When are path-dependent payoffs suboptimal?

Stefan Kassberger Thomas Liebmann

Bachelier Finance Society 6th World Congress Toronto, June 2010

When are path-dependent payoffs suboptimal?

Introduction

Answers in special settings Questions

Attractive payoffs

When path-independent payoffs are preferred When increasing payoffs are preferred In a nutshell

Examples

Geometric Brownian motion Independent increments

Summary

Path-dependent payoffs are known to be suboptimal e.g. in

- Black-Scholes models, as shown via stochastic control in
 - Cox and Leland 1982
 On dynamic investment strategies.
 Published 2000 in the Journal of Economic Dynamics and Control 24.

and more generally in all

- Exponential Lévy models with Esscher transform, where favorable path-independent payoffs for risk-averse investors are constructed in
 - Vanduffel, Chernih, Maj and Schoutens 2009 A note on the suboptimality of path-dependent payoffs in general markets. Applied Mathematical Finance 16(4).

When do risk-averse investors prefer path-independent payoffs?

Why?

Exponential Lévy model?

Esscher transform?

When are path-dependent payoffs suboptimal?

Setting the stage

- Discounted payoff X at investment horizon T
- Investor is strongly risk-averse
 - concave stochastic order, i.e.
 - Y preferable to X if E[U(Y)] ≥ E[U(X)] for all concave functions U
- Pricing kernel Z, i.e.
 - payoff X at time T
 - price $\mathbb{E}[Z_T X]$ today

Setting the stage

- Discounted payoff X at investment horizon T
- Investor is strongly risk-averse
 - concave stochastic order, i.e.
 - Y preferable to X if E[U(Y)] ≥ E[U(X)] for all concave functions U
- Pricing kernel Z, i.e.
 - payoff X at time T
 - price $\mathbb{E}[Z_T X]$ today
- No specific assumptions on stochastic model and pricing kernel so far.
- No utility function specified, just strong risk aversion.

Risk-averse investors like conditioning

If X is \mathcal{F}_T -measurable and \mathcal{G} is a sub-sigma-algebra

$$\mathbb{E}\left[U(\mathbb{E}[X|\mathcal{G}])\right] \geq \mathbb{E}\left[U(X)\right]$$

for all concave functions U (due to Jensen's inequality).

 \implies Our investor prefers $\mathbb{E}[X|\mathcal{G}]$ over X.

Risk-averse investors like conditioning

If X is \mathcal{F}_T -measurable and \mathcal{G} is a sub-sigma-algebra

 $\mathbb{E}\left[U(\mathbb{E}[X|\mathcal{G}])\right] \geq \mathbb{E}\left[U(X)\right]$

for all concave functions U (due to Jensen's inequality).

 \implies Our investor prefers $\mathbb{E}[X|\mathcal{G}]$ over X.

But can she actually afford $\mathbb{E}[X|\mathcal{G}]$? That means, is $\mathbb{E}[Z_T \mathbb{E}[X|\mathcal{G}]] \leq \mathbb{E}[Z_T X]$ for some \mathcal{G} ?

Risk-averse investors like conditioning

If X is \mathcal{F}_T -measurable and \mathcal{G} is a sub-sigma-algebra

 $\mathbb{E}\left[U(\mathbb{E}[X|\mathcal{G}])\right] \geq \mathbb{E}\left[U(X)\right]$

for all concave functions U (due to Jensen's inequality).

 \implies Our investor prefers $\mathbb{E}[X|\mathcal{G}]$ over X.

But can she actually afford $\mathbb{E}[X|\mathcal{G}]$? That means, is $\mathbb{E}[Z_T \mathbb{E}[X|\mathcal{G}]] \leq \mathbb{E}[Z_T X]$ for some \mathcal{G} ?

Yes, she can afford $\mathbb{E}[X|Z_T]$!

Risk-averse investors like conditioning Functions of kernel preferred

- Risk averse investors prefer $\mathbb{E}[X|Z_T]$ over X.
- $\mathbb{E}[X|Z_T]$ and X have the same price.
- ► Moreover, if we define \mathbb{Q} via $d\mathbb{Q} = Z_T d\mathbb{P}$, $\mathbb{E}_{\mathbb{Q}}[X|Z_T] = \mathbb{E}[X|Z_T].$

Risk-averse investors like conditioning Functions of kernel preferred

- ▶ Risk averse investors prefer $\mathbb{E}[X|Z_T]$ over X.
- $\mathbb{E}[X|Z_T]$ and X have the same price.
- ► Moreover, if we define \mathbb{Q} via $d\mathbb{Q} = Z_T d\mathbb{P}$, $\mathbb{E}_{\mathbb{Q}}[X|Z_T] = \mathbb{E}[X|Z_T].$
- Therefore
 - ► Risk averse investors prefer $\sigma(Z_T)$ -measurable payoffs.

Risk-averse investors like conditioning Functions of kernel preferred

- ▶ Risk averse investors prefer $\mathbb{E}[X|Z_T]$ over X.
- $\mathbb{E}[X|Z_T]$ and X have the same price.
- ► Moreover, if we define \mathbb{Q} via $d\mathbb{Q} = Z_T d\mathbb{P}$, $\mathbb{E}_{\mathbb{Q}}[X|Z_T] = \mathbb{E}[X|Z_T].$

Therefore

► Risk averse investors prefer $\sigma(Z_T)$ -measurable payoffs.

In particular

- If (S_t) is the discounted underlying and $Z_T = q(S_T)$ is an injective function of S_T ,
- \implies the path-independent payoff $\mathbb{E}[X|S_T]$ is preferable.

Cheaper payoff with same distribution

Basic example

- Suppose that there are only two states ω₁ and ω₂, each occuring with probability one half.
- Let $S_T(\omega_1) = 1$ and $S_T(\omega_2) = 2$.
- Assume g(1) > g(2).

Price of payoff $h(S_T)$ is $\frac{1}{2}g(1)h(1) + \frac{1}{2}g(2)h(2)$

Cheaper payoff with same distribution Basic example

- Suppose that there are only two states ω_1 and ω_2 , each occuring with probability one half.
- Let $S_T(\omega_1) = 1$ and $S_T(\omega_2) = 2$.
- Assume g(1) > g(2).

Price of payoff $h(S_T)$ is $\frac{1}{2}g(1)h(1) + \frac{1}{2}g(2)h(2)$

The following payoffs have the same distribution

h(1) = 2	I	h(1) = 1
h(2) = 1	I	h(2) = 2

but the increasing payoff is cheaper

$$g(1) + \frac{1}{2}g(2) > \frac{1}{2}g(1) + g(2)$$

When are path-dependent payoffs suboptimal?

Cheaper payoff with same distribution Increasing payoffs preferable in case of decreasing kernel

If $Z_T = g(S_T)$ is a decreasing function of S_T and F is the distribution function of S_T H^{\leftarrow} is the inverse distribution function of $h(S_T)$ $\hat{h}(x) := H^{\leftarrow}(F(x)),$

- $\implies \hat{h} \text{ is increasing and} \\ \hat{h}(S_T) = H^{\leftarrow}(F(S_T)) \text{ is distributed as } h(S_T) \\ \text{but } \hat{h}(S_T) \text{ is cheaper.}$
 - I.e. $\hat{h}(S_T)$ is preferable.

Attractive payoffs

- ► Risk-averse investors prefer payoffs of type $\tilde{h}(Z_T)$. Distribution $\rightsquigarrow \tilde{h}(Z_T) = \mathbb{E}[X|Z_T]$.
- If Z_T = g(S_T) is an injective function of S_T, path-independent payoffs h(S_T) are preferred.
 Distribution → h(S_T) = E[X|S_T].
- ▶ If g is decreasing, $\hat{h}(S_T)$ with increasing \hat{h} are preferred. Distribution $\rightsquigarrow \hat{h}(S_T) := H^{\leftarrow}(F(S_T)).$

Attractive payoffs

- ► Risk-averse investors prefer payoffs of type $\tilde{h}(Z_T)$. Distribution $\rightsquigarrow \tilde{h}(Z_T) = \mathbb{E}[X|Z_T]$.
- If Z_T = g(S_T) is an injective function of S_T, path-independent payoffs h(S_T) are preferred. Distribution → h(S_T) = E[X|S_T].
- If g is decreasing, *ĥ*(S_T) with increasing *ĥ* are preferred.

Distribution $\rightsquigarrow \hat{h}(S_T) := H^{\leftarrow}(F(S_T)).$

Esscher transform:
$$Z_T = g(S_T) = \frac{S_T^{\gamma}}{\mathbb{E}[S_T^{\gamma}]}$$

Attractive payoffs

- ► Risk-averse investors prefer payoffs of type $\tilde{h}(Z_T)$. Distribution $\rightsquigarrow \tilde{h}(Z_T) = \mathbb{E}[X|Z_T]$.
- If Z_T = g(S_T) is an injective function of S_T, path-independent payoffs h(S_T) are preferred. Distribution → h(S_T) = E[X|S_T].
- If g is decreasing, *ĥ*(S_T) with increasing *ĥ* are preferred. Distribution → *ĥ*(S_T) := H[←](F(S_T)).

If (increasing and convex) utility function U is known, $\tilde{h}(Z_T)$ is optimal if $Z_T \propto U'(\tilde{h}(Z_T))$. If $Z_T = g(S_T)$ and $U' \propto g \circ h^{\leftarrow}$, $h(S_T)$ is optimal.

Conditional expectation

for Geometric Brownian motion

 $S_t = e^{\sigma B_t + \mu t}$

with a \mathbb{P} -standard Brownian motion (B_t), and let g be a deterministic function. Then,

$$\mathbb{E}\left[\left.e^{\int_0^T g(u)\,d(\log S_u)}\right|S_T\right]$$
$$=S_T^{\frac{1}{T}\int_0^T g(u)\,du}\,e^{\frac{\sigma^2 T}{2}\left(\frac{1}{T}\int_0^T g(u)^2\,du - \left(\frac{1}{T}\int_0^T g(u)\,du\right)^2\right)}.$$

When are path-dependent payoffs suboptimal?

Early payment and geometric average

for Geometric Brownian motion

$$S_t = e^{\sigma B_t + \mu t}$$

Early payment

$$\mathbb{E}\left[S_{u}^{\lambda}\middle|S_{T}\right] = S_{T}^{\lambda^{\frac{u}{T}}} e^{\lambda^{2} \frac{\sigma^{2} u}{2}\left(1-\frac{u}{T}\right)}$$

Continuous geometric average

$$\mathbb{E}\left[e^{\frac{1}{T}\int_0^T (\log S_u) du} \middle| X_T\right]$$

= $\mathbb{E}\left[e^{\int_0^T (1-\frac{u}{T}) d(\log S_u)} \middle| X_T\right] = \sqrt{S_T} e^{\frac{\sigma^2 T}{24}}.$

When are path-dependent payoffs suboptimal?

Supremum for Geometric Brownian motion

 $S_t = e^{\sigma B_t + \mu t}$

The supremum of (S_u) on [0, T] conditional on the terminal value S_T is

$$\mathbb{E}\left[\left.\sup_{u\leq T}S_{u}\right|S_{T}\right] = \left(S_{T}\vee1\right)\left\{1 + \frac{\sigma\sqrt{T}\Phi\left(-\frac{\left|\log S_{T}\right|}{\sigma\sqrt{T}} + \frac{\sigma\sqrt{T}}{2}\right)}{2\varphi\left(-\frac{\left|\log S_{T}\right|}{\sigma\sqrt{T}} + \frac{\sigma\sqrt{T}}{2}\right)}\right\}$$

Here, φ is the density function and Φ is the cumulative distribution function of a standard normal distribution.

Conditional expectation

for independent increments

Suppose that L is a process such that the increments $L_s - L_0$ and $L_t - L_s$ are independent.

Moreover, suppose that the distribution of these increments admits densities $f_{0,s}$ and $f_{s,t}$. Then,

$$\mathbb{E}[c(L_s)|L_T] = h_c(L_T), \text{ where}$$

$$h_c(x) = \frac{\int_{-\infty}^{\infty} c(y) f_{0,s}(y) f_{s,T}(x-y) dy}{\int_{-\infty}^{\infty} f_{0,s}(y) f_{s,T}(x-y) dy}$$

$$= \frac{\mathbb{E}[c(L_s) f_{s,T}(x-L_s)]}{\mathbb{E}_{\mathbb{P}}[f_{s,T}(x-L_s)]}.$$

Summary

- If the pricing kernel is path-independent, risk-averse investors prefer path-independent payoffs.
 - E.g. exponential Lévy with Esscher transform.
 - However, a path-independent net position can consist of several path-dependent payoffs...
- On the other hand, if the pricing kernel is path-depenent, path-dependent payoffs are attractive.
 - E.g. exponential Lévy with minimal entropy martingale measure, q-optimal martingale measure etc.
 - However, complex path-dependent products may not be available at a competitive price...