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Semimartingale

X is (special) semimartingale with characteristics (B,C , ν) if

Xt = X0 + Bt + X c
t + id ∗ (µX − ν)t

Bt is drift of bounded variation

X c
t is continuous local martingale with 〈X c〉t = Ct

µX is jump-measure, i.e. µX ([0, t]× A) =
∑

s≤t 1A(∆Xs)

ν is compensator of µX
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Jump-diffusion

X is jump-diffusion with local characteristics (b, c ,K ) if

dBt = b(Xt)dt

dCt = c(Xt)dt

ν(dt, dz) = K (Xt , dz)dt

Example (Lévy process)

b(x) = µ

c(x) = σ2

K (x , dz) = Π(dz)

Then
X = X0 + µt + σWt + id ∗ (µX − ν)t

is Lévy process with Lévy-characteristics (µ, σ2,Π).
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Affine jump-diffusion

Jump-diffusion X is affine with state space X ⊂ Rp if we have

Affine local characteristics: for x ∈ X

b(x) = a0 +

p∑
i=1

aixi

c(x) = A0 +

p∑
i=1

Aixi

K (x , dz) = F 0(dz) +

p∑
i=1

F i (dz)xi

Existence and uniqueness for all initial values x ∈ X
Stochastic invariance: Xt ∈ X for all t ≥ 0 and all initial
values x ∈ X
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Example affine diffusion

Example (One dimensional square root process)

unique strong solution to SDE

dXt = (a0 + aXt)dt +
√

XtdWt , X0 ≥ 0,

with a0 ≥ 0.

state space X = [0,∞)

local characteristics

b(x) = a0 + ax

c(x) = x

K (x , dz) = 0
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Canonical and other state spaces

Canonical state space Rm
≥0 × Rp−m

Matrix-valued state space Semp

Parabolic state space {x1 ≥
∑m

i=2 x
2
i }

Cone {x1 ≥ (
∑m

i=2 x
2
i )1/2}

Conditions are needed for stochastic invariance and uniqueness

For continuous diffusions on canonical state space:

aij ≥ 0 for i , j ≤ m, i 6= j

a0
i ≥ 0 for i ≤ m

Ak
ij = 0 for i , j , k ≤ m, unless k = j = i

Ak = 0 for k ≥ m
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Affine transform formula for affine jump-diffusions

Feynman-Kac formula gives (when applicable)

E(exp(u>XT )|Ft) = exp(ψ0(T − t, u) + ψ(T − t, u)>Xt)

(ψ0, ψ) solves generalized Riccati equations

ψ̇i = Ri (ψ), ψi (0) = ui

with

Ri (y) = y>ai + 1
2y
>Aiy +

∫
Rp

(ey
>z − 1− y>z)F i (dz)

Used for pricing bonds

E(exp(−
∫ T

t
rs)|Ft) with rs = δ0 + δ>Xs
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When is the affine transform formula valid?

For canonical state space X = Rm
≥0 × Rp−m we have

E(exp(u>XT )|Ft) = exp(ψ0(T − t, u) + ψ(T − t, u)>Xt)

[DFS03]: u ∈ Cm
≤0 × iRp−m

[FM09]: u ∈ Cp s.t. either side exists, for continuous diffusions

[KMK10]: u ∈ Rp s.t. right-hand side exists, under
exponential moment conditions on jumps, e.g.∫

|z|≥1
eψ

>zF i (dz) <∞
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Extending results

Theorem

For general convex state space X with X ◦ 6= ∅ we have

E(exp(u>XT )|Ft) = exp(ψ0(T − t, u) + ψ(T − t, u)>Xt)

for u ∈ Cp s.t. either side exists under exponential moment
conditions on jumps, e.g.∫

|z|≥1
ek

>zF i (dz) <∞ for all k ∈ Rp

Corollaries:

E exp(u>XT ) <∞⇒ E exp(u>Xt) for all t ≤ T

{u ∈ Rp : ψ(T , u) exists} is convex for all T
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Exponential process

Assume ψ(T , u) exists, u ∈ Rp

Define Mt := exp(ψ0(T − t, u) + ψ(T − t, u)>Xt)

Then MT = exp(u>XT ) and

Mt = E(exp(u>XT )|Ft) iff M is martingale on [0,T ]

Itô’s formula yields

M = M0E(ψ> · X c + (eψ
>z − 1) ∗ (µX − νX ))

L = M/M0 is martingale on [0,T ] iff

ELT = 1
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Change of measure

Suppose L is martingale. Transform measure: dQ = LTdP
Then X is jump-diffusion under Q with characteristics

b̃(t, x) = b(x) + c(x)ψ +

∫
z(eψ

>z − 1)K (x , dz)

c̃(t, x) = c(x)

K̃ (t, x , dz) = eψ
>zK (x , dz)

Conversely, existence of this jump-diffusion implies Lt is
martingale

[KMK10] use time-inhomogeneous affine processes

We use existence of solution to martingale problem with
bounded coefficients + random time change
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From real to complex values

Assume U ⊂ Rp open, non-empty and for u ∈ U

E(exp(u>XT )|Ft) = exp(ψ0(T − t, u) + ψ(T − t, u)>Xt)

Both sides analytic in u

Uniqueness of holomorphic functions ⇒ equality for
u ∈ U + iRp
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Outline of approach

Assume Ex exp(u>Xt) <∞, all x ∈ X , some u ∈ Rp

To show: ψ(t, u) exists

Idea: let D(t) be set of points v for which ψ(t, v) exists

D(t) is open neighborhood of 0

By previous

Ex exp(v>Xt) = exp(ψ0(t, v) + ψ(t, v)>x) for all v ∈ D(t)

Suppose u 6∈ D(t)

To show: If v tends to ∂D(t) then ψ(t, v) explodes

Then Ex exp(v>Xt) also explodes and Ex exp(u>Xt) =∞
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Example of non-explosion

Consider Riccati ODE in C

ẋ = x2, x(0) = u

Solution x(t, u) = u/(1− ut) for t < u−1 if u ∈ R+

Domain of existence D(t) = C\[t−1,∞) with boundary
∂D(t) = [t−1,∞)
But x(t, u) does not explode if u → (t−1,∞)

Corresponds with Riccati ODE in R2

ẋ1 = x2
1 − x2

2

ẋ2 = 2x1x2

Corresponding diffusion matrix

c(x) =

(
x1 x2

x2 −x1

)
is positive semi-definite iff x = 0
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Riccati equations revisited

System of Riccati equations

ψ̇i = Ri (ψ), ψi (0) = ui

with

Ri (y) = y>ai + 1
2y
>Aiy +

∫
Rp

(ey
>z − 1− y>z)F i (dz)

is considered as inhomogeneous linear ODE
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Variation of constants

Variation of constants yields

ψ0(t) + ψ(t)>x = u>yt +

∫ t

0

(
1
2ψ(s)>c(yt−s)ψ(s)+∫

z∈Rp

(eψ(s)>z − 1− ψ(s)>z)K (yt−s , dz)

)
ds,

with yt = ExXt and solves

ẏ = b(y), y(0) = x

Gives enough interplay to handle explosions
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Summary

For affine jump-diffusions with general convex state space we
verified affine transform formula

E(exp(u>XT )|Ft) = exp(ψ0(T − t, u) + ψ(T − t, u)>Xt)

for u ∈ Cp s.t. either side exists.

Remarks:

Need exponential moments∫
|z|≥1

ek
>zF i (dz) <∞ for all k ∈ Rp

No explicit use of geometry of state space
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