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Market impact: adverse feedback effect on the quoted price of a
stock caused by one’s own trading

Empirical facts:
• Often nonlinear function of order size
• Mainly transient; resilience of prices
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Important consequence of transience: liquidity costs of a large
trade can be reduced signficantly by splitting the trade into a
sequence of smaller trades (“child orders”), which are then spread
out over a certain time interval.
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Goal:
Realistic and tractable model for nonlinear transient price impact

Several models in the literature, e.g.:
• Alfonsi, Fruth, and A.S. (Quant. Finance, 2010),

Alfonsi and A.S. (Preprint, 2009)
• Gatheral (Quant. Finance, forthcoming)

Both models are similar and coincide for linear price impact,
extend Obizhaeva and Wang (Preprint, 2005)

Our main concerns here:
• Can there be undesirable properties, e.g., “large-investor arbitrage”?
• Is model behavior stable and robust when parameters change?
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1. Linear transient price impact

Concentrate on effects created by transience

of price impact

2. Nonlinear transient price impact
How to model nonlinearity?

Possible effects of nonlinear impact?

Preliminary study....
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1. Linear transient price impact

Model based on intuition of electronic limit order book....

Obizhaeva and Wang (2005)
Alfonsi, Fruth, and A.S. (2008)
Alfonsi, A.S., and Slynko (2009)
Gatheral, A.S., and Slynko (2010)
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Limit order book model after large trades
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Limit order book model at large trade
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Limit order book model immediately after large trade



Resilience of the limit order book
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Observation: Expected costs of a sequence of trades can be
compared to cost in a simplified zero-spread model.

Unaffected price process: martingale S0

Admissible trategy: adapted process X = (Xt) that describes the
number of shares held by the trader
• t→ Xt is leftcontinuous with finite total variation
• the signed measure dXt has compact support
• Xt = 0 for t ≥ T
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Block-shaped zero-spread order book model

mid price

buyers’ bid offers sellers’ ask offers



Impacted price process:

St = S0
t +

�

{s<t}
G(t− s) dXs,

where
G : (0,∞)→ [0,∞)

is the decay kernel. It describes the resilience of price impact between
trades; see Bouchaud et al. (2004), Obizhaeva and Wang (2005),
Alfonsi et al. (2008, 2007), Gatheral (2008).

We first assume

G is bounded and G(0) := lim
t↓0

G(t) exists.(1)
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Costs of a strategy X:

When X is continuous at t, then the infinitesimal order dXt is
executed at price St, so St dXt is the cost increment.
Thus, the total costs of a continuous strategy are

�
St dXt =

�
S0

t dXt +
� �

{s<t}
G(t− s) dXs dXt.

When X has a jump ∆Xt, then the price is moved from St to

St+ = St + ∆XtG(0)

This linear price impact corresponds to a constant supply curve for
which G(0)−1 dy buy or sell orders are available at each price y. The
trade ∆Xt is thus carried out at the following cost,

� St+

St

yG(0)−1 dy =
1

2G(0)
�
S2

t+ − S2
t

�
=

G(0)
2

(∆Xt)2 + ∆XtSt.
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Hence, the total costs of an arbitrary admissible strategy X are given
by

�
St dXt +

G(0)
2

�
(∆Xt)2

=
�

S0
t dXt +

� �

{s<t}
G(t− s) dXs dXt +

G(0)
2

�
(∆Xt)2

=
�

S0
t dXt +

1
2

� �
G(|t− s|) dXs dXt.

It therefore follows from the martingale property of S0 that the
expected costs of an admissible strategy with X0 deterministic are

E
� �

S0
t dXt

�
+

1
2

E[ C(X) ] = X0S0 +
1
2

E[ C(X) ],

where
C(X) :=

� �
G(|t− s|) dXs dXt.
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Questions:

• Can there be model irregularities?

• Existence, uniqueness, and structure of strategies minimizing
the expected costs?

• Stability of these strategis?

Definition 1 (Huberman and Stanzl (2004)). A round trip is
an admissible strategy with X0 = 0. A price manipulation strategy is
a round trip with strictly negative expected costs.

Clearly, there is no price manipulation when

C(X) ≥ 0 for all strategies X.
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Proposition 1 (Straightforward extension of Bochner’s thm).
C(X) ≥ 0 for all strategies X ⇐⇒ G(| · |) can be represented as the
Fourier transform of a positive finite Borel measure µ on R, i.e.,

G(|x|) =
�

eixz µ(dz);

(G is positive definite).
If, in addition, the support of µ is not discrete, then C(X) > 0 for
every nonzero admissible strategy X (G is strictly positive
definite).
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Optimal trade execution problem: Minimizing expected costs,

S0
0y +

1
2

E[ C(X) ]

for strategies that liquidate a given long or short position of y shares
within a given time frame.

Time constraint: compact set T ⊂ [0,∞).

Boils down to minimizing C(·) over

X (y, T) :=
�
X

��deterministic strategy with X0 = y and support in T
�
.

Simple when T is discrete. Existence of minimizers not clear when
T is not discrete.

Minimization of expected costs used here to analyze model behavior.
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Proposition 2. Suppose that G is strictly positive definite. Then:

• The optimal strategy X∗ ∈ X (y, T) is unique, if it exists

• X∗ optimal if and only if it is a measure-valued solution of the
Fredholm integral equation

(2)
�

G(|t− s|) dX∗
s = λ for all t ∈ T,

for some constant λ.
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Examples

Example 1 (Exponential decay). For the exponential decay
kernel

G(t) = e−ρt,

G(| · |) is the Fourier transform of the positive measure

µ(dt) =
1
π

ρ

ρ2 + t2
dt

Hence, G is strictly positive definite.
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Optimal strategies for G(t) = e−ρt and discrete T:
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dX∗
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ρT + 2
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δ0(ds) + ρ ds + δT (ds)

�
.
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Example 2 (Capped linear decay). G(t) = (1− ρt)+

The unique optimal strategy X∗ for T = [0, T ] is

dX∗ =
X0

2 + N

N�

i=0

�
1− i

N + 1

��
δ i

ρ
+ δT− i

ρ

�
,

where N := �ρT �.
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Here ρ = 1, T = 5.15, and hence N = 5
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Otherwise, for discrete equistant grid T,
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More generally: Convex decay

G is convex, decreasing, nonnegative, and nonconstant =⇒
G(| · |) is strictly positive definite.

[Carathéodory (1907), Toeplitz (1911), Young (1912)]
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Example 3 (Power law decay). G(t) = (1 + t)−α and
equidistant grid T,
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So everything looks nice for

G(t) =
1

(1 + t)2

Let’s look at:

Example 4 (Modified power-law decay). The decay kernel

G(t) =
1

1 + t2

is the Fourier transform of the function 1
2e−|x|. So it is strictly

positive definite.
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Modified power-law decay G(t) = 1/(1 + t2), N = 10
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Modified power-law decay G(t) = 1/(1 + t2), N = 25
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Modified power-law decay G(t) = 1/(1 + t2), N = 30
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Modified power-law decay G(t) = 1/(1 + t2), N = 120

2 0 2 4 6 8 10 12
2

1.5

1

0.5

0

0.5

1

1.5

2
x 105

trading dates

tra
di

ng
 s

iz
es
trading strategy

25



Modified power-law decay G(t) = 1/(1 + t2), N = 120
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⇒ absence of price manipulation strategies is not enough
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Definition [Hubermann & Stanzl (2004)]
A market impact model admits

price manipulation

if there is a round trip with negative expected liquidation costs.

Definition [Alfonsi, A.S., & Slynko (2009)]
A market impact model admits

transaction-triggered price manipulation

if the expected liquidation costs of a sell (buy) program can be
decreased by intermediate buy (sell) trades.
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Situation for non-discrete T:
Theorem 1. Suppose that G(| · |) is the Fourier transform of a finite
Borel measure µ for which

(3)
�

eεx µ(dx) <∞ for some ε > 0.

Suppose furthermore that the support of µ is not discrete. Then there
are no optimal strategies in X (y, T) when y �= 0 and T is not discrete.

Examples:

G(t) = e−t2 or G(t) :=
1

1 + t2
,

or G(t) = 2
1− cos t

t2
or G(t) = 1 +

sin t

t
,
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Small alterations of G lead to dramatic change of model behavior

=⇒ non-stability, non-robustness?
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28



Can we characterize when optimal strategies exist and are
monotone functions of time?
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Can we characterize when optimal strategies exist and are
monotone functions of time?

For discrete T = {t0, . . . , tN}: When does the minimizer x∗ of
�

i,j

xixjG(|ti − tj |) with
�

i

xi = X0

have only nonnegative components?
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Can we characterize when optimal strategies exist and are
monotone functions of time?

For discrete T = {t0, . . . , tN}: When does the minimizer x∗ of
�

i,j

xixjG(|ti − tj |) with
�

i

xi = X0

have only nonnegative components?

Related to the positive portfolio problem in finance:
When are there no short sales in a Markowitz portfolio?

I.e. when is the solution of the following problem nonnegative

x�Mx−m�x→ min for x�1 = X0,

where M is a covariance matrix of assets and m is the returns vector?

Partial results, e.g., by Green (1986), Nielsen (1987)
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Theorem 2. [Alfonsi, A.S., Slynko (2009)]

• If G is convex then all components of x∗ are nonnegative.

• If G is strictly convex, then all components are strictly positive.
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Theorem 2. [Alfonsi, A.S., Slynko (2009)]

• If G is convex then all components of x∗ are nonnegative.

• If G is strictly convex, then all components are strictly positive.

Proposition 3. For positive definite G there is tranaction-triggered
price manipulation if, e.g.,

(a) There are s, t > 0, s �= t, such that

G(0)−G(s) < G(t)−G(t + s).

(b) G�(0+) = 0

(c)
�

|z|µ(dz) <∞
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Economic intuition of convex decreasing decay: Markets react
instantaneously, and hence efficiently (Fama), to price shocks
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We can thus completely solve the two problems of existence and
monotonicity of strategies:

Theorem 3. If G is nonconstant, nonincreasing, and convex, then
there exists a unique optimal strategy X∗ within each class X (y, T).
Moreover, X∗

t is a monotone function of t.
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Works also if we relax the boundedness of G and assume

G is nonconstant, nonincreasing, convex, and
� 1

0
G(t) dt <∞.

E.g.,

G(t) = t−γ for 0 < γ < 1, or

G(t) = log−(t).

Let

XG(y, T) :=
�
X ∈ X (y, T)

��
� �

G(|t− s|) d|X|s d|X|t <∞
�

Note: XG(y, T) can be empty, e.g., for discrete T.

Theorem 3. When XG(y, T) �= ∅, there exists a unique optimal
strategy X∗ in XG(y, T). Moreover, X∗

t is a monotone function of t.
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Application to Potential Theory:

Yields existence of capacitary potential for convex decreasing G

without application of Cartan’s theorem.
Minimizer µ∗ of � �

G(|t− s|)µ(ds)µ(dt)

positive even when minimum taken over all signed measures of finite
energy.

Approach seems to be limited to d = 1
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Example: (Power-law decay kernel) G(t) = t−γ with 0 < γ < 1
� 1

0

u(s)
|t− s|γ ds = 1 for 0 ≤ t ≤ 1,

is solved by
u∗(s) =

c

(s(1− s))
1−γ

2
,

where c is a suitable constant. Thus, the unique optimal strategy in
XG(y, [0, 1]) is

X∗
t = y

�
1− Γ(1 + γ)

Γ
�1+γ

2

�2

� t

0

1

(s(1− s))
1−γ

2
ds

�
.
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Example: (Logarithmic decay kernel) G(t) = log−(t)
� 1

0
u(s)G(|t− s|) ds = −

� 1

0
u(s) log |t− s| ds = 1 for 0 ≤ t ≤ 1

solved by

u∗(s) =
ds

2π log 2
�

s(1− s)
.

This fact was discovered by Carleman (1922). The unique optimal
strategy in XG(y, [0, 1]) is thus given by

X∗
t = y

�
1− 1

π

� t

0

1�
s(1− s)

ds
�

=
2x
π

arccos
√

t.
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2. Nonlinear transient price impact

First possibility: Alfonsi, Fruth, A.S. (2010), Alfonsi, A.S. (2009)

Use nonlinear shape of limit order book
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Simplified zero-spread model

Unaffected price process S0, is martingale

Define the volume impact process with exponential resilience via

dEt = dXt − ρEt dt

Next, the number of shares offered at price S0
t + x is given by f(x) dx

Thus, volume impact of Et shares corresponds to a price impact of
Dt, which is given implicitly via

F (Dt) :=
� Dt

0
f(x) dx = Et

Hence,
St = S0

t + Dt

Coincides with linear model if f ≡ q
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Theorem 4 (Alfonsi and A.S. (2009)).
There is neither price manipulation nor transaction-triggered price
manipulation for a large class of shape functions f .

Extension to more general Markovian resilience and larger class of
continuous F possible via arguments by
Predoiu, Shaikhet, and Shreve (2010)
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Second possibility: Gatheral (Quant. Finance, forthcoming)

X must be absolutely continuous. Then

St = S0
t +

� t

0
h(Ẋs)G(t− s) ds

Theorem 5 (Gatheral).
There is price manipulation as soon as h is nonlinear and

G(t) = e−ρt

What is going on?
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Generalization of Gatheral’s theorem:

Theorem 6 (A.S. and Slynko (2010)).
There is price manipulation as soon as h is nonlinear and G(t) is
bounded and continuous on (0,∞).

Thus, G must have a singularity such as

G(t) = t−γ for some γ ∈ (0, 1)

Conjecture (Gatheral). If G(t) = t−γ and h(x) = xδ there is no
price manipulation if and only if γ + δ ≥ 1.
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Comparison of the two models

In our model, dEt = dXt − ρEt dt which is solved by

Et =
�

[0,t)
e−ρ(t−s) dXs

Generalization to arbitrary resilience:

Et =
�

[0,t)
ψ(t− s) dXs

Hence,

St = S0
t + F−1

��

[0,t)
ψ(t− s) dXs

�

In Gatheral’s model,

St = S0
t +

� t

0
h(Ẋs)G(t− s) ds
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Conclusion:

• Transient market impact can create new types of irregularities:
price manipulation, transaction-triggered price manipulation

• This does not occur for convex decay of linear price impact

• Not clear how to best model nonlinear price impact.
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Thank you
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