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Executive Summary

Prove convergence of original stochastic tree estimators
weaker assumptions (first versus first-plus-epsilon
moment); and
stronger mode of convergence (almost sure versus
q-norm).

Prove almost-sure convergence of bias-corrected
stochastic tree estimators.
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Valuation of American-style Options

Valuation is done via dynamic programming through the
recursive equations

Hk = E [Bk+1| Fk ] and
Bk = max(Hk ,Pk ),

where
Hk is the time-k hold value;
Pk is the time-k exercise value;
Bk is the time-k option value;
the terminal condition is HN = 0;
N is option expiry; and
k = k∆T denotes time.

Note that we have suppressed the discount factor.
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Stochastic Tree — Broadie and Glasserman 1997

Brute-force valuation of the hold-value estimator.
Let M be the branching factor.
Given Sk generate M values of Sk+1 (these are iid).
Continue in this fashion for all k .
i = (i1, i2, i3, . . . , iN) denotes the path through the tree.
Can specify exact location by i and depth k .
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Stochastic Tree — Broadie and Glasserman 1997
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Figure: Two-period stochastic tree with branching factor of 3
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High-biased Stochastic Tree Estimator

A high-biased estimator uses the recursive equations

H̃ i
k ,M =

1
M

M∑
ik+1=1

B̃i
k+1,M and

B̃i
k ,M = max(H̃ i

k ,M ,P
i
k ),

where the terminal condition is H̃ i
N,M = 0;
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High-biased Estimator Consistency

Assume that E[|Pk |q
′
] <∞ for all k and for some q′ > 1.

Then the high-biased estimator converges in q-norm for
any 0 < q < q′ as M →∞.
(Theorem 1 of Broadie and Glasserman, 1997)
Assumption — first-plus-epsilon absolute moment.
Convergence — in q-norm.
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Estimator Bias

Define H̄ i
k ,M = E[H̃ i

k ,M |Fk ]

Define the time-k bias as

H̄ i
k ,M − H i

k = E[B̃i
k+1,M − Bi

k+1|Fk ]

= E
[
max(H̃ i

k+1,M ,P
i
k+1)−max(H i

k+1,P
i
k+1)|Fk

]
Add/subtract E[max(H̄ i

k+1,M ,P
i
k+1)|Fk ] gives

E
[

max(H̃ i
k+1,M ,P

i
k+1)−max(H̄ i

k+1,M ,P
i
k+1)|Fk

]
(local)

+ E
[
max(H̄ i

k+1,M ,P
i
k+1)−max(H i

k+1,P
i
k+1)|Fk

]
. (global)

We derive an approximation to the local bias.
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Estimator Bias

Let 11A = 1 if A is true and 11A = 0 otherwise.
Note that

E
[
11H̄ i

k+1,M>P i
k+1

(H̃ i
k+1,M − H̄ i

k+1,M)|Fk+1

]
= 0

and by nested expectations, so is the Fk -conditional
expectation.
Subtract this term inside local bias to get

E
[
11H̄ i

k+1,M>P i
k+1

11H̃ i
k+1,M≤P i

k+1
(P i

k+1 − H̃ i
k+1,M)

+ 11H̄ i
k+1,M≤P i

k+1
11H̃ i

k+1,M>P i
k+1

(H̃ i
k+1,M − P i

k+1)|Fk
]

Using Y ’s for (H − P)’s gives

E
[
11Ȳ i

k+1,M>011Ỹ i
k+1,M≤0(−Ỹ i

k+1,M)

+11Ȳ i
k+1,M≤011Ỹ i

k+1,M>0(Ỹ i
k+1,M)

∣∣Fk
]
.
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Time-(k + 1) Local Error in Hold Value Estimator

Reminder: Y = H − P

Held:
Ỹ i

k+1,M > 0
Exercised:
Ỹ i

k+1,M ≤ 0

Should Hold:
Ȳ i

k+1,M > 0 0 −Ỹ i
k+1,M

Should Exercise:
Ȳ i

k+1,M ≤ 0 Ỹ i
k+1,M 0

Note that this error is always non-negative.

Convergence of Stochastic Tree Estimators



university-logo

Approximation to Bias

By CLT Ỹ i
k+1,M ∼ N(Ȳ i

k+1,M , V̄
i
k+1,M/M) (approximately).

Take Ỹ i∗
k+1,M ∼ N(Ȳ i

k+1,M , V̄
i
k+1,M/M) (exactly).

Replace Ỹ i
k+1,M with Ỹ i∗

k+1,M to get

E
[
11Ȳ i

k+1,M>011Ỹ i∗
k+1,M≤0(−Ỹ i∗

k+1,M) + 11Ȳ i
k+1,M≤011Ỹ i∗

k+1,M>0(Ỹ i∗
k+1,M)

∣∣Fk
]

=

∫ ∞
0

∫ ∫
D
|ỹ∗| 1√

v̄/M
φ

(
ỹ∗ − ȳ√

v̄/M

)
fȲ i

k+1,M ,V̄
i
k+1,M |Fk

(ȳ , v̄) dỹ∗dȳ dv̄ ,

where D = (0,∞)× (−∞,0] ∪ (−∞,0]× (0,∞) and φ is the
standard normal density function.

Distributions of Ȳ i∗
k+1,M and Ỹ i∗

k+1,M change at different
rates with M.
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Approximation to Bias

Substitute z̄ = ȳ
√

M and z̃∗ = ỹ∗
√

M giving

1
M

∫ ∞
0

∫ ∫
D
|z̃∗| 1√

v̄
φ

(
z̃∗ − z̄√

v̄

)
fȲ i

k+1,M ,V̄
i
k+1,M |Fk

(
z̄√
M
, v̄
)

dz̃∗dz̄ dv̄ .

Convergence of Ỹ i+∗
k+1,M , Ȳ i+

k+1,M and V̄ i+
k+1,M to Y i

k+1, Y i
k+1

and V i
k+1 implies

≈ 1
M

∫ ∞
0

∫ ∫
D
|z̃∗| 1√

v̄
φ

(
z̃∗ − z̄√

v̄

)
fỸ i∗

k+1,M ,V̄
i
k+1,M |Fk

(
z̃∗√
M
, v̄
)

dz̃∗dz̄ dv̄ .

Undoing the z̃∗ and z̄ substitutions gives∫ ∞
0

∫ ∫
D
|ỹ∗| 1√

v̄/M
φ

(
ỹ∗ − ȳ√

v̄/M

)
fỸ i∗

k+1,M ,V̄
i
k+1,M |Fk

(ỹ∗, v̄) dỹ∗dȳ dv̄ .

Now integrate with respect to ȳ .
Convergence of Stochastic Tree Estimators
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Approximation to Bias

Local bias is approximately

E

[
|Ỹ i∗

k+1,M | Φ

(
−|Ỹ i∗

k+1,M |√
V̄ i

k+1,M/M

)∣∣∣∣Fk

]
.

Substitute (Ỹ i
k+1,M , Ṽ

i
k+1,M ) for (Ỹ i∗

k+1,M , V̄
i
k+1,M ) giving

≈ E

[
|Ỹ i

k+1,M | Φ

(
−|Ỹ i

k+1,M |√
Ṽ i

k+1,M/M

)∣∣∣∣Fk

]

Can be estimated in the simulation.
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Bias-corrected Estimator

Recursive equations for the corrected esitmator

H̃ i
k ,M =

1
M

M∑
ik+1=1

B̃i
k+1,M and

B̃i
k ,M = max(H̃ i

k ,M ,P
i
k )− |H̃ i

k ,M − P i
k | Φ

(
−|H̃ i

k ,M − P i
k |√

Ṽ i
k ,M/M

)

where the terminal condition is H̃ i
N,M = 0;

Will now show this estimator converges almost surely.
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Lemma (Bounds)

Define the generic quantities

Ũ i,p
k ,M =

1
M

M∑
ik+1=1

· · · 1
M

M∑
iN =1

max
τ∈[k ,...,N]

|P i
τ |p,

U i,p
k = E

[
max

τ∈[k ,...,N]
|P i
τ |p
∥∥Fk

]
,

These are almost surely finite if each E[|P i
k |p] <∞.

Lemma (Bounds)

For all i, 1 ≤ p, and k,
1 |P i

k |p ≤1 U i,p
k

2 |H i
k |p ≤1 U i,p

k and |H̃ i
k ,M |p ≤ Ũ i,p

k ,M ,

3 |Bi
k |p ≤1 U i,p

k and |B̃i
k ,M |p ≤ Ũ i,p

k ,M , and

4 |V i
k |p ≤1 U i,2p

k and |Ṽ i
k ,M |p ≤ (M/(M − 1))pŨ i,2p

k ,M .
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Lemma (Bounds Consistency) I

Lemma (Bounds consistency)

For all i, 1 ≤ q ≤ p, k, and G ⊂ Fk , if Up
0 <∞, then

1 Ũ i,q
k ,M and U i,q

k are integrable,

2 Ũ i,q
k ,M →1 U i,q

k and 1/M
∑M

ik =1 Ũ i,q
k ,M →1 E[U i,q

k ‖Fk−1], and

3 E[Ũ i,q
k ,M‖G] =1 E[U i,q

k ‖G].

Consider arbitrary i, 1 ≤ q ≤ p, and k such that the lemma
conditions are satisfied. As |x |q ≤ |x |p + 1, integrability of
Ũ i,q

k ,M and U i,q
k follows from integrability of Ũ i,p

k ,M and U i,p
k .

The latter is shown by taking the expected value of the
definitions and expanding the domain of the max:

E
[
Ũ i,p

k ,M

]
= E

[
U i,p

k

]
= E

[
max

τ∈[k ,...,N]
|P i
τ |p
]
≤ E

[
max

τ∈[0,...,N]
|P i
τ |p
]

= Up
0 <∞.
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Lemma (Bounds Consistency) II

Lemma (Bounds consistency)

For all i, 1 ≤ q ≤ p, k, and G ⊂ Fk , if Up
0 <∞, then

1 Ũ i,q
k ,M and U i,q

k are integrable,

2 Ũ i,q
k ,M →1 U i,q

k and 1/M
∑M

ik =1 Ũ i,q
k ,M →1 E[U i,q

k ‖Fk−1], and

3 E[Ũ i,q
k ,M‖G] =1 E[U i,q

k ‖G].

The second part follows from the strong law of large
numbers
Third part an immediate consequence of taking the
G-conditional expectation.
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Main Result: Theorem (Estimator Consistency) I

Theorem (Estimator consistency)

For all i, 2 ≤ p, k, and G ⊂ Fk , if Up
0 <∞, then

1 P i
k , H i

k , Bi
k , V i

k , H̃ i+
k ,M , B̃i+

k ,M , and Ṽ i+
k ,M are integrable,

2 H̃ i+
k ,M →1 H i

k , B̃i+
k ,M →1 Bi

k , and Ṽ i+
k ,M →1 V i

k , and

3 E[H̃ i+
k ,M‖G]→1 E[H i

k‖G], E[B̃i+
k ,M‖G]→1 E[Bi

k‖G], and
E[Ṽ i+

k ,M‖G]→1 E[V i
k‖G].

Consider arbitrary i, k , p, and G ⊂ Fk such that the
theorem conditions are satisfied. Integrability follows from
the bounds established by Lemma (Bounds) and the
integrability of Ũ i,1

k ,M and Ũ i,2
k ,M by Lemma (Bounds

Consistency). The rest of the theorem trivially holds for N
as B̃i

k ,N = Bi
N = P i

N .
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Main Result: Theorem (Estimator Consistency) II

Theorem (Estimator consistency)

For all i, 2 ≤ p, k, and G ⊂ Fk , if Up
0 <∞, then

1 P i
k , H i

k , Bi
k , V i

k , H̃ i+
k ,M , B̃i+

k ,M , and Ṽ i+
k ,M are integrable,

2 H̃ i+
k ,M →1 H i

k , B̃i+
k ,M →1 Bi

k , and Ṽ i+
k ,M →1 V i

k , and

3 E[H̃ i+
k ,M‖G]→1 E[H i

k‖G], E[B̃i+
k ,M‖G]→1 E[Bi

k‖G], and
E[Ṽ i+

k ,M‖G]→1 E[V i
k‖G].

Can show that

lim
M

H̃ i
k ,M = lim

M

1
M

M∑
ik+1=1

B̃i
k+1,M =1 E

[
lim
M

B̃i
k+1,M

∥∥Fk

]
=1 E

[
Bi

k+1‖Fk
]

= H i
k .

Likewise for Ṽ i
k ,M and B̃i

k ,M

Convergence of Stochastic Tree Estimators
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Main Result: Theorem (Estimator Consistency) III

Theorem (Estimator consistency)

For all i, 2 ≤ p, k, and G ⊂ Fk , if Up
0 <∞, then

1 P i
k , H i

k , Bi
k , V i

k , H̃ i+
k ,M , B̃i+

k ,M , and Ṽ i+
k ,M are integrable,

2 H̃ i+
k ,M →1 H i

k , B̃i+
k ,M →1 Bi

k , and Ṽ i+
k ,M →1 V i

k , and

3 E[H̃ i+
k ,M‖G]→1 E[H i

k‖G], E[B̃i+
k ,M‖G]→1 E[Bi

k‖G], and
E[Ṽ i+

k ,M‖G]→1 E[V i
k‖G].

The third part follows for k immediately from the second
part, the bounds established by Lemma (Bounds), the
consistency of those bounds as established by Lemma
(Bounds Consistency), and another result.
The entire theorem then holds for all k by induction.
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Main Result II: Lemma (Uncorrected Estimator
Consistency)

Above result relies on the 2nd moment only because of the
variance term in the corrected estimators.
This result implies the almost sure convergence of the
uncorrected estimators under the condition that U1

0 <∞
— existence of a first absolute moment.
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Conclusion

Prove convergence of original stochastic tree estimators
weaker assumptions (first versus first-plus-epsilon
moment); and
stronger mode of convergence (almost sure versus
q-norm).

Prove almost-sure convergence of bias-corrected
stochastic tree estimators.
On to Davison’s companion presentation
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