Numéraire-invariant choices in financial modeling

Constantinos Kardaras (Boston University)

Bachelier 2010 conference, Toronto

Saturday, June 26th

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numéraire-invariant choices: the static case

Numéraire-invariant choices in a dynamic environment

Agent's optimal investment and consumption problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The numéraire under random sampling

Numéraire-invariant choices: the static case

Numéraire-invariant choices in a dynamic environment

Agent's optimal investment and consumption problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The numéraire under random sampling

Framework. For the "bulk consumption" case we work on

- ▶ a space of random outcomes (Ω, \mathcal{F}) , equipped with ...
- a class Π of equivalent probabilities on (Ω, \mathcal{F}) .
- Denote $\mathbb{L}^0 \equiv \mathbb{L}^0(\Pi)$, with usual topology.
- ▶ $\mathbb{L}^{0}_{+} := \{ f \in \mathbb{L}^{0} \mid f \ge 0 \}; \mathbb{L}^{0}_{++} := \{ f \in \mathbb{L}^{0} \mid f > 0 \}.$

Framework. For the "bulk consumption" case we work on

- ▶ a space of random outcomes (Ω, \mathcal{F}) , equipped with ...
- a class Π of equivalent probabilities on (Ω, \mathcal{F}) .
- Denote $\mathbb{L}^0 \equiv \mathbb{L}^0(\Pi)$, with usual topology.

▶
$$\mathbb{L}^{0}_{+} := \{ f \in \mathbb{L}^{0} \mid f \ge 0 \}; \mathbb{L}^{0}_{++} := \{ f \in \mathbb{L}^{0} \mid f > 0 \}.$$

Definitions. A set $C \subseteq \mathbb{L}^0_+$ will be called:

• convex if $f \in C$, $g \in C$, $\alpha \in [0, 1]$ imply $((1 - \alpha)f + \alpha g) \in C$.

- closed if it is closed in L⁰.
- ▶ bounded if $\lim_{\ell \to \infty} \sup_{f \in C} \mathbb{P}[f > \ell] = 0$ (for any $\mathbb{P} \in \Pi$).

Preferences on \mathbb{L}^0_+ via expected relative rate of return

Preference on \mathbb{L}^0_+ via e.r.r.o.r: Fix $\mathbb{P} \in \Pi$. Set

 $f \preccurlyeq_{\mathbb{P}} g \iff \operatorname{\mathsf{rel}}_{\mathbb{P}}(f \,|\, g) := \mathbb{E}_{\mathbb{P}}\left[(f - g)/g\right] \leq 0$

・ロト・日本・モート モー うへで

Preferences on \mathbb{L}^0_+ via expected relative rate of return

Preference on \mathbb{L}^0_+ via e.r.r.o.r: Fix $\mathbb{P} \in \Pi$. Set

$$f \preccurlyeq_{\mathbb{P}} g \iff \operatorname{rel}_{\mathbb{P}}(f \,|\, g) := \mathbb{E}_{\mathbb{P}}\left[(f - g)/g\right] \leq 0$$

Observations:

▶ $\preccurlyeq_{\mathbb{P}}$ is a *numéraire-invariant* relation: for $h \in \mathbb{L}^{0}_{++}$,

$$f \preccurlyeq_{\mathbb{P}} g \iff \frac{f}{h} \preccurlyeq_{\mathbb{P}} \frac{g}{h}.$$

→ ⊰_P is neither complete nor transitive (nor additive)!

Preferences on \mathbb{L}^0_+ via expected relative rate of return

Preference on \mathbb{L}^0_+ via e.r.r.o.r: Fix $\mathbb{P} \in \Pi$. Set

$$f \preccurlyeq_{\mathbb{P}} g \iff \operatorname{rel}_{\mathbb{P}}(f \mid g) := \mathbb{E}_{\mathbb{P}}\left[(f - g)/g\right] \le 0$$

Observations:

▶ $\preccurlyeq_{\mathbb{P}}$ is a *numéraire-invariant* relation: for $h \in \mathbb{L}^{0}_{++}$,

$$f \preccurlyeq_{\mathbb{P}} g \iff \frac{f}{h} \preccurlyeq_{\mathbb{P}} \frac{g}{h}.$$

→ ⊰_P is neither complete nor transitive (nor additive)!

Connection with log-utility maximization. Let $C \subseteq \mathbb{L}^0_+$ be convex and closed. Suppose that there exists $\hat{f} \in C$ such that

$$\mathbb{E}_{\mathbb{P}}\big[\log f\big] \leq \mathbb{E}_{\mathbb{P}}\big[\log \widehat{f}\,\big] < \infty, \quad \forall f \in \mathcal{C}.$$

Formal first-order conditions give, for all $f \in C$:

$$\mathbb{E}_{\mathbb{P}}\left[\left(f-\widehat{f}\right)/\widehat{f}\right] \leq 0 \implies f \preccurlyeq_{\mathbb{P}} \widehat{f}.$$

Theorem. Suppose that \preccurlyeq is a binary relation on \mathbb{L}^0_+ that satisfies the following *axioms*:

- A1. $f \preccurlyeq g \iff (f/g) \preccurlyeq 1$.
- A2. If $f \leq 1$, then $f \preccurlyeq 1$. If, furthermore, $f \neq 1$, then $f \prec 1$.
- A3. The lower-contour set $\{f \in \mathbb{L}^0_+ \mid f \preccurlyeq 1\}$ is convex.
- A4. If $\mathcal{C} \subseteq \mathbb{L}^0_+$ is convex, closed and bounded, $\exists \ \widehat{f} \in \mathcal{C}$ such that

Theorem. Suppose that \preccurlyeq is a binary relation on \mathbb{L}^0_+ that satisfies the following *axioms*:

A1. $f \preccurlyeq g \iff (f/g) \preccurlyeq 1$.

A2. If $f \leq 1$, then $f \preccurlyeq 1$. If, furthermore, $f \neq 1$, then $f \prec 1$.

A3. The lower-contour set $\{f \in \mathbb{L}^0_+ \mid f \preccurlyeq 1\}$ is convex.

A4. If $\mathcal{C} \subseteq \mathbb{L}^0_+$ is convex, closed and bounded, $\exists \ \widehat{f} \in \mathcal{C}$ such that

Then, there exists a unique $\mathbb{P} \in \Pi$ that generates \preccurlyeq .

Theorem. Suppose that \preccurlyeq is a binary relation on \mathbb{L}^0_+ that satisfies the following *axioms*:

A1. $f \preccurlyeq g \iff (f/g) \preccurlyeq 1$.

A2. If $f \leq 1$, then $f \preccurlyeq 1$. If, furthermore, $f \neq 1$, then $f \prec 1$.

A3. The lower-contour set $\{f \in \mathbb{L}^0_+ \mid f \preccurlyeq 1\}$ is convex.

A4. If $\mathcal{C} \subseteq \mathbb{L}^0_+$ is convex, closed and bounded, $\exists \ \widehat{f} \in \mathcal{C}$ such that

Then, there exists a unique $\mathbb{P} \in \Pi$ that generates \preccurlyeq .

Remark. The above $\mathbb{P} \in \Pi$ is the subjective probability of a risk-averse individual with numéraire-invariant preferences:

• if $f \preccurlyeq_{\mathbb{P}} \mathbb{E}_{\mathbb{Q}}[f]$ for all $f \in \mathbb{L}^{\infty}_+$, then $\mathbb{Q} = \mathbb{P}$.

Theorem. Let \preccurlyeq satisfy the previous axioms A1, A2, A3, A4. Then, there exists a binary relation \trianglelefteq on \mathbb{L}^0_{++} such that:

1.
$$f \leq g \iff (f/g) \leq 1$$
.

- $2. \ f \prec 1 \implies f \lhd 1.$
- 3. \trianglelefteq is transitive.
- 4. \trianglelefteq has weak continuity properties.

Theorem. Let \preccurlyeq satisfy the previous axioms A1, A2, A3, A4. Then, there exists a binary relation \trianglelefteq on \mathbb{L}^0_{++} such that:

1.
$$f \leq g \iff (f/g) \leq 1$$
.

- $2. \ f \prec 1 \implies f \lhd 1.$
- 3. \leq is transitive.
- 4. \trianglelefteq has weak continuity properties.

Let \trianglelefteq be *any* such binary relation on \mathbb{L}^{0}_{++} . With \mathbb{P} generating \preccurlyeq ,

$$f \trianglelefteq g \iff \mathbb{E}_{\mathbb{P}}\left[\log\left(f/g\right)\right] \le 0$$

holds whenever $\mathbb{E}_{\mathbb{P}}\left[\log_+\left(f/g\right)\right] < \infty$.

Numéraire-invariant choices: the static case

Numéraire-invariant choices in a dynamic environment

Agent's optimal investment and consumption problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The numéraire under random sampling

Filtered probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P}).$

- $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$: flow of information.
- \mathbb{P} will be fixed here ("statistical" or "baseline" measure).

Filtered probability space: $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P}).$

- $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$: flow of information.
- \mathbb{P} will be fixed here ("statistical" or "baseline" measure).

Quantities of interest: cumulative consumption streams...

- ...i.e., nondecreasing, right-continuous, adapted processes ...
- ... whose densities with respect to some "consumption clock" live on $(\Omega \times \mathbb{R}_+, \mathcal{O})$, where \mathcal{O} is the *optional* sigma-algebra.
- ► Π: collection of equivalent measures with unit mass ("probabilities") on (Ω × ℝ₊, O), generically denoted by p.

Theorem. On $(\Omega \times \mathbb{R}_+, \mathcal{O})$, let p with $p[\Omega \times \mathbb{R}_+] = 1$ and p[A] = 0 for evanescent $A \in \mathcal{O}$. There exists (L, K) such that:

- 1. *L* is a nonnegative local martingale with $L_0 = 1$.
- 2. K is adapted, right-continuous, nondecreasing, $0 \le K \le 1$.
- 3. $\int_{\Omega \times \mathbb{R}_+} V dp = \mathbb{E} \left[\int_{\mathbb{R}_+} V_t L_t dK_t \right]$, for all V nonnegative.

Under an additional "minimality" condition, the pair (L, K) that satisfies the above requirements is essentially unique.

Theorem. On $(\Omega \times \mathbb{R}_+, \mathcal{O})$, let p with $p[\Omega \times \mathbb{R}_+] = 1$ and p[A] = 0 for evanescent $A \in \mathcal{O}$. There exists (L, K) such that:

- 1. *L* is a nonnegative local martingale with $L_0 = 1$.
- 2. K is adapted, right-continuous, nondecreasing, 0 \leq K \leq 1.
- 3. $\int_{\Omega \times \mathbb{R}_+} V dp = \mathbb{E} \left[\int_{\mathbb{R}_+} V_t L_t dK_t \right]$, for all V nonnegative.

Under an additional "minimality" condition, the pair (L, K) that satisfies the above requirements is essentially unique.

Definition. (L, K) is called the canonical representation pair of p.

Theorem. On $(\Omega \times \mathbb{R}_+, \mathcal{O})$, let p with $p[\Omega \times \mathbb{R}_+] = 1$ and p[A] = 0 for evanescent $A \in \mathcal{O}$. There exists (L, K) such that:

- 1. *L* is a nonnegative local martingale with $L_0 = 1$.
- 2. K is adapted, right-continuous, nondecreasing, $0 \le K \le 1$.
- 3. $\int_{\Omega \times \mathbb{R}_+} V dp = \mathbb{E} \left[\int_{\mathbb{R}_+} V_t L_t dK_t \right]$, for all V nonnegative.

Under an additional "minimality" condition, the pair (L, K) that satisfies the above requirements is essentially unique.

Definition. (L, K) is called the canonical representation pair of p.

Remark. It may happen that L is not a true martingale. (It may also happen that $\mathbb{P}[K_{\infty} = 1] < 1$.) Seemingly a technicality, this has deep economic consequences, related to market *bubbles*.

Numéraire-invariant choice on consumption streams

Preferences. For $p \in \Pi$ with canonical pair (L, K), define

$$\operatorname{\mathsf{rel}}_{p}(F \mid G) := \int_{\Omega \times \mathbb{R}_{+}} \left(\frac{\mathrm{d}F - \mathrm{d}G}{\mathrm{d}G} \right) \mathrm{d}p = \mathbb{E} \left[\int_{\mathbb{R}_{+}} \left(\frac{\mathrm{d}F_{t} - \mathrm{d}G_{t}}{\mathrm{d}G_{t}} \right) L_{t} \mathrm{d}K_{t} \right]$$

for all consumption streams F and G. Then, define

$$F \preccurlyeq_{\rho} G \iff \operatorname{rel}_{\rho}(F \mid G) \leq 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Such preferences stem from axiomatic foundations,

Numéraire-invariant choice on consumption streams

Preferences. For $p \in \Pi$ with canonical pair (L, K), define

$$\mathsf{rel}_{p}(F \mid G) := \int_{\Omega \times \mathbb{R}_{+}} \left(\frac{\mathrm{d}F - \mathrm{d}G}{\mathrm{d}G} \right) \mathrm{d}p = \mathbb{E} \left[\int_{\mathbb{R}_{+}} \left(\frac{\mathrm{d}F_{t} - \mathrm{d}G_{t}}{\mathrm{d}G_{t}} \right) L_{t} \mathrm{d}K_{t} \right]$$

for all consumption streams F and G. Then, define

$$F \preccurlyeq_{p} G \iff \operatorname{rel}_{p}(F \mid G) \leq 0.$$

Such preferences stem from axiomatic foundations, ...

Special case: If $L \equiv (d\mathbb{Q}/d\mathbb{P})|_{\mathcal{F}}$, then

$$\operatorname{\mathsf{rel}}_{\rho}(F \mid G) = \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_{+}} \left(\frac{\mathrm{d}F_{t} - \mathrm{d}G_{t}}{\mathrm{d}G_{t}}\right) \mathrm{d}K_{t}\right].$$

- Q: subjective views of the agent.
- ► *K*: agent's *consumption clock*.

Numéraire-invariant choices: the static case

Numéraire-invariant choices in a dynamic environment

Agent's optimal investment and consumption problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The numéraire under random sampling

The market

Discounted asset-prices. There are *d* liquid assets with dynamics:

$$\frac{\mathrm{d}S_t^i}{S_t^i} = \alpha_t^i \mathrm{d}t + \sum_{j=1}^m \sigma_t^{ij} \mathrm{d}W_t^j, \quad i = 1, \dots, d.$$

Notation:

- $W = (W^j)_{j=1,...,m}$ is standard BM, and $d \le m$.
- $c := \sigma \sigma^{\top}$: local covariation $(d \times d)$ -matrix-valued process.

• $\alpha = (\alpha^i)_{i=1,...,d}$: local excess rates of return.

The market

Discounted asset-prices. There are *d* liquid assets with dynamics:

$$\frac{\mathrm{d}S_t^i}{S_t^i} = \alpha_t^i \mathrm{d}t + \sum_{j=1}^m \sigma_t^{ij} \mathrm{d}W_t^j, \quad i = 1, \dots, d.$$

Notation:

- $W = (W^j)_{j=1,...,m}$ is standard BM, and $d \le m$.
- $c := \sigma \sigma^{\top}$: local covariation $(d \times d)$ -matrix-valued process.
- $\alpha = (\alpha^i)_{i=1,...,d}$: local excess rates of return.

Market viability. Assume that there exists a process ρ that solves $c\rho = \alpha$, such that the integrated-squared-Sharpe-ratio process

$$\int_0^{\cdot} \left(\rho_t^{\top} c_t \rho_t \right) \mathrm{d}t = \int_0^{\cdot} \left| c_t^{-1/2} \alpha_t \right|^2 \mathrm{d}t$$

 \mathbb{P} -a.s. does *not* explode in finite time.

Investment and consumption

Investment-consumption: with initial capital $x \in \mathbb{R}_+$, the pair (π, κ) generates wealth $X^{(x;\pi,\kappa)}$ satisfying $X_0^{(x;\pi,\kappa)} = x$ and

$$\frac{\mathrm{d}X_t^{(x;\pi,\kappa)}}{X_t^{(x;\pi,\kappa)}} = \sum_{i=1}^d \pi_t^i \left(\frac{\mathrm{d}S_t^i}{S_t^i}\right) - \kappa_t \mathrm{d}t$$

Solving the last linear SDE, $X^{(x;\pi,\kappa)}$ is given by:

$$x \exp\left(\int_0^{\cdot} \left(\pi_t^{\top} \alpha_t - \frac{1}{2} \pi_t^{\top} c_t \pi_t - \kappa_t\right) \mathrm{d}t + \int_0^{\cdot} \left(\pi_t^{\top} \sigma_t\right) \mathrm{d}W_t\right)$$

Consumption rate at t ∈ ℝ₊ is X^(x;π,κ)_t κ_t. Therefore, consumption streams financeable by x ∈ ℝ₊ are of the form:

$$F^{(x;\pi,\kappa)} := \int_0^{\cdot} X_t^{(x;\pi,\kappa)} \kappa_t \mathrm{d}t$$

Agent's optimal investment and consumption

Agent has preferences with canonical representation (L, K), where

$$\begin{aligned} \frac{\mathrm{d}L_t}{L_t} &= \lambda_t^{\top} \mathrm{d}W_t + \mathrm{d}\big(\text{local mart} \perp \text{to }W\big)_t, \\ \mathrm{d}K_t &= \dot{K}_t \mathrm{d}t. \end{aligned}$$

・ロト・日本・モート モー うへで

Agent's optimal investment and consumption

Agent has preferences with canonical representation (L, K), where

$$\begin{split} \frac{\mathrm{d}L_t}{L_t} &= \lambda_t^\top \mathrm{d}W_t + \mathrm{d}\big(\text{local mart} \perp \text{to }W\big)_t, \\ \mathrm{d}K_t &= \dot{K}_t \mathrm{d}t. \end{split}$$

Separation of the problems of investment and consumption:

• The optimal portfolio π^* solves

$$c\pi^* = \alpha + \sigma\lambda.$$

• The optimal relative-to-wealth consumption rate κ^* satisfies:

$$\kappa_t^* \mathrm{d} t = \frac{\mathrm{d} K_t}{1 - K_t}, \ t \in \mathbb{R}_+ \iff \kappa^* = \frac{K}{1 - K}$$

Numéraire-invariant choices: the static case

Numéraire-invariant choices in a dynamic environment

Agent's optimal investment and consumption problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The numéraire under random sampling

Definition. Let \mathcal{X} be a wealth-process set and T be a *random* time. Then, $\hat{\mathcal{X}}$ is the numéraire in \mathcal{X} sampled at T if $\hat{\mathcal{X}}_0 = 1$ and

$$\mathbb{E}\left[\frac{X_T}{\widehat{X}_T}\right] \le \frac{X_0}{\widehat{X}_0} = X_0, \text{ for all } X \in \mathcal{X}.$$
 (NUM)

Definition. Let \mathcal{X} be a wealth-process set and T be a *random* time. Then, $\hat{\mathcal{X}}$ is the numéraire in \mathcal{X} sampled at T if $\hat{\mathcal{X}}_0 = 1$ and

$$\mathbb{E}\left[\frac{X_T}{\widehat{X}_T}\right] \le \frac{X_0}{\widehat{X}_0} = X_0, \text{ for all } X \in \mathcal{X}.$$
 (NUM)

Observations and question:

- ► The numéraire is essentially the log-optimal portfolio.
- When T ranges in the class of stopping times, X that satisfies (NUM) is always the same, simply called the numéraire in X;
- ► ... but what if T is not a stopping time? How can we characterize X that satisfies (NUM)?

The numéraire sampled at a random time T: Define p via

$$\mathbb{E}[V_{\mathcal{T}}] = \int_{\Omega \times \mathbb{R}_+} V \mathrm{d} p = \mathbb{E}_{\mathbb{Q}} \left[\int_{\mathbb{R}_+} V_t \mathrm{d} K_t \right], \quad \text{for } V \ge 0,$$

where we assume that L generates some \mathbb{Q} . (This is *not* needed.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The numéraire sampled at a random time T: Define p via

$$\mathbb{E}[V_{\mathcal{T}}] = \int_{\Omega \times \mathbb{R}_+} V \mathrm{d}p = \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_+} V_t \mathrm{d}K_t\right], \quad \text{for } V \ge 0,$$

where we assume that L generates some \mathbb{Q} . (This is *not* needed.) • With $\widehat{X}^{\mathbb{Q}}$ being the numéraire under \mathbb{Q} ,

$$\mathbb{E}\left[\frac{X_T}{\widehat{X}_T^{\mathbb{Q}}}\right] = \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_+} \frac{X_t}{\widehat{X}_t^{\mathbb{Q}}} \mathrm{d}K_t\right] = \ldots \leq \frac{X_0}{\widehat{X}_0^{\mathbb{Q}}} = X_0,$$

where "..." involves integration-by-parts.

The numéraire sampled at a random time T: Define p via

$$\mathbb{E}[V_{\mathcal{T}}] = \int_{\Omega \times \mathbb{R}_+} V \mathrm{d}p = \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_+} V_t \mathrm{d}K_t\right], \quad \text{for } V \ge 0,$$

where we assume that L generates some \mathbb{Q} . (This is *not* needed.) • With $\widehat{X}^{\mathbb{Q}}$ being the numéraire under \mathbb{Q} ,

$$\mathbb{E}\left[\frac{X_T}{\widehat{X}_T^{\mathbb{Q}}}\right] = \mathbb{E}_{\mathbb{Q}}\left[\int_{\mathbb{R}_+} \frac{X_t}{\widehat{X}_t^{\mathbb{Q}}} \mathrm{d}K_t\right] = \ldots \leq \frac{X_0}{\widehat{X}_0^{\mathbb{Q}}} = X_0,$$

where "..." involves integration-by-parts.

<u>Solution</u>: $\widehat{X}^{\mathbb{Q}}$ is the numéraire in \mathcal{X} sampled at \mathcal{T} .

Theorem. Consider a viable market with continuous asset prices. Suppose that the numéraire \widehat{X} (under \mathbb{P}) is such that $\lim_{t\to\infty} \widehat{X}_t = \infty$. Let \mathcal{T} be any random time such that

$$\widehat{X}_{\mathcal{T}} = \min_{t \in \mathbb{R}_+} \widehat{X}_t.$$

Then,

$$\mathbb{E}_{\mathbb{P}}\left[X_{\mathcal{T}} \mid \widehat{X}_{\mathcal{T}}\right] \leq X_0$$

holds for all $X \in \mathcal{X}$.

BACHELIER 2010, THANK YOU!

• Numéraire-invariant preferences in financial modeling, to appear in the Annals of Applied Probability. Preprint at www.arxiv.org.