Affine diffusions with non-canonical state space

Enno Veerman

joint work with Peter Spreij

Korteweg-de Vries Institute University of Amsterdam

6th World Congress of the Bachelier Finance Society Toronto, June 22-26, 2010

Outline

- 1 Affine jump-diffusions
- 2 Affine transform formula
- 3 Existence of solutions to Riccati equations
- 4 Existence of exponential moments

Affine jump-diffusions Affine transform formula

Existence of solutions to Riccati equations Existence of exponential moments

Outline

1 Affine jump-diffusions

2 Affine transform formula

3 Existence of solutions to Riccati equations

4 Existence of exponential moments

Semimartingale

X is (special) semimartingale with characteristics (B, C, ν) if

$$X_t = X_0 + B_t + X_t^c + \mathrm{id} * (\mu^X - \nu)_t$$

- *B_t* is drift of bounded variation
- X^c_t is continuous local martingale with ⟨X^c⟩_t = C_t
 μ^X is jump-measure, i.e. μ^X([0, t] × A) = ∑_{s≤t} 1_A(ΔX_s)
 ν is compensator of μ^X

Jump-diffusion

X is jump-diffusion with local characteristics (b, c, K) if

$$\bullet \ \mathsf{d}B_t = b(X_t)\mathsf{d}t$$

•
$$dC_t = c(X_t)dt$$

$$\nu(\mathsf{d} t,\mathsf{d} z)=K(X_t,\mathsf{d} z)\mathsf{d} t$$

Example (Lévy process)

$$\bullet b(x) = \mu$$

•
$$c(x) = \sigma^2$$

•
$$K(x, dz) = \Pi(dz)$$

Then

$$X = X_0 + \mu t + \sigma W_t + \mathrm{id} * (\mu^X - \nu)_t$$

is Lévy process with Lévy-characteristics (μ, σ^2, Π) .

Jump-diffusion

X is jump-diffusion with local characteristics (b, c, K) if

$$\bullet \ \mathsf{d}B_t = b(X_t)\mathsf{d}t$$

•
$$dC_t = c(X_t)dt$$

$$\nu(\mathsf{d} t,\mathsf{d} z) = K(X_t,\mathsf{d} z)\mathsf{d} t$$

Example (Lévy process)

•
$$b(x) = \mu$$

•
$$c(x) = \sigma^2$$

•
$$K(x, dz) = \Pi(dz)$$

Then

$$X = X_0 + \mu t + \sigma W_t + \mathsf{id} * (\mu^X - \nu)_t$$

is Lévy process with Lévy-characteristics (μ, σ^2, Π) .

Affine jump-diffusion

Jump-diffusion X is affine with state space $\mathcal{X} \subset \mathbb{R}^p$ if we have

• Affine local characteristics: for $x \in \mathcal{X}$

$$b(x) = a^{0} + \sum_{i=1}^{p} a^{i} x_{i}$$
$$c(x) = A^{0} + \sum_{i=1}^{p} A^{i} x_{i}$$
$$K(x, dz) = F^{0}(dz) + \sum_{i=1}^{p} F^{i}(dz) x_{i}$$

- Existence and uniqueness for all initial values $x \in \mathcal{X}$
- Stochastic invariance: X_t ∈ X for all t ≥ 0 and all initial values x ∈ X

Example affine diffusion

Example (One dimensional square root process)

unique strong solution to SDE

$$\mathsf{d} X_t = (a^0 + a X_t) \mathsf{d} t + \sqrt{X_t} \mathsf{d} W_t, \quad X_0 \ge 0,$$

with $a^0 \ge 0$.

- state space $\mathcal{X} = [0,\infty)$
- local characteristics

$$b(x) = a^{0} + ax$$
$$c(x) = x$$
$$K(x, dz) = 0$$

Canonical and other state spaces

- Canonical state space $\mathbb{R}^m_{\geq 0} imes \mathbb{R}^{p-m}$
- Matrix-valued state space Sem^p
- Parabolic state space $\{x_1 \ge \sum_{i=2}^m x_i^2\}$
- Cone $\{x_1 \ge (\sum_{i=2}^m x_i^2)^{1/2}\}$

Conditions are needed for stochastic invariance and uniqueness For continuous diffusions on canonical state space:

$$a_j^i \ge 0$$
 for $i, j \le m, i \ne j$
 $a_i^0 \ge 0$ for $i \le m$
 $A_{ij}^k = 0$ for $i, j, k \le m$, unless $k = j = i$
 $A^k = 0$ for $k \ge m$

Canonical and other state spaces

- Canonical state space $\mathbb{R}^m_{\geq 0} imes \mathbb{R}^{p-m}$
- Matrix-valued state space Sem^p
- Parabolic state space $\{x_1 \ge \sum_{i=2}^m x_i^2\}$
- Cone $\{x_1 \ge (\sum_{i=2}^m x_i^2)^{1/2}\}$

Conditions are needed for stochastic invariance and uniqueness For continuous diffusions on canonical state space:

$$a_j^i \ge 0$$
 for $i, j \le m, i \ne j$
 $a_i^0 \ge 0$ for $i \le m$
 $A_{ij}^k = 0$ for $i, j, k \le m$, unless $k = j = i$
 $A^k = 0$ for $k \ge m$

Outline

1 Affine jump-diffusions

2 Affine transform formula

3 Existence of solutions to Riccati equations

4 Existence of exponential moments

Affine transform formula for affine jump-diffusions

Feynman-Kac formula gives (when applicable)

$$\mathsf{E}(\exp(u^{\top}X_{\mathcal{T}})|\mathcal{F}_t) = \exp(\psi_0(\mathcal{T}-t,u) + \psi(\mathcal{T}-t,u)^{\top}X_t)$$

• (ψ_0, ψ) solves generalized Riccati equations

$$\dot{\psi}_i = R_i(\psi), \quad \psi_i(0) = u_i$$

with

$$R_i(y) = y^\top a^i + \frac{1}{2}y^\top A^i y + \int_{\mathbb{R}^p} (e^{y^\top z} - 1 - y^\top z) F^i(dz)$$

Used for pricing bonds

$$\mathsf{E}(\exp(-\int_t^{\mathsf{T}} r_s)|\mathcal{F}_t)$$
 with $r_s = \delta_0 + \delta^{\top} X_s$

When is the affine transform formula valid?

For canonical state space $\mathcal{X} = \mathbb{R}^m_{\geq 0} \times \mathbb{R}^{p-m}$ we have

$$\mathsf{E}(\exp(u^{\top}X_{\mathcal{T}})|\mathcal{F}_t) = \exp(\psi_0(\mathcal{T}-t,u) + \psi(\mathcal{T}-t,u)^{\top}X_t)$$

• [DFS03]:
$$u \in \mathbb{C}^m_{\leq 0} \times i\mathbb{R}^{p-m}$$

- [FM09]: $u \in \mathbb{C}^p$ s.t. either side exists, for continuous diffusions
- [KMK10]: u ∈ ℝ^p s.t. right-hand side exists, under exponential moment conditions on jumps, e.g.

$$\int_{|z|\geq 1} e^{\psi^{\top} z} F^i(\mathsf{d} z) < \infty$$

Extending results

Theorem

For general convex state space \mathcal{X} with $\mathcal{X}^{\circ} \neq \emptyset$ we have

$$\mathsf{E}(\exp(u^{\top}X_{\mathcal{T}})|\mathcal{F}_t) = \exp(\psi_0(\mathcal{T}-t,u) + \psi(\mathcal{T}-t,u)^{\top}X_t)$$

for $u \in \mathbb{C}^p$ s.t. either side exists under exponential moment conditions on jumps, e.g.

$$\int_{|z|\geq 1} e^{k^\top z} F^i(\mathsf{d} z) < \infty \quad \text{ for all } k \in \mathbb{R}^p$$

Corollaries:

- $\mathsf{E}\exp(u^{\top}X_{\mathcal{T}}) < \infty \Rightarrow \mathsf{E}\exp(u^{\top}X_t)$ for all $t \leq T$
- $\{u \in \mathbb{R}^p : \psi(T, u) \text{ exists}\}$ is convex for all T

Extending results

Theorem

For general convex state space \mathcal{X} with $\mathcal{X}^{\circ} \neq \emptyset$ we have

$$\mathsf{E}(\exp(u^{\top}X_{\mathcal{T}})|\mathcal{F}_t) = \exp(\psi_0(\mathcal{T}-t,u) + \psi(\mathcal{T}-t,u)^{\top}X_t)$$

for $u \in \mathbb{C}^p$ s.t. either side exists under exponential moment conditions on jumps, e.g.

$$\int_{|z|\geq 1} e^{k^\top z} F^i(\mathsf{d} z) < \infty \quad \text{ for all } k \in \mathbb{R}^p$$

Corollaries:

•
$$\mathsf{E} \exp(u^{\top} X_T) < \infty \Rightarrow \mathsf{E} \exp(u^{\top} X_t)$$
 for all $t \leq T$

• $\{u \in \mathbb{R}^p : \psi(T, u) \text{ exists}\}$ is convex for all T

Outline

- **1** Affine jump-diffusions
- 2 Affine transform formula
- 3 Existence of solutions to Riccati equations
- 4 Existence of exponential moments

Exponential process

• Assume $\psi(\mathcal{T}, u)$ exists, $u \in \mathbb{R}^p$

Define
$$M_t := \exp(\psi_0(T-t, u) + \psi(T-t, u)^\top X_t)$$

• Then
$$M_{\mathcal{T}} = \exp(u^ op X_{\mathcal{T}})$$
 and

$$M_t = \mathsf{E}(\exp(u^{\top}X_T)|\mathcal{F}_t)$$
 iff M is martingale on $[0, T]$

Itô's formula yields

$$M = M_0 \mathcal{E}(\psi^\top \cdot X^c + (e^{\psi^\top z} - 1) * (\mu^X - \nu^X))$$

• $L = M/M_0$ is martingale on [0, T] iff

$$EL_T = 1$$

Change of measure

■ Suppose L is martingale. Transform measure: dQ = L_TdP Then X is jump-diffusion under Q with characteristics

$$egin{aligned} \widetilde{b}(t,x) &= b(x) + c(x)\psi + \int z(e^{\psi^{ op} z} - 1)K(x, \mathsf{d} z) \ \widetilde{c}(t,x) &= c(x) \ \widetilde{K}(t,x,\mathsf{d} z) &= e^{\psi^{ op} z}K(x,\mathsf{d} z) \end{aligned}$$

- Conversely, existence of this jump-diffusion implies L_t is martingale
- [KMK10] use time-inhomogeneous affine processes
- We use existence of solution to martingale problem with bounded coefficients + random time change

Change of measure

■ Suppose L is martingale. Transform measure: dQ = L_TdP Then X is jump-diffusion under Q with characteristics

$$egin{aligned} \widetilde{b}(t,x) &= b(x) + c(x)\psi + \int z(e^{\psi^{ op} z} - 1)K(x, \mathrm{d} z) \ \widetilde{c}(t,x) &= c(x) \ \widetilde{K}(t,x, \mathrm{d} z) &= e^{\psi^{ op} z}K(x, \mathrm{d} z) \end{aligned}$$

- Conversely, existence of this jump-diffusion implies L_t is martingale
- [KMK10] use time-inhomogeneous affine processes
- We use existence of solution to martingale problem with bounded coefficients + random time change

From real to complex values

• Assume $U \subset \mathbb{R}^p$ open, non-empty and for $u \in U$

$$\mathsf{E}(\exp(u^{\top}X_{\mathcal{T}})|\mathcal{F}_t) = \exp(\psi_0(\mathcal{T}-t,u) + \psi(\mathcal{T}-t,u)^{\top}X_t)$$

- Both sides analytic in u
- Uniqueness of holomorphic functions \Rightarrow equality for $u \in U + i\mathbb{R}^p$

Outline

- **1** Affine jump-diffusions
- 2 Affine transform formula
- 3 Existence of solutions to Riccati equations
- 4 Existence of exponential moments

Outline of approach

- Assume $\mathsf{E}_x \exp(u^\top X_t) < \infty$, all $x \in \mathcal{X}$, some $u \in \mathbb{R}^p$
- To show: $\psi(t, u)$ exists
- Idea: let D(t) be set of points v for which $\psi(t, v)$ exists
- D(t) is open neighborhood of 0
- By previous

$$\mathsf{E}_x \exp(v^{ op} X_t) = \exp(\psi_0(t, v) + \psi(t, v)^{ op} x)$$
 for all $v \in D(t)$

- Suppose $u \notin D(t)$
- To show: If v tends to $\partial D(t)$ then $\psi(t, v)$ explodes
- Then $E_x \exp(v^\top X_t)$ also explodes and $E_x \exp(u^\top X_t) = \infty$

Outline of approach

- Assume $\mathsf{E}_x \exp(u^\top X_t) < \infty$, all $x \in \mathcal{X}$, some $u \in \mathbb{R}^p$
- To show: $\psi(t, u)$ exists
- Idea: let D(t) be set of points v for which $\psi(t, v)$ exists
- D(t) is open neighborhood of 0
- By previous

$$\mathsf{E}_x \exp(v^{ op} X_t) = \exp(\psi_0(t, v) + \psi(t, v)^{ op} x)$$
 for all $v \in D(t)$

- Suppose $u \notin D(t)$
- To show: If v tends to $\partial D(t)$ then $\psi(t, v)$ explodes
- Then $\mathsf{E}_x \exp(v^{ op} X_t)$ also explodes and $\mathsf{E}_x \exp(u^{ op} X_t) = \infty$

Example of non-explosion

 \blacksquare Consider Riccati ODE in $\mathbb C$

$$\dot{x}=x^2, \quad x(0)=u$$

• Solution x(t, u) = u/(1 - ut) for $t < u^{-1}$ if $u \in \mathbb{R}_+$

Domain of existence $D(t) = \mathbb{C} \setminus [t^{-1}, \infty)$ with boundary $\partial D(t) = [t^{-1}, \infty)$

• But x(t, u) does not explode if $u \to (t^{-1}, \infty)$

• Corresponds with Riccati ODE in \mathbb{R}^2

$$\dot{x_1} = x_1^2 - x_2^2 \dot{x_2} = 2x_1x_2$$

Corresponding diffusion matrix

$$c(x) = \begin{pmatrix} x_1 & x_2 \\ x_2 & -x_1 \end{pmatrix}$$
 is positive semi-definite iff $x = 0$

Example of non-explosion

 \blacksquare Consider Riccati ODE in $\mathbb C$

$$\dot{x}=x^2, \quad x(0)=u$$

• Solution x(t, u) = u/(1 - ut) for $t < u^{-1}$ if $u \in \mathbb{R}_+$

Domain of existence $D(t) = \mathbb{C} \setminus [t^{-1}, \infty)$ with boundary $\partial D(t) = [t^{-1}, \infty)$

• But x(t, u) does not explode if $u \to (t^{-1}, \infty)$

 \blacksquare Corresponds with Riccati ODE in \mathbb{R}^2

$$\dot{x_1} = x_1^2 - x_2^2$$

 $\dot{x_2} = 2x_1x_2$

Corresponding diffusion matrix

$$c(x) = egin{pmatrix} x_1 & x_2 \ x_2 & -x_1 \end{pmatrix}$$
 is positive semi-definite iff $x=0$

Riccati equations revisited

System of Riccati equations

$$\dot{\psi}_i = R_i(\psi), \quad \psi_i(0) = u_i$$

with

$$R_i(y) = y^{\top} a^i + \frac{1}{2} y^{\top} A^i y + \int_{\mathbb{R}^p} (e^{y^{\top} z} - 1 - y^{\top} z) F^i(\mathrm{d} z)$$

is considered as inhomogeneous linear ODE

Variation of constants

Variation of constants yields

$$\psi_{0}(t) + \psi(t)^{\top} x = u^{\top} y_{t} + \int_{0}^{t} \left(\frac{1}{2} \psi(s)^{\top} c(y_{t-s}) \psi(s) + \int_{z \in \mathbb{R}^{p}} (e^{\psi(s)^{\top} z} - 1 - \psi(s)^{\top} z) K(y_{t-s}, dz) \right) ds,$$

with $y_t = \mathsf{E}_x X_t$ and solves

$$\dot{y} = \boldsymbol{b}(\boldsymbol{y}), \quad \boldsymbol{y}(0) = \boldsymbol{x}$$

Gives enough interplay to handle explosions

Summary

For affine jump-diffusions with general convex state space we verified affine transform formula

$$\mathsf{E}(\exp(u^{\top}X_{\mathcal{T}})|\mathcal{F}_t) = \exp(\psi_0(\mathcal{T}-t,u) + \psi(\mathcal{T}-t,u)^{\top}X_t)$$

for $u \in \mathbb{C}^p$ s.t. either side exists.

Remarks:

Need exponential moments

$$\int_{|z|\geq 1} e^{k^ op z} {\mathcal F}^i({\mathrm d} z) < \infty \quad ext{ for all } k \in {\mathbb R}^p$$

No explicit use of geometry of state space

D. Duffie, D. Filipović, and W. Schachermayer.

Affine processes and applications in finance.

The Annals of Applied Probability, 13(3):984–1053, 2003.

D. Filipović and E. Mayerhofer.

Affine diffusion processes: Theory and applications.

Radon Series on Computational and Applied Mathematics, 8:125–164, 2009.

J. Kallsen and J. Muhle-Karbe.

Exponentially affine martingales, affine measure changes and exponential moments of affine processes.

Stochastic Processes and their Applications, 120(2):163 – 181, 2010.

P.J.C. Spreij and E. Veerman.

The affine transform formula for affine diffusions with convex state space.

Preprint arXiv, 2010.