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Backward Kolmogorov equations for option prices

Consider an asset price/risk factor whose dynamics under a pricing
measure is described by a Markov process X with generator L.

The value Vt = EQ [h(XT )∣ℱt ] at t of European options on X
can then be characterized as the solution to the backward
Kolmogorov PDE or “generalized Black Scholes” pricing
equation: Vt = f (t,Xt) where

∂f

∂t
+ Lf = 0 f (T , .) = h(.)

To price n options with payoffs (hi , i = 1..n) this requires
solving n PDEs with different boundary conditions.

If X is a Markov jump-diffusion process, L is an
integro-differential operator and the backward PDE is an
integro-differential equation.
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Dupire equation for call options

In the case where X is a scalar diffusion

dXt = b(t,Xt)dt + �(t,Xt)dWt

Bruno Dupire (1994) showed that the prices of call options

Ct(T ,K ) = E [(XT − K )+∣ℱt ]

solves another PDE, in the forward variables K ,T , the Dupire
PDE:

∂Ct

∂T
=

K 2�(T ,K )2

2

∂2Ct

∂K 2
− rK

∂Ct

∂K

on [t,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct(t,K ) = (St − K )+.

Amel Bentata and Rama Cont Forward equations for option prices



Forward equations for option prices
A forward PIDE for option prices

Exemples and Applications

“Unified Theory of Volatility” (Dupire 1993)

Dupire also extended the forward PDE to (non Markovian) models:
if X is

dXt = �tdWt

then, under appropriate conditions on the adapted process (�t)t≥0

the prices of call options

Ct(T ,K ) = E [(XT − K )+∣ℱt ]

solve
∂Ct

∂T
=

K 2�(T ,K )2

2

∂2Ct

∂K 2
− rK

∂Ct

∂K

where �(T ,K ) is the effective volatility given by

�(T ,K )2 = E [�2
T ∣XT = K ]
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Forward equations: extensions

Forward equations are quite useful as a computational/ theoretical
tool.
The Dupire equation has been extended in various directions:

Jump-diffusion model with compound Poisson jumps
(Andersen-Andreasen)

Exponential Lévy processes (Carr & Hirsa, Jourdain)

CDO expected tranche notionals (Cont & Minca)
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Outline

We derive a forward partial integrodifferential equation
(PIDE) for call options in a general semimartingale model,
generalizing the result of Dupire (1994).

We allow the case of degenerate (or zero) volatility processes
and discontinuities (jumps).
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Multi-asset jump-diffusion model

Consider an asset S whose price under the pricing measure ℚ
follows a “stochastic volatility model with random jumps”

ST = S0+

∫ T

0
r(t)St−dt+

∫ T

0
St−�tdWt+

∫ T

0

∫ +∞

−∞
St−(ey−1)M̃(dtdy)

where r(t) is the discount rate, �t the spot volatility process and
M̃ is a compensated random measure with compensator

�(!; dt dy) = m(!; t, dy) dt;

The value Ct(T ,K ) at time t of a call option with expiry T > t
and strike K > 0 is given by

Ct(T ,K ) = Eℚ[max(ST − K , 0)∣ℱt ];
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The discounted asset price ŜT = exp−
∫ T

0 r(t)dt ST , is the
stochastic exponential of

UT =

∫ T

0
�t dWt +

∫ T

0

∫
(ey − 1)M̃(dt dy).

Hence, under the assumption

∀T > 0, E
[

exp

(
1

2

∫ T

0
�2
t dt +

∫ T

0
dt

∫
ℝ

(ey − 1)2m(t, dy)

)]
<∞

(H)
(ŜT ) is a ℙ-martingale (Protter & Shimbo 2008).
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Exponential double tail

Let  t be the exponential double tail of the compensator m(t, dy)

 t(z) =

{ ∫ z
−∞ dx ex

∫ x
−∞m(t, du) z < 0∫ +∞

z dx ex
∫∞
x m(t, du) z > 0

and define {
�(t, z) =

√
E
[
�2
t ∣St− = z

]
;

�t,y (z) = E [ t (z) ∣St− = y ]
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Theorem (Forward PIDE for call options)

Under assumption (H), the call option price (T ,K ) 7→ Ct0(T ,K ),
as a function of maturity and strike, is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂Ct0

∂T
= −r(T )K

∂Ct0

∂K
+

K 2�(T ,K )2

2

∂2Ct0

∂K 2

+

∫ +∞

0
y
∂2Ct0

∂K 2
(T , dy)�T ,y

(
ln

(
K

y

))
on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+..
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Some remarks

The proof of the theorem is essentially based on the application of
the Tanaka-Meyer formula for semimartingales to (St − K )+

between T and T + h. If LK
t = LK

t (S) is the semimartingale local
time of S at K under ℙ, then for all h > 0

(ST+h − K )+ = (ST − K )+ +

∫ T+h

T
1St−>K}dSt +

1

2
(LK

T+h − LK
T )

+
∑

T<t≤T+h

(St − K )+ − (St− − K )+ − 1St−>K}ΔSt .

Conditioning on {St− = K}
⋁
ℱ0 then taking expectations yields

the forward PIDE.
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This PIDE may be used as a theoretical tool for exploring
option prices, or for computing option prices without Monte
Carlo simulation;

It shows that, any arbitrage-free profile of option prices across
strike and maturity may be parameterized by a local volatility
function �(t,S) and a kernel �t,S(z) describing the
“effective” jump intensity.

If �t,S(z) is twice differentiable in z we can define a “local
Lévy density” �t,S(z) by

�t,S = ∂z( e−z∂z�t,S(z))
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Itô processes
Markovian jump-diffusion models
Pure jump processes
Time changed Lévy processes
Index options in a multivariate jump-diffusion model

Example 1: Ito processes

Consider the price process S whose dynamics under the pricing
measure ℙ is given by:

ST = S0 +

∫ T

0
r(t)Stdt +

∫ T

0
St�tdWt

Define

�(t, z) =
√
E
[
�2
t ∣St = z

]
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Proposition (Dupire PDE)

If

E
[

exp

(
1

2

∫ T

0
�2
t dt

)]
<∞ a.s,

then the call option price Ct0 is a solution (in the sense of
distributions) of the partial differential equation:

∂Ct0

∂T
= −r(T )K

∂Ct0

∂K
+

K 2�(T ,K )2

2

∂2Ct0

∂K 2

on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+.

Unlike (Gyöngy 1986), this derivation does not require
non-degeneracy.
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Consider now a Markovian jump-diffusion given by the SDE

St = S0 +

∫ T

0
r(t)St−dt +

∫ T

0
St−�(t,St−)dBt

+

∫ T

0

∫ +∞

−∞
St−(ey − 1)Ñ(dtdy)

where Bt is a Brownian motion and N a Poisson random measure
on [0,T ]× ℝ with compensator �(dz) dt, Ñ the associated
compensated random measure. Assume:{

�(., .) is bounded∫
y>1 e2y�(dy) <∞
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Proposition

The call option price

Ct0(T ,K ) = e
−

∫ T
t0

r(t) dt
Eℙ[max(ST − K , 0)∣ℱt0 ]

is a solution (in the sense of distributions) of the partial
integro-differential equation:

∂Ct0

∂T
= −r(T )K

∂Ct0

∂K
+

K 2�(T ,K )2

2

∂2Ct0

∂K 2

+

∫
ℝ
�(dz) ez

[
Ct0(T ,Ke−z)− Ct0(T ,K )− K (e−z − 1)

∂Ct0

∂K

]
on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+.
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Indeed, in the particular case where m(t, y , dz) = �(dz) we have
the identity∫ +∞

0
y
∂2C

∂K 2
(T , dy)�T ,y

(
ln

(
K

y

))
=

∫
ℝ

ez
[

C (T ,Ke−z)− C (T ,K )− K (e−z − 1)
∂C

∂K

]
�(dz)

This result allows to retrieve/generalize the PIDE of Andersen &
Andreasen (2000).
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Pure jump processes

We now consider price processes with no Brownian component.
It is convenient to use the change of variable: v = ln y , k = ln K .
Define c(k,T ) = C (ek ,T ), and

�T ,v (z) = E [ T (z)∣ST− = ev ]

with:

 T (z) =

{ ∫ z
−∞ dx ex

∫ x
−∞m(T , du) z < 0∫ +∞

z dx ex
∫∞
x m(T , du) z > 0
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Proposition

If

∀T > 0, E
[

exp

(∫ T

0
dt

∫
(ey − 1)2m(t dy)

)]
<∞

then the call option price c(T , k) is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂c

∂T
+ r(T )

∂c

∂k
=

∫ +∞

−∞
e2(v−k)

(
∂2c

∂k2
− ∂c

∂k

)
(T , dv)�T ,v (k − v)
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In the case considered in Carr, Geman, Madan and Yor 2004,
where the Lévy density mY has a deterministic separable form:

mY (t, dz , y) dt = �(y , t) k(dz) dz dt

The previous PIDE allows us to recover the result of (CGMY 04):

∂c

∂T
+r(T )

∂c

∂k
=

∫ +∞

−∞
�(k−v)e2(v−k)�(e2v ,T )

(
∂2c

∂k2
− ∂c

∂k

)
d(v)

where � is defined as the exponential double tail of k(u) du, i.e:

�(z) =

{ ∫ z
−∞ dx ex

∫ x
−∞ k(u) du z < 0∫ +∞

z dx ex
∫∞
x k(u) du z > 0
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Time changed Lévy processes (Carr, Geman, Madan and Yor 2003)

(
ST ≡ e

∫ T
0 r(t) dt XT

)
Xt = exp (LTt ) Tt =

∫ t

0
�sds

where Lt is a Lévy process with characteristic triplet (b, �2, �), N
its jump measure and (�t) is a locally bounded positive
semimartingale. We assume L and � are ℱt-adapted.

Xt ≡ (e−
∫ T

0 r(t) dt ST ) is a martingale under the pricing measure ℙ
if exp (Lt) is a martingale which requires the following condition on
the characteristic triplet of (Lt):

b +
1

2
�2 +

∫
ℝ

(ez − 1− z 1∣z∣≤1)�(dy) = 0
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Define the value Ct0(T ,K ) at time t0 of the call option with expiry
T > t0 and strike K > 0 of the stock price (St):

Ct0(T ,K ) = e−
∫ T

0 r(t) dtEℙ[max(ST − K , 0)∣ℱt0 ]

Define
�(t, x) = E [�t ∣Xt− = x ]

and � the exponential double tail of �(du)

�(z) =

{ ∫ z
−∞ dx ex

∫ x
−∞ �(du) z < 0∫ +∞

z dx ex
∫∞
x �(du) z > 0
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Proposition

If
∫
y>1 e2y�(dy) <∞ then the call option price

Ct0 : (T ,K ) 7→ Ct0(T ,K ) at date t0, as a function of maturity and
strike, is a solution (in the sense of distributions) of the partial
integro-differential equation:

∂C

∂T
= −r�(T ,K )K

∂C

∂K
+

K 2�(T ,K )�2

2

∂2C

∂K 2

+

∫ +∞

0
y
∂2C

∂K 2
(T , dy)�(T , y)�

(
ln

(
K

y

))
on [t,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+.
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The impact of the random time change on the marginals can
be captured by making the characteristics state dependent

(b�(t,Xt−), �2�(t,Xt−), �(t,Xt−)�Z )

Note that the same adjustment factor �(t,Xt−) is applied to
the drift, diffusion coefficient and Lévy measure.
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Consider a multivariate model with d assets:

S i
T = S i

0+

∫ T

0
r(t)S i

t−dt+

∫ T

0
St−�

i
tdW i

t +

∫ T

0

∫
ℝd

S i
t−(eyi−1)Ñ(dt dy)

where �i is an adapted process taking values in ℝ representing the
volatility of asset i , W is a d-dimensional Wiener process, N is a
Poisson random measure on [0,T ]× ℝd with compensator
�(dy) dt, Ñ denotes its compensated random measure.
The Wiener processes W i are correlated: for all 1 ≤ (i , j) ≤ d ,
⟨W i ,W j⟩t = �i ,j t, with �ij > 0 and �ii = 1.
An index is defined as a weighted sum of the asset prices:

It =
d∑

i=1

wiS
i
t
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The value Ct0(T ,K ) at time t0 of an index call option with expiry
T > t0 and strike K > 0 is given by

Ct0(T ,K ) = e
−

∫ T
t0

r(t) dt
Eℙ[max(IT − K , 0)∣ℱt0 ]

Let k(., t, dy) be the random measure:

k(t, dy) =

∫
ln

(∑
1≤i≤d−1 wiS

i
t−eyi + wdSd

t−ey

It−

)
�(dy1, ⋅ ⋅ ⋅ , dyd−1, dy)

and �t(z) its exponential double tail:

�t(z) =

{ ∫ z
−∞ dx ex

∫ x
−∞ k(t, du) z < 0∫ +∞

z dx ex
∫∞
x k(t, du) z > 0
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Assume⎧⎨⎩ ∀T > 0 E
[
exp

(
1
2

∫ T
0 ∥�t∥

2 dt
)]

<∞∫
ℝd (1 ∧ ∥y∥) �(dy) <∞

∫
∥y∥>1 e2∥y∥�(dy) <∞

and define

�(t, z) =
1

z

√√√√⎷E

⎡⎣⎛⎝ d∑
i ,j=1

wiwj�ij �
i
t�

j
t S i

t−S j
t−

⎞⎠ ∣It− = z

⎤⎦;

�t,y (z) = E [�t (z) ∣It− = y ]
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Theorem

Under this assumptionThe index call price (T ,K ) 7→ Ct0(T ,K ), as
a function of maturity and strike, is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂C

∂T
= −r(T )K

∂C

∂K
+
�(T ,K )2

2

∂2C

∂K 2

+

∫ +∞

0
y
∂2C

∂K 2
(T , dy)�T ,y

(
ln

(
K

y

))
on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (It0 − K )+.
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Forward PIDE as dimension reduction

The following result generalizes the forward PDE studied by
Avellaneda et al. 2003 for the diffusion case to a setting with
jumps:

The conditional expectations in the expressions of the
effective volatility �(., ) and effective jump intensity j() may
be efficiently computed (without simulation) using a steepest
descent approximation proposed by (Avellaneda Busca Friz
Boyer-Olson) in the diffusion case.

This enables to price index options in a (smile-consistent)
multidimensional jump-diffusion model without Monte Carlo
simulation, by solving a one-dimensional forward PIDE.
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Conclusion

We derive a forward PIDE for call options in a general
semimartingale model.

Assumption: exponential integrability of volatility + jump
intensity.

Allows for degenerate/ zero volatility and jumps.

Extension of the Dupire/forward equation for option prices to
a large class of non Markovian models with jumps.

Allows dimension reduction and use of P(I)DE methods when
computing call option prices.
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