445 7.2445 7.2446 7.2446
105 120 90 0 2.5 × 10 6.8194 6.3539 7.1699 7.1700 7.1701 7.1701

105 120 90 -2 2.5 × 103 6.6826 6.2677 7.0289 7.0291 7.0290 7.0291

105 120 90 -4 2.5 × 105 6.5681 6.2006 6.8973 6.8974 6.8974 6.8974

105 120 90 -6 2.5 × 107 6.4789 6.1555 6.7731 6.7732 6.7732 6.7732
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Conclusions

This paper extends the literature in two directions:

First, European-style (double) barrier options are priced under a
multifactor and Markovian financial model that is able to
accommodate stochastic volatility, stochastic interest rates and
endogenous bankruptcy;
Second and more importantly, quasi-analytical pricing solutions are
also proposed for American-style (double) barrier option contracts
under the same general financial model.

The proposed pricing solutions are shown to be accurate, easy to
implement, and efficient.
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