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Financial Setting

• Option priced on an underlying asset St

• Dynamics of St unspecified, but suppose paths are
continuous, and we see prices of call options at all strikes
K and at maturity time T

• Assume for simplicity that all prices are discounted — this
won’t affect our main results

• Under risk-neutral measure, St should be a
(local-)martingale, and we can recover the law of ST at
time T from call prices C(K ). (Breeden-Litzenberger)
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Financial Setting

• Given these constraints, what can we say about market
prices of other options?

• Two questions:
• What prices are consistent with a model?
• If there is no model, is there an arbitrage which works for

every model in our class — robust!

• Intuitively, understanding ‘worst-case’ model should give
insight into any corresponding arbitrage.

• Insight into hedge likely to be more important than pricing

• But... prices will indicate size of ‘model-risk’
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Connection to Skorokhod Embeddings

• Under a risk-neutral measure, expect St to be a
local-martingale with known law at time T , say µ.

• Since St is a continuous local martingale, we can write it
as a time-change of a Brownian motion: St = BAt

• Now the law of BAT is known, and AT is a stopping time for
Bt

• Correspondence between possible price processes for St

and stopping times τ such that Bτ ∼ µ.

• Problem of finding τ given µ is Skorokhod Embedding
Problem

• Commonly look for ‘worst-case’ or ‘extremal’ solutions

• Surveys: Obłój, Hobson,. . .
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Variance Options
• We may typically suppose a model for asset prices of the

form:
dSt

St
= σtdWt ,

where Wt a Brownian motion.

• the volatility, σt , is a predictable process
• Recent market innovations have led to asset volatility

becoming an object of independent interest

• For example, a variance swap pays:

∫ T

0

(

σ2
t − σ̄2

)

dt

where σ̄t is the ‘strike’. Dupire (1993) and Neuberger
(1994) gave a simple replication strategy for such an
option.
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Variance Call

• A variance call is an option paying:

(〈ln S〉T − K )+

• Let dXt = Xt dW̃t for a suitable BM W̃t

• Can find a time change τt such that St = Xτt , and so:

dτt =
σ2

t S2
t

S2
t

dt

• And hence

(XτT , τT ) =

(

ST ,

∫ T

0
σ2

u du

)

= (ST , 〈ln S〉T )

• More general options of the form: F (〈ln S〉T ).
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Variance Call

• This suggests finding lower bound on price of variance call
with given call prices is equivalent to:

minimise: E(τ − K )+ subject to: L(Xτ ) = µ

where µ is a given law.

• Is there a Skorokhod Embedding which does this?
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Root Construction

• β ⊆ R× R+ a barrier if:

(x , t) ∈ β =⇒ (x , s) ∈ β

for all s ≥ t

• Given µ, exists β and a
stopping time

τ = inf{t ≥ 0 : (Bt , t) ∈ β}

which is an embedding.

• Minimises E(τ − K )+
over all (UI) embeddings

• Construction and
optimality are subject of
this talk

Bt

t

• Root (1969)

• Rost (1976)
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Variance Call

• Finding lower bound on price of variance call with given
call prices is equivalent to:

minimise: E(τ − K )+ subject to: L(Xτ ) = µ

where µ is a given law.

• This is (almost) the problem solved by Root’s Barrier!

• Root proved this for Xt a Brownian motion. Rost (1976)
extended his solution to much more general processes,
and proved optimality, which was conjectured by Kiefer.

• This connection to Variance options has been observed by
a number of authors: Dupire (’05), Carr & Lee (’09),
Hobson (’09).
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Questions

Question

This known connection leads to two important questions:

1. How do we find the Root stopping time?

2. Is there a corresponding hedging strategy?

• Dupire has given a connected free boundary problem

• Dupire, Carr & Lee have given strategies which
sub/super-replicate the payoff, but are not necessarily
optimal

• Hobson has given a formal, but not easily solved, condition
a hedging strategy must satisfy.
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Root’s Problem

We want to connect Root’s solution and the solution of a
free-boundary problem. We will consider the case where
Xt = σ(Xt)dBt and σ is nice (smooth, Lipschitz, strictly positive
on (0,∞)). To make explicit the first, we define:

Root’s Problem (RP)

Find an open set D ⊂ R×R+ such that (R×R+)/D is a barrier
generating a UI stopping time τD and XτD ∼ µ.

Here we denote the exit time from D as τD.
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Free Boundary Problem

Free Boundary Problem (FBP)

To find a continuous function u : R× [0,∞) → R and a
connected open set D : {(x , t), 0 < t < R(x)} where
R : R → R+ = [ 0,∞ ] is a lower semi-continuous function, and

u ∈ C
0(R× [0,∞)) and u ∈ C

2,1(D) ;

∂u
∂t

=
1
2
σ(x)2 ∂2u

∂x2 , on D ; u(x , 0) = −|x − S0| ;

u(x , t) = Uµ(x) = −
∫

|x − y |µ(dy), if t ≥ R(x),

u(x , t) is concave with respect to x ∈ R .

∂2u
∂x2 ‘disappears’ on ∂D.
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(RP) is equivalent to (FBP)

An easy connection is then the following:

Theorem

Under some conditions on D, if D is a solution to (RP), we can
find a solution to (FBP). In addition, this solution is unique.

Sketch Proof of (RP) =⇒ (FBP)

Simply take
u(x , t) = −E|Xt∧τD − x |.

Resulting properties are mostly straightforward/follow from
regularity of DC , and fact that, for (x , t) ∈ DC :

−E|Xt∧τD − x | = −E|XτD − x |.
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Optimality of Root’s Barrier

Rost’s Result

Given a function F which is convex, increasing, Root’s barrier
solves:

minimise EF (τ)
subject to: Xτ ∼ µ

τ a (UI) stopping time

Want:

• A simple proof of this. . .

• . . . that identifies a ‘financially meaningful’ hedging strategy.
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Optimality

Write f (t) = F ′(t), define

M(x , t) = E
(x ,t)f (τD),

and

Z (x) = 2
∫ x

0

∫ y

0

M(z, 0)
σ2(z)

dz dy ,

so that in particular, Z ′′(x) = 2σ2(x)M(x , 0). And finally, let:

G(x , t) =
∫ t

0
M(x , s) ds − Z (x).
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Optimality
Then there are two key results:

Proposition ( Proof )

For all (x , t) ∈ R× R+:

G(x , t) +
∫ R(x)

0
(f (s)− M(x , s)) ds + Z (x) ≤ F (t).

Theorem ( Proof )

We have:
G(Xt , t) is a submartingale,

and
G(Xt∧τD , t ∧ τD) is a martingale.
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Optimality

We can now show optimality. Recall we had:

G(x , t) +
∫ R(x)

0
(f (s)− M(x , s)) ds + Z (x) ≤ F (t).

But
∫ R(x)

0 (f (s)− M(x , s)) ds + Z (x) is just a function of x , so

G(Xt , t) + H(Xt) ≤ F (t).



Introduction Free Boundary Problem Optimality Numerical Examples Conclusions

Optimality

We can now show optimality. Recall we had:

G(x , t) +
∫ R(x)

0
(f (s)− M(x , s)) ds + Z (x) ≤ F (t).

But
∫ R(x)

0 (f (s)− M(x , s)) ds + Z (x) is just a function of x , so

G(Xt , t) + H(Xt) ≤ F (t).



Introduction Free Boundary Problem Optimality Numerical Examples Conclusions

Hedging Strategy

Since G(Xt , t) is a submartingale, there is a trading strategy
which sub-replicates G(Xt , t):

G(St , 〈ln S〉t) ≥
∫ t

0

Gx(Sr , 〈ln S〉r )

σ2
r

dSr

and H(Xt) can be replicated using the traded calls; moreover, in
the case where τ = τD, we get equality, so this is the best we
can do.
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Numerical implementation

• How ‘good’ is the subhedge in practice?

• Take an underlying Heston process:

dSt

St
= r dt +

√
vtdB1

t

dvt = κ(θ − vt)dt + ξ
√

vtdB2
t

where B1
t ,B

2
t are correlated Brownian motions, correlation

ρ.

• Compute Barrier and hedging strategies based on the
corresponding call prices.

• How does the subhedging strategy behave under the ‘true’
model?

• How does the strategy perform under another model?
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Numerical Implementation
• Payoff: 1

2

(

∫ T
0 σt dt

)2
. Parameters: T = 1, r = 0.05,S0 =

0.2, σ2
0 = 0.4, κ = 10, θ = 0.4, ξ = 1.0, ρ = −1.0. Prices:

actual 9.80 × 10−4, subhedge 5.463 × 10−4.
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Numerical Implementation: ‘Incorrect model’
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Numerical Implementation: ‘Variance Call’

• Payoff:
(

∫ T
0 σ2

t dt − K
)

+
. Prices: actual = 0.0106,

subhedge = 0.0076.

• Parameters: T = 1, r = 0.05, S0 = 0.2, σ2
0 = 0.0174,

κ = 1.3253, θ = 0.0354, ξ = 0.3877, ρ = −0.7165,
K = 0.02.
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Conclusion

• Lower bounds on Pricing Variance options ∼ finding Root’s
barrier

• Equivalence between Root’s Barrier and a Free Boundary
Problem

• New proof of optimality, which allows explicit construction
of a pathwise inequality

• Financial Interpretation: model-free sub-hedges for
variance options.
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Proof of Proposition

If t ≤ R(x) then the left-hand side is:

∫ t

0
f (s) ds −

∫ R(x)

t
M(x , s) ds = F (t)−

∫ R(x)

t
M(x , s) ds

And M(x , s) ≥ f (s) ≥ 0.

If t ≥ R(x), we get:

∫ t

R(x)
M(x , s) ds +

∫ R(x)

0
f (s) ds =

∫ t

R(x)
f (s) ds +

∫ R(x)

0
f (s) ds

= F (t).
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Optimality

Recalling that M(x , t) = E
(x ,t)f (τD), we have:

E [M(Xt , u)|Fs] ≥
{

M(Xs, s − t + u) u ≥ t − s

E [M(Xt−u, 0)|Fs] u ≤ t − s
.

And by Itô:

E [Z (Xt)− Z (Xs)|Fs] =

∫ t

s
M(Xr , 0) dr , s ≤ t .

Then it can be shown:

E[G(Xt , t)|Fs] ≥ G(Xs, s).
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Proof of Submartingale Condition

E [G(Xt , t)|Fs] =

∫ t

0
E [M(Xt , u)|Fs] du − E [Z (Xt)|Fs]

= G(Xs, s) +
∫ t

0
E [M(Xt , u)|Fs] du

−
∫ s

0
M(Xs, u) du − E [Z (Xt)− Z (Xs)|Fs]

≥ G(Xs, s) +
∫ t−s

0
E [M(Xt−u, 0)|Fs] du

−
∫ s

0
M(Xs, u) du −

∫ t

s
E [M(Xu, 0)|Fs] du

+

∫ t

t−s
M(Xs, s − t + u) du
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Proof of Submartingale Condition
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E [M(Xu, 0)|Fs] du +

∫ s

0
M(Xs, u) du

−
∫ s

0
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A somewhat similar computation gives:

E [G(Xt∧τD , t ∧ τD)|Fs] = G(Xs, s)

on {s ≤ τD}.
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