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Motivation

Classical theory of option pricing assumes that hedging of
derivatives has no impact on the price process of the underlying.

In practice, we observe particularly large trading activities when
derivatives mature (“witches’ sabbaths”).

Another example for a price impact: the battle for control of
Volkswagen

Financial Times vom 29 Oct 2008:
[. . . ] At its intra-day peak of 1,005 euros, its market capitalisation
exceeded Exxon, the US oil company. This has raised fears over
a “squeeze” on traders betting on a fall in Volkswagen shares
through short-selling. [. . . ]
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Research questions

Given this empirical evidence, what are the optimal
manipulation strategies of large traders with price impact that
hold/issued illiquid derivatives ?

What is the large trader’s indifference price (reservation price)
of an illiquid derivative ?

Extensive literature on price impact models:

Back (1992), Bank, Baum (2004), Çetin, Jarrow, Protter (2004),
Çetin, Rogers (2007), Cvitanić, Ma (1996),
DeMarzo, Uros̆ević (2006), Frey, Stremme (1997),
Glosten, Milgrom (1985), Horst, Naujokat (2008),
Jarrow (1994), Kyle (1985)

. . . among many others
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Model considered in Kraft and K. (2010)

Investment opportunities of large trader
(1) money market account with zero interest
(2) risky small cap stock S, whose drift rate is affected by the
e-amount (θt)t∈[0,T ] the large trader holds in stocks.

stock dynamics: dSt = St [(µ0 + µ1θt) dt + σ dWt ]
typically: µ1 < 0, “squeezing” (µ1 > 0, “herding”)

Justified as equilibrium stock price process by DeMarzo and
Urošević (2006)

This leads to the gain process X given by X0 = 0 and

dXt =
θt

St
dSt = θt(µ0 + µ1θt) dt + θtσ dWt

Moreover, large trader issues an illiquid derivative on the stock
with time T payoff h(ST ) (“over the counter”)

total wealth at time T = ph − h(ST ) + XT

To switch from seller’s to buyer’s viewpoint replace h by −h.
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Model

Recall the stock dynamics: dSt = St [(µ0 + µ1θt) dt + σ dWt ]

Immediate observation: despite of the price impact µ1 6= 0 the
large trader can perfectly replicate the claim h(ST ) at the same
costs as in the corresponding standard Black-Scholes model
with µ1 = 0.

One explanation: distribution of price process under “martingale
measure” does not depend on (θt)t∈[0,T ].
Replication costs = expected payoff under martingale measure

 we have the reference Black-Scholes hedge θBS and price pBS

But due to the price impact there appears a trade-off:

Hedging (removing risk by offset transactions)
Manipulation (systematic influence on the non-hedged
derivative position to the own advantage)
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Utility-based hedging and indifference pricing

Exponential utility: u(Y ) = E [−exp(−αY )], α > 0 risk aversion

ph is the seller’s indifference price for the derivative
payoff h(ST ) iff

sup
θ

E
[
−exp(−α(ph − h(ST (θ)) + XT (θ)))

]
= sup

θ
E [−exp(−α(XT (θ)))]

Utility with derivative deal !
= Utility without derivative deal

New: h(ST (θ)) depends on θ.
XT (θ) is no longer linear in the strategy θ
=⇒ in general ph 6= pBS

Hedging manipulation strategy := θ̂(with claim)− θ̂(without claim)
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Hamilton-Jacobi-Bellman equation
Assume that µ1 < 1

2ασ2. Large trader’s value function:

G(t , x , s) = sup
θ

E [−exp(−α(−h(ST (θ)) + XT (θ)))]

has to satisfy Hamilton-Jacobi-Bellman equation

max
ϑ∈R

{Gt + ϑ(µ0 + µ1ϑ)Gx + (µ0 + µ1ϑ)sGs

+
1
2

σ2ϑ2Gxx +
1
2

σ2s2Gss + σ2ϑsGxs

}
= 0,

where G(T , x , s) = −exp(−α(x − h(s))).

Ansatz for value function: G(t , x , s) = −exp(−αx)F (t , z) with z = ln(s)

HJB equation becomes

max
ϑ∈R

{
−Ft +

(
ϑ(µ0 + µ1ϑ)α− 1

2
σ2ϑ2α2

)
F +

(
σ2ϑα +

1
2

σ2 − µ0 − µ1ϑ

)
Fz

−1
2

σ2Fzz

}
= 0, where F (T , z) = exp(αh(exp(z))).
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Optimal strategy

θ̂t =
µ0

ασ2 − 2µ1︸ ︷︷ ︸
maximizer without claim

+

(
1 +

µ1

ασ2 − 2µ1

)
︸ ︷︷ ︸

=: hedge multiplier

Fz(t , ln(St))

αF (t , ln(St))︸ ︷︷ ︸
=∂z ph(t,ln(St ))

.

µ1 = 0 (Black-Scholes)  hedge multiplier = 1 (perfect hedging)
µ1 < 0  hedge multiplier < 1 (underhedging)
µ1 > 0  hedge multiplier > 1 (overhedging)

Interpretation for the case µ1 < 0: large trader replicates e.g. 80%
of the claim. The hedging portfolio suffers a loss from the price impact
of the hedging activity (as price impact is negative). But the opposite
derivative position profits from it. Taken together the 20% unhedged
position profits from the price impact of 80% hedging activity.

Plugging the optimal stock position in the HJB-equation yields

0 = −Ft +−(µ0 −
1
2

σ2)Fz −
1
2

σ2Fzz +
1
2

(αµ0F − µ1Fz + σ2αFz)
2

α(ασ2 − 2µ1)F

Non linear !
Holger Kraft, Christoph Kühn
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Solution of the HJB-equation
To knock out the nonlinear term we use a trick applied in papers by
Henderson, Hobson, and Zariphopoulou

Ansatz: F (t , z) = g(t , z)β

and thus g(T , z) = exp
(

α
β h(exp(z))

)
.

The HJB-equation becomes

0 = −β

α
gt −

γ

α
(µ0 −

1
2

σ2)gz −
1
2

γ

α
σ2[(β − 1)

g2
z

g
+ gzz ]

+
1
2

(
µ0g − γ

αµ1gz + βσ2gz
)2

(ασ2 − 2µ1)g

To knock out the terms with g2
z

g we choose

β =
1

1− (σ2−µ1/α)2

σ2(σ2−2µ1/α)

< 0
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gt −
1
2

α

β

µ2
0

ασ2 − 2µ1︸ ︷︷ ︸
=er

g +

(
µ0 −

1
2

σ2 − µ0(ασ2 − µ1)

ασ2 − 2µ1

)
︸ ︷︷ ︸

=ηZ

gz +
1
2

σ2gzz = 0.

This PDE is linear and thus it possesses a Feynman-Kac stochastic
representation

g(t , z) = exp(−r̃(T − t))Ẽ
[
exp

(
α

β
h(exp(ZT )

)]
, wobei

ZT is normally distributed with expectation ηZ · (T − t) & variance σ2 · (T − t)

For the seller’s indifference price this yields

ph =
1
α
β

ln
(

Ẽ
[
exp

(
α

β
h(exp(ZT ))

)])
.

As β < 0 this would formally correspond to the exponential principles
(under the artificial measure P̃) with the artificial negative risk aversion α

β .
Consequence: many things turn around
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gt −
1
2

α

β

µ2
0

ασ2 − 2µ1︸ ︷︷ ︸
=er

g +

(
µ0 −

1
2

σ2 − µ0(ασ2 − µ1)

ασ2 − 2µ1

)
︸ ︷︷ ︸

=ηZ

gz +
1
2

σ2gzz = 0.

This PDE is linear and thus it possesses a Feynman-Kac stochastic
representation

g(t , z) = exp(−r̃(T − t))Ẽ
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Ẽ
[
exp

(
α

β
h(exp(ZT ))

)])
.

As β < 0 this would formally correspond to the exponential principles
(under the artificial measure P̃) with the artificial negative risk aversion α

β .
Consequence: many things turn around
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Seller’s indifference price:

ph =
1
α
β

ln
(

Ẽ
[
exp

(
α

β
h(exp(ZT ))

)])
with β < 0.

seller’s indifference price is concave (and not convex as in
(in)complete frictionless markets)

Every claim h ≥ 0 has a finite seller’s indifference price (even if
Black-Scholes replication costs and expectation w.r.t. P are
infinite)

Hedging manipulation strategy → θBlack−Scholes

if risk aversion α →∞
=⇒ indifference price → pBS for α →∞
pλh

λ
→ ess infs∈R+h(s), λ →∞

where the essential infimum is taken w.r.t. the Lebesgue measure on R

i.e. indifference price (per share) tends to minimal possible
payoff of the derivative if position size λ explodes
In the case of call/put options ess infs∈R+h(s) = 0
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Extension: Two Large Traders

θi is the e-amount that the i-th trader invests in stocks (i = 1, 2)

Stock price dynamics:

dSt = St
(
(µ0 + µ1θ

1
t + µ1θ

2
t ) dt + σ dWt

)

i-th player’s liquid wealth reads

dX i
t =

θi
t

St
dSt = θi

t(µ0 + µ1θ
1
t + µ1θ

2
t ) dt + θi

tσ dWt , i = 1, 2.

Both traders maximize expected utilities from terminal wealths
w.r.t. ui(Y ) = EP [−exp(−αiY )], i = 1, 2, with possibly different
α1, α2 > 0
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Extension: Two Large Traders (continued)

Consider the case that the first trader holds a short and the
second a long position in the same illiquid derivative with
payoff h(ST )

i = 1 (issuer) G1(t , x , s) = −exp(−α1(x − h(s)))
i = 2 (holder) G2(t , x , s) = −exp(−α2(x + h(s)))

Result: The game has the following Nash equilibrium:

θ1
t = θ̂1

t + Stvs(t , St) and θ2
t = θ̂2

t − Stvs(t , St),

where

θ̂i =
(αjσ

2 − µ1)µ0

α1α2σ4 − 2σ2µ1(α1 + α2) + 3µ2
1
, i = 1, 2, j 6= i

and v(t , s) is the Black-Scholes price of the claim h(ST )

=⇒ price impacts of Stvs(t , St) and −Stvs(t , St) completely
compensate =⇒ indifference prices = Black-Scholes price
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Extension: Two Large Traders (continued)

Intuition: Why is

θ1
t = θ̂1

t + Stvs(t , St) and θ2
t = θ̂2

t − Stvs(t , St),

a Nash equilibrium ?

Start with (θ1, θ2) and show that for neither of the traders there is
an incentive to change his strategy.

Both traders hedge the risk of the derivative completely
away.
In addition, the price impacts of the hedging
strategies Stvs(t , St) and −Stvs(t , St) completely
compensate.
Thus the situation is exactly the same as without the
derivative deal with Nash eqilibrium (θ̂1, θ̂2).
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Many thanks for your attention !

Holger Kraft, Christoph Kühn


