Optimal Stock Selling Based on the Global Maximum

Yifei Zhong

University of Oxford

 6^{th} World Congress of the Bachelier Finance Society, June 22-26, 2010

(joint work with Dr. M. Dai and Z. Yang)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

If I were an Innocent Investor...

- \blacktriangleright I just bought a stock and must sell it in one year
- \triangleright Need to decide when to sell?
- \triangleright Obviously, sell it at the maximum price of the whole year. However, this is an impossible mission.
- ▶ So, what about selling at the price "closest" to the maximum?

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

If I were an Innocent Investor...

- \blacktriangleright I just bought a stock and must sell it in one year
- \triangleright Need to decide when to sell?
- \triangleright Obviously, sell it at the maximum price of the whole year. However, this is an impossible mission.
- ► So, what about selling at the price "closest" to the maximum?

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X Y Q Q @

► This talk is using square error to measure "closeness" and studying the optimal selling strategy under this criterion.

The Model

- ▶ A Black-Scholes market with one stock and one saving account
- ► The discounted stock price follows, on $(\Omega, \mathcal{F}, \{F_t\}_{t>0}, P)$,

$$
dS_t = \mu S_t dt + \sigma S_t dW_t,
$$

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X Y Q Q @

where $\mu \in (-\infty, \infty)$ and $\sigma > 0$ are constants

► Let $M_s = \max_{0 \le t \le s} S_t, 0 \le s \le T$ be the running maximum of stock price

The Model

- ▶ A Black-Scholes market with one stock and one saving account
- ► The discounted stock price follows, on $(\Omega, \mathcal{F}, \{F_t\}_{t>0}, P)$,

$$
dS_t = \mu S_t dt + \sigma S_t dW_t,
$$

where $\mu \in (-\infty, \infty)$ and $\sigma > 0$ are constants

- ► Let $M_s = \max_{0 \le t \le s} S_t, 0 \le s \le T$ be the running maximum of stock price
- \triangleright Consider the following optimal stopping problem

$$
\inf_{0 \le \nu \le T} \mathbb{E}[(S_{\nu} - M_T)^2],
$$

where $\mathbb E$ stands for the expectation, ν is an $\mathcal F_t$ -stopping time.

A O A G A 4 O A C A G A 4 O A 4 O A A C A

Related (Probabilistic) Literature

▶ Graversen, Peskir and Shiryaev (2000), Theory Prob Appl, studied

$$
\inf_{0\leq \nu\leq T}\mathbb{E}[(S^0_{\nu}-M^0_T)^2],
$$

where $S^0_t = W_t$, $M_T^0 = \max_{0 \leq t \leq T} W_t$ and obtained explicit optimal solution

$$
\nu* = \inf\{t : M_t^0 - S_t^0 \ge z^* \sqrt{T-t}\}, z^* = 1.12\dots
$$

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X Y Q Q @

Related (Probabilistic) Literature

▶ Graversen, Peskir and Shiryaev (2000), Theory Prob Appl, studied

$$
\inf_{0\leq \nu\leq T}\mathbb{E}[(S^0_{\nu}-M^0_T)^2],
$$

where $S^0_t = W_t$, $M_T^0 = \max_{0 \leq t \leq T} W_t$ and obtained explicit optimal solution

$$
\nu* = \inf\{t: M_t^0 - S_t^0 \ge z^* \sqrt{T-t}\}, z^* = 1.12\dots
$$

► du Toit and Peskir (2007), Ann Prob, considered

$$
\inf_{0 \le \nu \le T} \mathbb{E}[(S_{\nu}^{\mu} - M_{T}^{\mu})^{2}],
$$

where $\mu \neq 0$.

Related (Financial) Literature

▶ Shiryaev, Xu and Zhou (2008), Quant Fin, studied the relative error between the selling price and global maximum,

$$
\inf_{0\leq \nu\leq T}\mathbb{E}\left[\frac{S_{\nu}}{M_T}\right]
$$

YO A REPART ARM ADD

- ► "Bang-bang" strategy:
	- ► Sell at time $T: \mu > \frac{\sigma^2}{2}$ $\overline{2}$
	- ► Sell at time $0: \mu \leq \frac{\sigma^2}{2}$ $\overline{2}$

PDE Formulation

 \blacktriangleright The problem is

$$
\inf_{0 \le \nu \le T} \mathbb{E}[(S_{\nu} - M_T)^2]
$$

- \triangleright Not a standard optimal stopping problem, since M_T is not \mathcal{F}_t -adapted
- \triangleright One more step:

$$
\inf_{0 \le \nu \le T} \mathbb{E}[(S_{\nu} - M_T)^2] = \inf_{0 \le \nu \le T} \mathbb{E}\Big\{\mathbb{E}[(S_{\nu} - M_T)^2 | \mathcal{F}_{\nu}]\Big\}
$$

$$
= \inf_{0 \le \nu \le T} \mathbb{E}\Big\{\phi(\nu, S_{\nu}, M_{\nu})\Big\},
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

where $\phi(t, S_t, M_t) = \mathbb{E}[(S_t - M_T)^2 | \mathcal{F}_t]$

PDE Formulation (Con't)

 \blacktriangleright Denote the value function

$$
\psi(t, S_t, M_t) = \inf_{t \le \nu \le T} \mathbb{E} \Big\{ \phi(\nu, S_{\nu}, M_{\nu}) \mid \mathcal{F}_t \Big\}
$$

▶ Dynamic programming equation (Variational Inequalities)

$$
\begin{cases}\n\max\{-\partial_t\psi - \mathcal{L}^0\psi, \psi - \phi\} = 0, & (t, S, M) \in D, \\
\partial_M\psi(t, M, M) = 0, & \psi(T, S, M) = (S - M)^2,\n\end{cases}
$$

YO A REPART ARM ADD

where $\mathcal{L}^0 = \frac{\sigma^2}{2}$ $\frac{\partial^2}{\partial S} \partial_{SS} + \mu \partial_S$ and $D = \{(t, S, M) : 0 < S < M, 0 \le t < T\}.$

The Obstacle Function $\phi(t, S, M)$

 \blacktriangleright Recall

$$
\begin{array}{rcl}\n\phi(t, S_t, M_t) & = & \mathbb{E}[(S_t - M_T)^2 \mid \mathcal{F}_t] \\
& = & S_t^2 - 2S_t \mathbb{E}[M_T \mid \mathcal{F}_t] + \mathbb{E}[M_T^2 \mid \mathcal{F}_t] \\
& = & S_t^2 - 2S_t \phi_1(t, S_t, M_t) + \phi_2(t, S_t, M_t),\n\end{array}
$$

where $\phi_i(t, S_t, M_t) = \mathbb{E}[M_T^i | \mathcal{F}_t].$

 \blacktriangleright Then, $\phi_i(t, S, M)$ satisfies

$$
\begin{cases}\n-\partial_t \phi_i - \mathcal{L}^0 \phi_i = 0, & (t, S, M) \in D, \\
\partial_M \phi_i(t, M, M) = 0, & \phi_i(T, S, M) = M^i.\n\end{cases}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

Change of Variables

$$
\text{Denote } \tau = T - t, \quad x = \ln \frac{M}{S}, \quad u_i(\tau, x) = \frac{\phi_i(t, S, M)}{S^i},
$$
\n
$$
u(\tau, x) = \frac{\phi(t, S, M)}{S^2}.
$$

► Then,
$$
u_1
$$
 and u_2 satisfy
\n
$$
\begin{cases}\n\frac{\partial_{\tau} u_1 - \mathcal{L}_x^1 u_1 = 0 \text{ in } \Omega, \\
\frac{\partial_x u_1(\tau, 0) = 0}{\partial_{xx} u_1(0, x)} = e^x, \\
\frac{\partial_{\tau} u_2 - \mathcal{L}_x^2 u_2 = 0 \text{ in } \Omega, \\
\frac{\partial_x u_2(\tau, 0) = 0}{\partial_{xx} u_2(\tau, 0)} = 0, \ u_2(0, x) = e^{2x},\n\end{cases}
$$

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q Y

where
$$
\mathcal{L}_x^1 = \frac{\sigma^2}{2} \partial_{xx} - \left(\mu + \frac{\sigma^2}{2}\right) \partial_x + \mu
$$
,
\n
$$
\mathcal{L}_x^2 = \frac{\sigma^2}{2} \partial_{xx} - \left(\mu + \frac{3\sigma^2}{2}\right) \partial_x + (2\mu + \sigma^2)
$$
,
\n
$$
\Omega = (0, T] \times (0, \infty).
$$

Change of Variables (con't)

► Denote
$$
v(\tau, x) = \frac{\psi(t, S, M) - \phi(t, S, M)}{S^2}
$$

 \blacktriangleright Then, v satisfies

$$
\begin{cases}\n\max \left\{\partial_\tau v - \mathcal{L}_x^2 v - H, v\right\} = 0 & \text{in } \Omega, \\
\partial_x v(\tau, 0) = 0, \ v(0, x) = 0,\n\end{cases}
$$

where
$$
H = \mathcal{L}_x^2 u - \partial_\tau u = 2\mu + \sigma^2 + 2(\sigma^2 \partial_x u_1 - (\mu + \sigma^2) u_1),
$$

\n
$$
\mathcal{L}_x^2 = \frac{\sigma^2}{2} \partial_{xx} - (\mu + \frac{3\sigma^2}{2}) \partial_x + (2\mu + \sigma^2).
$$

 \triangleright Define the selling region (the stopping region) as follows:

$$
SR = \{ (\tau, x) \in [0, \infty) \times (0, T] : v(\tau, x) = 0 \}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The Optimal Selling Strategy: Good Stock $(\mu > 0)$

Figure: Two optimal selling boundaries. Parameter values used: $\mu = 0.045, \ \sigma = 0.3, \ T = 1.$

 $(1 - 4)$ $(1 -$

 \Rightarrow

The Optimal Selling Strategy: Bad Stock $(-\sigma^2 \leq \mu \leq 0)$

Figure: The monotonically increasing optimal selling boundary. Parameter values used: $\mu = -0.010, \sigma = 0.3, T = 1.$

 $(1 - 4)$ $(1 -$

 2990

 \Rightarrow

The Optimal Selling Strategy: Very Bad Stock $(\mu < -\sigma^2)$

Figure: The nonmonotone optimal selling boundary. Parameter values used: $\mu = -0.032, \sigma = 0.4, T = 3.$

KORK ERKER ER AGA

The Proof

▶ Recall

$$
\begin{cases}\n\max \left\{\partial_\tau v - \mathcal{L}_x^2 v - H, v\right\} = 0 & \text{in } \Omega, \\
\partial_x v(\tau, 0) = 0, \ v(0, x) = 0,\n\end{cases}
$$

 \blacktriangleright So,

$$
SR = \{ (\tau, x) : v = 0 \}
$$

\n
$$
\subseteq \{ (\tau, x) : \partial_{\tau} 0 - \mathcal{L}_x^2 0 - H \le 0 \}
$$

\n
$$
= \{ (\tau, x) : H \ge 0 \}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ 9 Q @

The Set $\{(\tau, x) : H \geq 0\}$

Lemma: Recall $H(\tau,x) = 2\mu + \sigma^2 + 2\left(\sigma^2\partial_x u_1 - (\mu + \sigma^2)u_1\right)$.

$$
\blacktriangleright \text{ If } \mu \leq 0, \ \partial_x H > 0;
$$

- \blacktriangleright If $\mu \ge -\sigma^2$, $\partial_{\tau}H < 0$;
- If $\mu > 0$, $\partial_x H(\tau, x) = 0$ has at most one solution for any give $\tau > 0$;

case $\mu \leq 0$

 $\mathbf{1}_{\{1,2\}}\oplus\mathbf{1}_{\{1,3\}}\oplus\mathbf{1}_{\{1,4\}}\oplus\mathbf{1}_{\{1,3\}}\oplus\mathbf{1}_{\{1,4\}}\oplus\mathbf{1}_{\{1,5\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,5\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\$

With the help of previous lemma, we have

- \blacktriangleright $\partial_x v > 0$ if $\mu < 0$;
- \blacktriangleright $\partial_{\tau} v \leq 0$ if $\mu \geq -\sigma^2$;
- \blacktriangleright These are due to

$$
\partial_{\tau}v - \mathcal{L}_x^2 v = H, \text{in } \{(\tau, x) : v < 0\}.
$$

K ロ ▶ K @ ▶ K 할 X K 할 X 및 할 X Y Q Q @

With the help of previous lemma, we have

- \blacktriangleright $\partial_x v > 0$ if $\mu < 0$;
- \blacktriangleright $\partial_{\tau} v \leq 0$ if $\mu \geq -\sigma^2$;
- ► These are due to

$$
\partial_{\tau}v - \mathcal{L}_x^2 v = H, \text{in } \{(\tau, x) : v < 0\}.
$$

A O A G A 4 O A C A G A 4 O A 4 O A A C A

► Define $x_s^*(\tau) = \inf\{x \in (0, +\infty) : v(\tau, x) = 0, \forall \tau \in (0, T]\}.$

With the help of previous lemma, we have

- \blacktriangleright $\partial_x v > 0$ if $\mu < 0$;
- \blacktriangleright $\partial_{\tau} v \leq 0$ if $\mu \geq -\sigma^2$;
- ► These are due to

$$
\partial_{\tau}v - \mathcal{L}_x^2 v = H, \text{in } \{(\tau, x) : v < 0\}.
$$

- ► Define $x_s^*(\tau) = \inf\{x \in (0, +\infty) : v(\tau, x) = 0, \forall \tau \in (0, T]\}.$
- ► Thanks to $\partial_x v \geq 0$, we can show

$$
SR = \{ (\tau, x) : v(\tau, x) = 0 \}
$$

= \{ (\tau, x) : x \ge x_s^*(\tau), 0 < \tau \le T \}.

YO A REPART ARM ADD

With the help of previous lemma, we have

- \blacktriangleright $\partial_x v > 0$ if $\mu \leq 0$;
- \blacktriangleright $\partial_{\tau} v \leq 0$ if $\mu \geq -\sigma^2$;
- ► These are due to

$$
\partial_{\tau}v - \mathcal{L}_x^2 v = H, \text{in } \{(\tau, x) : v < 0\}.
$$

- ► Define $x_s^*(\tau) = \inf\{x \in (0, +\infty) : v(\tau, x) = 0, \forall \tau \in (0, T]\}.$
- ► Thanks to $\partial_x v \geq 0$, we can show

$$
SR = \{ (\tau, x) : v(\tau, x) = 0 \}
$$

= \{ (\tau, x) : x \ge x_s^*(\tau), 0 < \tau \le T \}.

A O A G A 4 O A C A G A 4 O A 4 O A A C A

 $\triangleright \partial_{\tau} v \leq 0$ gives the monotonicity of the free boundary.

► With $\mu > 0$, we have $\partial_{\tau} v \leq 0$, which implies that $(\tau_2, x) \in SR$, if $(\tau_1, x) \in SR$ and $\tau_2 < \tau_1$.

 $\mathbf{C} = \mathbf{A} \oplus \mathbf{A} + \mathbf{C} \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

► With $\mu > 0$, we have $\partial_{\tau} v \leq 0$, which implies that $(\tau_2, x) \in SR$, if $(\tau_1, x) \in SR$ and $\tau_2 < \tau_1$.

 $\mathbf{C} = \mathbf{A} \oplus \mathbf{A} + \mathbf{C} \mathbf{B} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

► With $\mu > 0$, we have $\partial_{\tau} v \leq 0$, which implies that $(\tau_2, x) \in SR$, if $(\tau_1, x) \in SR$ and $\tau_2 < \tau_1$.

 $\mathbf{1}_{\{1,2\}}\oplus\mathbf{1}_{\{1,3\}}\oplus\mathbf{1}_{\{1,4\}}\oplus\mathbf{1}_{\{1,3\}}\oplus\mathbf{1}_{\{1,4\}}\oplus\mathbf{1}_{\{1,5\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,5\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\}}\oplus\mathbf{1}_{\{1,6\$

► With $\mu > 0$, we have $\partial_{\tau} v \leq 0$, which implies that $(\tau_2, x) \in SR$, if $(\tau_1, x) \in SR$ and $\tau_2 < \tau_1$.

モロン マ何 メ マ チ メ ヨ メ ニ ヨ

- \blacktriangleright The sell region SR is connected;
- \triangleright We can define

$$
x_{1s}^*(\tau) = \inf\{x \in [0, +\infty) : v(\tau, x) = 0\}
$$

$$
x_{2s}^*(\tau) = \sup\{x \in [0, +\infty) : v(\tau, x) = 0\}
$$

 \blacktriangleright It is easy to show

$$
SR = \{ (\tau, x) : x_{1s}^*(\tau) \le x \le x_{2s}^*(\tau), 0 < \tau \le \tau^* \}.
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

► The monotonicity of $x_{is}^*(\tau)$ follows by $\partial_{\tau}v \leq 0$.

Smoothness of the Free Boundary

- For $\mu \ge -\sigma^2$, we have $\partial_\tau v \le 0$. So, one can easily establish the smoothness of $x_s^*(\tau)$ following Friedman (1975).
	- First, show $x_s^*(\tau) \in C^{3/4}((0,T])$
	- ► Then, show $x_s^*(\tau) \in C^1((0,T])$
	- ► By a bootstrap argument, show $x_s^*(\tau) \in C^\infty((0,T])$

YO A REPART ARM ADD

Smoothness of the Free Boundary

- For $\mu \ge -\sigma^2$, we have $\partial_\tau v \le 0$. So, one can easily establish the smoothness of $x_s^*(\tau)$ following Friedman (1975).
	- First, show $x_s^*(\tau) \in C^{3/4}((0,T])$
	- ► Then, show $x_s^*(\tau) \in C^1((0,T])$
	- ► By a bootstrap argument, show $x_s^*(\tau) \in C^\infty((0,T])$
- For $\mu < -\sigma^2$, we change of variables. Let $y = x \mu/\sigma^2 \tau$, and $V(\tau, y) = v(\tau, x)$.
	- Show $\partial_{\tau}V(\tau, y) \leq 0$ and $\partial_{y}V(\tau, y) \geq 0$
	- \blacktriangleright Apply Friedman (1975) to show smoothness of the corresponding $y_s^*(\tau)$, which gives the desired result

A O A G A 4 O A C A G A 4 O A 4 O A A C A

Conclusion

- \triangleright We examine the optimal decision to sell a stock with the criteria of minimizing the square error between the selling price and the global maximum.
- ► For good stock, i.e. $\mu > 0$, the optimal selling boundary has two branches and only exists when time to maturity is not long enough.
- ► For bad stock, i.e. $\mu \leq 0$, the optimal selling boundary only has one branch and always exists.

 \blacktriangleright The smoothness of the free boundary is also established.

Thank you !

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ^